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Abstract: The emergence of COVID-19 in early 2020 rapidly transformed into one of the most serious
global health concerns. First reported in Wuhan, China, the virus quickly crossed national borders
and spread worldwide. Initial signs of infection, such as fever, cough, and general weakness, often
appear mild, yet in many cases the illness progresses to severe complications, including lung
impairment, organ dysfunction, or even death. For diagnosis, Reverse Transcription Polymerase
Chain Reaction (RT-PCR) continues to be regarded as the benchmark method. Although reliable,
this test is costly and often requires up to three days before results are available, which limits its
practicality for mass testing during a pandemic. This limitation has created an urgent demand for
diagnostic methods that are quicker, more affordable, and equally accurate. Detecting the virus at
an early stage is essential, as it not only improves patient recovery but also plays a critical role in
slowing transmission within communities. In response to this challenge, the present research
applies a customized Convolutional Neural Network (CNN)-based deep learning model to chest X-
ray images for COVID-19 detection. The system was designed for multi-class classification and
tested using an online dataset. The evaluation results indicate that the model achieved a
classification accuracy of 98.87%, highlighting its effectiveness in supporting rapid and reliable
COVID-19 screening.
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1. Introduction

Over the past few decades, the incidence and spread of infectious and viral diseases have risen
sharply, posing significant challenges to healthcare systems worldwide. One of the most notable examples
is the Coronavirus (COVID-19) pandemic, which was first identified in Wuhan, China, in late 2019. Within
a short time, it expanded into a global crisis, exerting pressure on healthcare, economic stability, and social
structures across nations. COVID-19, caused by the novel SARS-CoV-2 virus, manifests through a broad
spectrum of symptoms. While many patients experience mild signs such as fever, sore throat, and cough,
severe cases may progress to acute respiratory distress syndrome (ARDS), multi-organ failure, or even
death. These outcomes are particularly common among the elderly and those with weakened immune
systems. The average duration from infection to death is estimated at approximately 14 days; however,
this period varies with factors like age, pre-existing medical conditions, and immune response [1]. The
unpredictable nature of viral mutations and their rapid transmission underline the urgency of accurate
and timely diagnostic systems to limit further spread and provide prompt treatment.

Although Reverse Transcription Polymerase Chain Reaction (RT-PCR) remains the benchmark for
COVID-19 detection, its limitations high cost, dependency on specialized laboratories, and result delays of
up to 72 hours, make it impractical for widespread screening. These challenges have reinforced the need
for faster, scalable, and cost-effective diagnostic alternatives, ideally through non-invasive approaches. In
this context, Artificial Intelligence (AI) and Machine Learning (ML), particularly Deep Learning (DL)
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architectures such as Convolutional Neural Networks (CNNs), have shown significant promise in medical
imaging. CNNs can analyze chest X-ray (CXR) images with high precision, allowing automated distinction
between COVID-19 and non-COVID-19 cases. This capability reduces the burden on medical professionals
while accelerating clinical decisions [2, 3]. In addition, forecasting models like Prophet and ARIMA have
been applied to study infection trends and enhance understanding of virus dynamics [4, 5]
Recognizing the growing importance of chest imaging in COVID-19 diagnostics, this study applies a
customized CNN-based deep learning framework to classify chest X-rays, with the objective of minimizing
testing costs, reducing dependency on laboratory-based approaches, and delivering faster results. The
research introduces an Al-driven diagnostic model built upon a CNN architecture enhanced through
transfer learning, trained with annotated chest X-ray datasets, to distinguish COVID-19 infections from
normal cases with high precision.
The primary contributions of this research are as follows:
¢ Development of a customized CNN architecture combined with transfer learning for efficient chest X-
ray image analysis.

e Utilization of a publicly available Kaggle dataset to ensure reproducibility and wider applicability.

¢ Incorporation of preprocessing, normalization, and multi-class classification strategies to improve
model generalization.

e Achievement of 98.82% accuracy while reducing training time and preventing overfitting.

e Performance benchmarking against existing methods, demonstrating superior outcomes in key
evaluation metrics.

2. Literature Review

Scholars have investigated the application of machine learning (ML) and data mining approaches to
support the diagnosis, prediction, and management of COVID-19 transmission[6]. Various approaches,
including predictive modeling, image-based classification, and time-series analysis, have been proposed
to enhance decision-making in healthcare systems under pandemic stress. One of the early predictive
models used the PIBA technique, which estimated daily death rates during outbreaks using publicly
available COVID-19 data[7]. This model employed mortality data from Wuhan and was adapted to forecast
trends in other Chinese cities and Korea, estimating a death rate of 1.6% in early-stage patients[8].
Similarly, the ARIMA model was applied to Italian health data, achieving a 93.75% accuracy in predicting
recurrence trends and 84.4% accuracy in modeling recoverable cases.

Numerous types of data mining techniques were experimented on the pandemic. To detect short-term
trends, researchers primarily applied statistical time-series models, including ARIMA and SARIMA, in the
initial stages of the outbreak because they are easy to apply and can rapidly identify short-term trends.
They use previous values of daily or weekly cases to have an idea of what can occur in the future. These
methods worked quite effectively in the case of very short predictions but failed in situations when the
dynamics of the virus altered abruptly, i.e., when new restrictions were imposed by governments or when
new types of the virus emerged. Consequently, researchers resorted to more adaptable machine learning
algorithms with the ability to learn nonlinear and complex relationships among two or more variables.
Random forests, support vector machines, and gradient boosting techniques gained popularity because it
is possible to use numerous input features like population density, temperature, testing rate, and mobility
data to make a more accurate prediction. Mathematical techniques have also been used to understand the
spread of COVID-19. A tree-based model explored the effects of isolation and undetected transmissions
(hidden nodes) in the virus’s spread[9]. Results showed that quarantine and lockdown measures
significantly curbed transmission, especially in regions like India. Another study used the ARIMA model
with the Johns Hopkins dataset to predict the epidemic’s trend, while further research explored COVID-
19’s indirect effects. For example, the virus’s effect on pregnancy was analyzed using a meta-analysis
approach, focusing on complications such as premature birth, preeclampsia, miscarriage, and neonatal
asphyxia[10]. The findings indicated a 90% likelihood of COVID-19-positive mothers developing
pneumonia and an increased risk of severe perinatal outcomes. With increased computing and data
availability, one of the most popular ways to forecast COVID-19 was deep learning. Neural networks, and
in particular recurrent neural networks such as LSTM (Long Short-Memory) and GRU (Gated Recurrent
Unit), were popular due to their ability to learn the patterns that change with time. These networks have
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been used to forecast new cases, hospitalizations, and deaths daily, depending on past data sequences.
Convolutional neural network (CNN) models were also adjusted to process spatiotemporal data, whereby
the aim was to forecast how the disease diffuses regionally, instead of just through time. These models
usually worked better than the conventional statistical techniques in cases where there was sufficient data.
They were, however, also more complicated and consumed a lot of computing power. Moreover, since
they are not as transparent in their inner mechanisms, they could be more difficult to read than simpler
models for the public health officials.

ML has proven effective in diagnosing other infectious diseases, such as swine flu and Clostridium
difficile infection (CDI). Neural Networks and Support Vector Machines (SVMs) were applied to expedite
swine flu detection, where Neural Networks demonstrated superior accuracy and faster response
compared to SVMs[11]. In another study, ML was applied to predict complications in CDI patients using
hospital data from the University of Michigan. The model, trained on post-diagnosis data spanning over
two years, achieved high confidence in forecasting severe outcomes like ICU admission and mortality[12].
Recent studies also highlighted how regression-based ML techniques can support sustainable pandemic
response strategies. Regression algorithms have been used to diagnose COVID-19 with increasing
accuracy[13, 14]. However, many studies focused more on predictive outcomes than on interpretability or
the visual explanation of virus proliferation [15, 16]. These limitations present an opportunity to develop
more robust, explainable, and visually traceable models —gaps that the present research aims to address.
Experiments also involved ensemble models, a combination of predictions of multiple varied algorithms
to obtain a more stable prediction. The practice of ensemble forecasting became a common practice in most
countries, particularly in national and regional COVID-19 forecasting centers. The point is that each model
will not be able to model every aspect of a quickly changing pandemic, but that an average between several
models can be better calibrated. The strategy minimized the mistakes of model biasing by each individual
and made the policymakers have more confidence in the forecast. Ensemble methods were also malleable
enough to incorporate data-based and mechanistic models and combine the assets of each. There was a
vast array of sources of data that were used to forecast COVID-19. The most frequently used data sets were
the official statistics of confirmed cases, hospitalizations, and deaths. Nevertheless, to enable forecasts to
be more receptive to shifts in human behavior, researchers started to include mobility information on
mobile phones and applications, weather-related factors, including temperature and humidity, as well as
government policy indices that monitored lockdowns and mask-wearing requirements. Early warning
indicators of outbreaks encompassed the use of social media data, Google search trends, as well as
wastewater samples. These extra characteristics enabled the models to capture the early indications of
increased infections prior to their manifestations in verified cases. Nevertheless, the handling of such data
was a significant challenge, and the challenges were reported gaps in data, delays, and disparities across
nations. The data were often more difficult to clean and preprocess than to create the models themselves.

Recent surveys confirm that modern machine-learning methods generally outperform classical
statistical models in forecasting COVID-19 trends. Cheng et al.[17]reviewed over 130 COVID-19 prediction
studies and found that hybrid approaches—such as combining neural networks with optimization
algorithms significantly improved accuracy. Similarly, Nguyen et al.[18] introduced BeCaked, which
integrates an SIRD epidemiological model with an LSTM autoencoder, achieving R? values above 0.98 for
global forecasts. Chen et al. [19] proposed a hybrid BiGRU-attention model, reporting Adjusted R? > 0.99
on long-term forecasts. Another advancement was the XGBoost-SIRVD-LSTM model, which used XGBoost
for feature selection and an LSTM within a compartmental SIRVD structure, outperforming baseline
models on R?, RMSE, and MAPE [20]. The most common metrics of model performance, root mean square
error (RMSE) or mean absolute error (MAE), were often employed to compare the number of cases
predicted and the number of cases actually observed. Generally, the research determined that there was
no single method that was always yielding optimal predictions. Simple ARIMA models might be good to
use in a short-term forecasting period, particularly when the trend is smooth. The deep learning models
and hybrid methods produced better results where large and varied datasets were present. Ensemble
techniques were more likely to provide the best predictions across various time and space. Nonetheless, it
was not easy to compare the studies directly as each one of them employed slightly different sources of
data, timeframes, and methods of validation. Literature reviews made the conclusion that machine
learning methods had massive potential, but in many cases, their performance difference to traditional
models was not so enormous or stable. There were a number of innovations as models got advanced with
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time. Transfer learning came in handy in cases of smaller regions in which the training data was scarce.
Researchers could train a model on global data and fine-tune it locally without having to collect enormous
local datasets by pretraining it on global data and fine-tuning it on a particular country or city. Attention
mechanisms, which were initially created in the field of natural language processing, were also
implemented to predict COVID-19 time series. These enabled models to specialize in the most interesting
periods or characteristics during which predictions should be made, which increases the precision in the
areas of sudden changes, like the outbreak of new variants. Another significant trend was probabilistic
forecasting, where forecasts were made in the form of ranges of uncertainty, rather than just points. The
method was particularly useful to policy-makers who had to prepare both the best-case and worst-case
scenarios instead of one number. Nevertheless, COVID-19 remained highly hard to predict despite the
advancements. The biggest challenge was the nonstationary fact that the underlying conditions continued
to vary as people became accustomed to limitations or new variants came up. Models that were trained on
previous layers tended to do a poor job on subsequent layers. The other issue was data quality. The
reporting systems were not regular in many countries, with backlogs, absence of weekend data, or
alteration of test policy. This rendered it difficult to create stable datasets to train the model. Other models
were also inflated by the overfitting behavior, in which they were highly effective on historical data but
not on new patterns. The complex machine learning models could be helpful at observing any useful
pattern, though they seldom gave a causal explanation of what was causing the patterns, and it would be
a risky step to rely on the predictions, regardless of how useful, to form the foundation of a social policy.

Beyond hybrid architectures, innovations in input data and training strategies have improved
accuracy. Hu et al.[21] developed an attention-enhanced transfer learning LSTM (TLLA) that consistently
reduced MAE and RMSE compared to traditional LSTMs. Jiao et al.[22] Incorporated human mobility data
into an LSTM-attention model for Japan, significantly reducing long-term forecasting errors. These
findings demonstrate that combining epidemiological knowledge, auxiliary datasets, and deep learning
improves not only predictive accuracy but also model interpretability. Another level of complexity was
brought about by spatial heterogeneity. The population density, as well as the infrastructure and mobility
patterns in a particular region, are significantly different, so that the model trained on data in one of the
countries cannot be generalized to another without relevant modifications. To overcome this problem,
other research adopted hierarchical or multi-scale modeling models that related localized predictions to
national trends. The other ones built up groupings that integrated parallel regional models. However, these
methods demanded quality local data, which is not always available in detail. The empirical case studies
reveal that data mining is useful in operational forecasting. Government agencies and research consortia
created national forecast hubs, which take predictions of various models and provide real-time
comparative analyses. Hospitals used machine-learning predictions to predict spikes in the patient inflow
and to distribute the limited resources like ventilators and ICU beds. Telecommunications-based mobility
data helped in identifying potential hotspots before the confirmed cases increased in number and
subsequently provided the basis of appropriate interventions. These case studies serve to point out that
data-mining services can be used to greatest effect when coupled with human insight and domain
knowledge, but not as independent higher-order automation. Ethical and social issues have been
simultaneously brought up by the increased data-driven forecasting of COVID-19. The process of
mobilizing mobility and health data is often associated with personal sensitive information, increasing the
risks of privacy invasions. The strong anonymization protocols and the responsible use of data are one of
the primary priorities. There are also problems of equity and bias because the models that are trained on
unfinished or biased datasets can generate inefficient predictions of specific communities, especially when
they have lower testing rates or limited technological access. Openness about the restrictions of the model
used and meticulous information conveyed to the populace about the uncertainties is fundamental to
sustaining trust in the forecasting systems. The future research directions are focused on realizing an
alternative hybrid model that will combine both the causal inference of epidemiology and the pattern-
recognition abilities of machine learning. By developing the capability to build adaptive or continuous
learning systems that can automatically revise with the incoming data, the forecast fidelity will improve
when the conditions change rapidly.

In summary, prior literature demonstrates the growing role of Al and data-driven models in
pandemic management. However, limitations such as class imbalance, lack of real-time adaptability, and
underperformance in diverse imaging conditions remain. Our work addresses these gaps by proposing a
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CNN-based classification framework using chest X-ray images, evaluated with high-performance metrics

on a large and diverse dataset.

Table 1. Related Work

Author & Year Method Used Dataset Source Accuracy Key Limitation
(%)
Khan et al.[23] Channel Boosted Chest X-rays 97.94 Limited to small image
CNN variations
Hira et al.[24] CNN-Based Auto Chest X-rays 90.80 No F1 or Recall
Model reported
Gunraj et CovidNet-CT CT Scan images 93.10 CT data—not suitable
al.[25] (CNN) for mass screening
Majeed et al. [9] Transfer Learning Chest X-rays 96.45 Lacked precision in
+CNN class imbalance
Wang et al.[26] COVID-Net (CNN)  COVIDx Chest 924 The model is biased
X-ray Dataset toward the majority
class
Apostolopoulos MobileNet v2 Public X-ray 96.78 Limited data variety
et al.[27] Transfer Learning dataset
Hemdan et COVIDX-Net (7  COVID-19 X-ray 90.00 Performance varies
al.[28] CNN models) Dataset significantly by model

3. Proposed Methodology

This study presents a CNN-based method with transfer learning for COVID-19 detection and
prediction using chest X-ray images. The workflow includes five stages: data acquisition, preprocessing,
transfer learning, CNN training, and classification. X-ray images from public datasets, collected in different
formats and resolutions, were preprocessed by converting to RGB (if needed), resizing to 180x180, and
normalizing pixel values to 0-1. Transfer learning was then applied using a pre-trained CNN to extract
features and reduce overfitting, with the model fine-tuned on the COVID-19 dataset.

During training, the CNN —composed of convolutional, pooling, and fully connected layers —learned
image features effectively. In the final stage, the trained model classified input X-rays as either COVID-19
positive or normal.

Transfer
Learning

Dataset Training (CNN)

Preprocessing

Figure 1. Flow Diagram of the proposed model

3.1. Dataset Description

For this study, the dataset used was from a Kaggle repository and comprised 5,863 chest X-ray images
in JPEG format, collected from patients aged five years and older. To maintain reliability in model training,
the images were preprocessed by eliminating unreadable, duplicate, or poor-quality scans. The refined
dataset was then split into three parts: 70% for training, 15% for validation, and 15% for testing. Each subset
was further organized into two categories: COVID-19 and Normal, a strategy consistent with prior studies
[29]. Figure 2 illustrates the distribution of X-ray images across these two classes.
3.1.1.  Data Preprocessing

To maintain uniformity and enhance model efficiency, several preprocessing steps were carried out:
Image Normalization: Pixel values were scaled within the 0 to 1 range to facilitate smoother convergence
during training. All images were fixed to a resolution of 180 x 180 pixels to align with the CNN input layer.
RGB Conversion — images not originally in RGB were transformed into three-channel RGB format for
consistent data representation.

Data Augmentation: operations such as horizontal flips, zoom adjustments, and slight rotations were
applied to strengthen the model’s generalization and minimize overfitting. These preprocessing measures
ensured that the CNN received clean, standardized, and enhanced input data.
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Figure 2. Samples from the Dataset

3.1.2.  Transfer Learning

Transfer learning was adopted in this study as an efficient way to reduce training time and improve
feature extraction when working with medical imaging data. The approach begins with a pre-trained CNN
model, such as VGG16 or ResNet50, that has already been trained on the large-scale ImageNet dataset.
These models contain early layers capable of capturing universal visual elements like lines, textures, and
basic shapes, which remain useful across many domains. Instead of training a network from scratch, these
generalized layers were retained to preserve their feature-detection ability. The higher layers of the model,
however, were replaced and a fine-tuned dataset to make the network sensitive to domain-specific
patterns. This adjustment allowed the system to adapt existing visual knowledge to the context of medical
diagnostics. By leveraging transfer learning, the model not only achieved higher accuracy with relatively
limited labeled data but also significantly reduced computational cost and training duration. Moreover,
this strategy improves model generalization, resulting being suitable for practical applications where large
annotated datasets are often unavailable.
3.1.3. CNN

A Convolutional Neural Network (CNN) is designed for tasks involving image and pattern
recognition. Unlike traditional neural networks that primarily rely on fully connected layers and activation
functions, CNNs also integrate convolution and pooling layers, which allow them to efficiently capture
spatial hierarchies in data. The foundation of CNNs can be traced back to the visual perception studies of
K. Fukushima in 1980, which inspired the concept of hierarchical feature extraction. Nearly two decades
later, in 1998, Yann LeCun introduced the LeNet architecture, which gained prominence for its
effectiveness in handwriting recognition. This marked the beginning of CNNs as a core component of
modern computer vision research. The CNN model used in this study is shown in Figure 3.

Pre processing

Pre trained m odel + Proposed Model .+ Qutput

Figure 3. Proposed Model Diagram
The convolutional layer serves as the backbone of a CNN, where the process of feature extraction
takes place. In this layer, pixel values from an input image (defined by height and width) are convolved
with filters or kernels, resulting in feature maps that typically have reduced dimensions compared to the
original input. Several hyperparameters, such as filter size, stride, and padding, must be tuned for optimal
performance. To illustrate, convolution operations on 7x7x1 images are depicted in the figures that follow.
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Mathematically, the convolution operation can be expressed as in Equation (1):

SiErBrath (1)

Here, B is the input, a the filter, and b the bias. The output size after convolution is determined using
equation (2).

2+ 1] @

Here, n is the original image size, i corresponds to the padding, k is the kernel dimension, and v is the
stride value.

Pooling layers are integrated after convolutional operations to progressively reduce the spatial
resolution of feature maps. By compressing feature representations, pooling decreases the number of
learnable parameters, reduces memory usage, and lowers computational complexity. This process also
enhances the model’s generalization capability. Key hyperparameters include the pooling kernel size,
stride, and padding. The most common pooling strategies are max pooling and average pooling, where
max pooling emphasizes the most prominent features while average pooling provides a smoothed
aggregation of activations [30].

3.2. Classification

Once training is completed, the model classifies new chest X-ray inputs as either COVID-19 positive or
Normal. The model generates probability scores, and a threshold set at 0.5 is applied to assign the final
class label.

4. Results and Discussion
The proposed CNN was evaluated on the preprocessed Kaggle chest X-ray dataset, with all inputs

resized to 180x180x3. Its architecture started with two convolutional layers and a pooling layer for basic
feature extraction, followed by a dropout layer to reduce overfitting. Additional convolutional and pooling
layers captured higher-level patterns, after which the output passed through a flattening layer, another
dropout, and finally a dense layer for binary classification of COVID-19 and normal cases. ReLU activation,
SAME padding, and a consistent 3x3 filter sizes were applied throughout to ensure effective learning while
preserving spatial details.
4.1. Evaluation Metric

To thoroughly evaluate the performance of the model, several metrics were applied as given in
Equations (3), (4), (5), and (6).

Accuracy: The proportion of correctly classified images over the total number of test images.
TP+TN
3

Accuracy = ——
Y = TP+TN+FP+FN

For a comprehensive evaluation of the model’s effectiveness, multiple performance metrics were

employed:
TP
TP+FP (4)

Recall (Sensitivity): The ratio of true positive predictions to the actual positive cases. It reflects the

model's ability to detect positive samples.
TP
Recall = —— (%)
TP+FN
F1 Score: The harmonic average of precision and recall, providing a balanced measure between the

Precision =

two.
F1=2. Prec%'sion. Recall (6)
Recison+Recall
Loss: Binary cross-entropy loss was used to measure the difference between predicted and actual

outputs during training.
4.2. Model Performance

The model’s performance was assessed over 20 epochs, with accuracy and loss trends shown in
Figures 4 and 5. The accuracy curve in Figure 4 indicates rapid convergence, reflecting the benefit of
transfer learning in speeding up training and improving results. The loss curve in Figure 5 shows a steady
decline, confirming effective learning and error reduction. Sample outputs in Figure 6 further validate the
model’s ability to distinguish COVID-19 positive cases from normal ones.
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Figure 6. Political Sentiment Analysis
The main crux is that results collectively highlight the robustness of the proposed architecture. The
final performance metrics achieved after 20 epochs are summarized in Table 2.
Table 2. Results of the CNN Proposed Model

Epoch Accuracy Recall F1 Precision Loss
score rate
20 0.989 0.979 0.987 0.995 0.042
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4.3. Comparative Analysis
Table 3 presents a comparison with earlier studies, showing that the proposed CNN with transfer
learning achieves superior accuracy, precision, and F1 score, confirming its effectiveness for COVID-19

detection.
Table 3. Result Comparison with Existing Techniques
Author & Year Method Used Dataset Accuracy Key Limitation
Source (%)
Khan et al.[23] Channel Boosted CNN  Chest X-rays 97.94 Limited to small
image variations
Hira et al.[24] CNN-Based Auto Chest X-rays 90.80 No F1 or Recall
Model reported
Gunraj et al.[25] CovidNet-CT (CNN) CT Scan 93.10 CT data—not
images suitable for mass
screening
Majeed et al.[9] Transfer Learning + Chest X-rays 96.45 Lacked precision
CNN in class imbalance
Wang et al.[26] COVID-Net (CNN) COVIDX 924 Model biased
Chest X-ray toward majority
Dataset class
Apostol Poulos et MobileNet v2 Transfer =~ Public X-ray 96.78 Limited data
al.[27] Learning dataset variety
Hemdan et al.[28] COVIDX-Net (7 CNN  COVID-19 X- 90.00 Performance
models) ray Dataset varies significantly
by model
Proposed Model Custom CNN + Kaggle Chest 98.82 Currently limited
Transfer Learning X-ray Dataset to binary classes

The incorporation of transfer learning enabled faster convergence and high accuracy with a smaller
dataset, making this approach suitable for real-time medical image classification systems where quick and
reliable predictions are critical.

5. Conclusion & Future Work

This study aimed to build a cost-effective system for early COVID-19 detection using a CNN-based
algorithm with transfer learning. Trained on chest X-ray data, the model classified images as normal or
COVID-19 positive with 98.82% accuracy, demonstrating strong diagnostic capability and confirming its
effectiveness.

The findings emphasize the promise of deep learning and transfer learning in vital healthcare
applications, particularly when data availability is limited. By leveraging X-ray imaging as a low-cost and
widely accessible diagnostic option, the proposed method becomes highly suitable for use in resource-
constrained regions. Additionally, the framework has potential for integration into rapid screening
processes within clinical settings, alleviating reliance on PCR-based tests. For future research, the focus
will be on applying and testing additional CNN architectures and Al models to expand the system for
diagnosing other viral infections, including flu, SARS, and pneumonia. Another direction will involve
investigating post-COVID complications and their detection through longitudinal imaging and predictive
modeling.
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