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Abstract: The emergence of COVID-19 in early 2020 rapidly transformed into one of the most serious 

global health concerns. First reported in Wuhan, China, the virus quickly crossed national borders 

and spread worldwide. Initial signs of infection, such as fever, cough, and general weakness, often 

appear mild, yet in many cases the illness progresses to severe complications, including lung 

impairment, organ dysfunction, or even death. For diagnosis, Reverse Transcription Polymerase 

Chain Reaction (RT-PCR) continues to be regarded as the benchmark method. Although reliable, 

this test is costly and often requires up to three days before results are available, which limits its 

practicality for mass testing during a pandemic. This limitation has created an urgent demand for 

diagnostic methods that are quicker, more affordable, and equally accurate. Detecting the virus at 

an early stage is essential, as it not only improves patient recovery but also plays a critical role in 

slowing transmission within communities. In response to this challenge, the present research 

applies a customized Convolutional Neural Network (CNN)–based deep learning model to chest X-

ray images for COVID-19 detection. The system was designed for multi-class classification and 

tested using an online dataset. The evaluation results indicate that the model achieved a 

classification accuracy of 98.87%, highlighting its effectiveness in supporting rapid and reliable 

COVID-19 screening.  
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1. Introduction 

Over the past few decades, the incidence and spread of infectious and viral diseases have risen 

sharply, posing significant challenges to healthcare systems worldwide. One of the most notable examples 

is the Coronavirus (COVID-19) pandemic, which was first identified in Wuhan, China, in late 2019. Within 

a short time, it expanded into a global crisis, exerting pressure on healthcare, economic stability, and social 

structures across nations. COVID-19, caused by the novel SARS-CoV-2 virus, manifests through a broad 

spectrum of symptoms. While many patients experience mild signs such as fever, sore throat, and cough, 

severe cases may progress to acute respiratory distress syndrome (ARDS), multi-organ failure, or even 

death. These outcomes are particularly common among the elderly and those with weakened immune 

systems. The average duration from infection to death is estimated at approximately 14 days; however, 

this period varies with factors like age, pre-existing medical conditions, and immune response [1]. The 

unpredictable nature of viral mutations and their rapid transmission underline the urgency of accurate 

and timely diagnostic systems to limit further spread and provide prompt treatment.  

Although Reverse Transcription Polymerase Chain Reaction (RT-PCR) remains the benchmark for 

COVID-19 detection, its limitations high cost, dependency on specialized laboratories, and result delays of 

up to 72 hours, make it impractical for widespread screening. These challenges have reinforced the need 

for faster, scalable, and cost-effective diagnostic alternatives, ideally through non-invasive approaches. In 

this context, Artificial Intelligence (AI) and Machine Learning (ML), particularly Deep Learning (DL) 
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architectures such as Convolutional Neural Networks (CNNs), have shown significant promise in medical 

imaging. CNNs can analyze chest X-ray (CXR) images with high precision, allowing automated distinction 

between COVID-19 and non-COVID-19 cases. This capability reduces the burden on medical professionals 

while accelerating clinical decisions [2, 3]. In addition, forecasting models like Prophet and ARIMA have 

been applied to study infection trends and enhance understanding of virus dynamics [4, 5] 

Recognizing the growing importance of chest imaging in COVID-19 diagnostics, this study applies a 

customized CNN-based deep learning framework to classify chest X-rays, with the objective of minimizing 

testing costs, reducing dependency on laboratory-based approaches, and delivering faster results. The 

research introduces an AI-driven diagnostic model built upon a CNN architecture enhanced through 

transfer learning, trained with annotated chest X-ray datasets, to distinguish COVID-19 infections from 

normal cases with high precision. 

The primary contributions of this research are as follows: 

• Development of a customized CNN architecture combined with transfer learning for efficient chest X-

ray image analysis. 

• Utilization of a publicly available Kaggle dataset to ensure reproducibility and wider applicability. 

• Incorporation of preprocessing, normalization, and multi-class classification strategies to improve 

model generalization. 

• Achievement of 98.82% accuracy while reducing training time and preventing overfitting. 

• Performance benchmarking against existing methods, demonstrating superior outcomes in key 

evaluation metrics. 

 

2. Literature Review  

Scholars have investigated the application of machine learning (ML) and data mining approaches to 

support the diagnosis, prediction, and management of COVID-19 transmission[6]. Various approaches, 

including predictive modeling, image-based classification, and time-series analysis, have been proposed 

to enhance decision-making in healthcare systems under pandemic stress. One of the early predictive 

models used the PIBA technique, which estimated daily death rates during outbreaks using publicly 

available COVID-19 data[7]. This model employed mortality data from Wuhan and was adapted to forecast 

trends in other Chinese cities and Korea, estimating a death rate of 1.6% in early-stage patients[8]. 

Similarly, the ARIMA model was applied to Italian health data, achieving a 93.75% accuracy in predicting 

recurrence trends and 84.4% accuracy in modeling recoverable cases. 

Numerous types of data mining techniques were experimented on the pandemic. To detect short-term 

trends, researchers primarily applied statistical time-series models, including ARIMA and SARIMA, in the 

initial stages of the outbreak because they are easy to apply and can rapidly identify short-term trends. 

They use previous values of daily or weekly cases to have an idea of what can occur in the future. These 

methods worked quite effectively in the case of very short predictions but failed in situations when the 

dynamics of the virus altered abruptly, i.e., when new restrictions were imposed by governments or when 

new types of the virus emerged. Consequently, researchers resorted to more adaptable machine learning 

algorithms with the ability to learn nonlinear and complex relationships among two or more variables. 

Random forests, support vector machines, and gradient boosting techniques gained popularity because it 

is possible to use numerous input features like population density, temperature, testing rate, and mobility 

data to make a more accurate prediction. Mathematical techniques have also been used to understand the 

spread of COVID-19. A tree-based model explored the effects of isolation and undetected transmissions 

(hidden nodes) in the virus’s spread[9]. Results showed that quarantine and lockdown measures 

significantly curbed transmission, especially in regions like India. Another study used the ARIMA model 

with the Johns Hopkins dataset to predict the epidemic’s trend, while further research explored COVID-

19’s indirect effects. For example, the virus’s effect on pregnancy was analyzed using a meta-analysis 

approach, focusing on complications such as premature birth, preeclampsia, miscarriage, and neonatal 

asphyxia[10]. The findings indicated a 90% likelihood of COVID-19-positive mothers developing 

pneumonia and an increased risk of severe perinatal outcomes. With increased computing and data 

availability, one of the most popular ways to forecast COVID-19 was deep learning. Neural networks, and 

in particular recurrent neural networks such as LSTM (Long Short-Memory) and GRU (Gated Recurrent 

Unit), were popular due to their ability to learn the patterns that change with time. These networks have 
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been used to forecast new cases, hospitalizations, and deaths daily, depending on past data sequences. 

Convolutional neural network (CNN) models were also adjusted to process spatiotemporal data, whereby 

the aim was to forecast how the disease diffuses regionally, instead of just through time. These models 

usually worked better than the conventional statistical techniques in cases where there was sufficient data. 

They were, however, also more complicated and consumed a lot of computing power. Moreover, since 

they are not as transparent in their inner mechanisms, they could be more difficult to read than simpler 

models for the public health officials. 

ML has proven effective in diagnosing other infectious diseases, such as swine flu and Clostridium 

difficile infection (CDI). Neural Networks and Support Vector Machines (SVMs) were applied to expedite 

swine flu detection, where Neural Networks demonstrated superior accuracy and faster response 

compared to SVMs[11]. In another study, ML was applied to predict complications in CDI patients using 

hospital data from the University of Michigan. The model, trained on post-diagnosis data spanning over 

two years, achieved high confidence in forecasting severe outcomes like ICU admission and mortality[12]. 

Recent studies also highlighted how regression-based ML techniques can support sustainable pandemic 

response strategies. Regression algorithms have been used to diagnose COVID-19 with increasing 

accuracy[13, 14]. However, many studies focused more on predictive outcomes than on interpretability or 

the visual explanation of virus proliferation [15, 16]. These limitations present an opportunity to develop 

more robust, explainable, and visually traceable models—gaps that the present research aims to address. 

Experiments also involved ensemble models, a combination of predictions of multiple varied algorithms 

to obtain a more stable prediction. The practice of ensemble forecasting became a common practice in most 

countries, particularly in national and regional COVID-19 forecasting centers. The point is that each model 

will not be able to model every aspect of a quickly changing pandemic, but that an average between several 

models can be better calibrated. The strategy minimized the mistakes of model biasing by each individual 

and made the policymakers have more confidence in the forecast. Ensemble methods were also malleable 

enough to incorporate data-based and mechanistic models and combine the assets of each. There was a 

vast array of sources of data that were used to forecast COVID-19. The most frequently used data sets were 

the official statistics of confirmed cases, hospitalizations, and deaths. Nevertheless, to enable forecasts to 

be more receptive to shifts in human behavior, researchers started to include mobility information on 

mobile phones and applications, weather-related factors, including temperature and humidity, as well as 

government policy indices that monitored lockdowns and mask-wearing requirements. Early warning 

indicators of outbreaks encompassed the use of social media data, Google search trends, as well as 

wastewater samples. These extra characteristics enabled the models to capture the early indications of 

increased infections prior to their manifestations in verified cases. Nevertheless, the handling of such data 

was a significant challenge, and the challenges were reported gaps in data, delays, and disparities across 

nations. The data were often more difficult to clean and preprocess than to create the models themselves. 

Recent surveys confirm that modern machine-learning methods generally outperform classical 

statistical models in forecasting COVID-19 trends. Cheng et al.[17]reviewed over 130 COVID-19 prediction 

studies and found that hybrid approaches—such as combining neural networks with optimization 

algorithms significantly improved accuracy. Similarly, Nguyen et al.[18] introduced BeCaked, which 

integrates an SIRD epidemiological model with an LSTM autoencoder, achieving R² values above 0.98 for 

global forecasts. Chen et al. [19] proposed a hybrid BiGRU-attention model, reporting Adjusted R² > 0.99 

on long-term forecasts. Another advancement was the XGBoost-SIRVD-LSTM model, which used XGBoost 

for feature selection and an LSTM within a compartmental SIRVD structure, outperforming baseline 

models on R², RMSE, and MAPE [20]. The most common metrics of model performance, root mean square 

error (RMSE) or mean absolute error (MAE), were often employed to compare the number of cases 

predicted and the number of cases actually observed. Generally, the research determined that there was 

no single method that was always yielding optimal predictions. Simple ARIMA models might be good to 

use in a short-term forecasting period, particularly when the trend is smooth. The deep learning models 

and hybrid methods produced better results where large and varied datasets were present. Ensemble 

techniques were more likely to provide the best predictions across various time and space. Nonetheless, it 

was not easy to compare the studies directly as each one of them employed slightly different sources of 

data, timeframes, and methods of validation. Literature reviews made the conclusion that machine 

learning methods had massive potential, but in many cases, their performance difference to traditional 

models was not so enormous or stable. There were a number of innovations as models got advanced with 
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time. Transfer learning came in handy in cases of smaller regions in which the training data was scarce. 

Researchers could train a model on global data and fine-tune it locally without having to collect enormous 

local datasets by pretraining it on global data and fine-tuning it on a particular country or city. Attention 

mechanisms, which were initially created in the field of natural language processing, were also 

implemented to predict COVID-19 time series. These enabled models to specialize in the most interesting 

periods or characteristics during which predictions should be made, which increases the precision in the 

areas of sudden changes, like the outbreak of new variants. Another significant trend was probabilistic 

forecasting, where forecasts were made in the form of ranges of uncertainty, rather than just points. The 

method was particularly useful to policy-makers who had to prepare both the best-case and worst-case 

scenarios instead of one number. Nevertheless, COVID-19 remained highly hard to predict despite the 

advancements. The biggest challenge was the nonstationary fact that the underlying conditions continued 

to vary as people became accustomed to limitations or new variants came up. Models that were trained on 

previous layers tended to do a poor job on subsequent layers. The other issue was data quality. The 

reporting systems were not regular in many countries, with backlogs, absence of weekend data, or 

alteration of test policy. This rendered it difficult to create stable datasets to train the model. Other models 

were also inflated by the overfitting behavior, in which they were highly effective on historical data but 

not on new patterns. The complex machine learning models could be helpful at observing any useful 

pattern, though they seldom gave a causal explanation of what was causing the patterns, and it would be 

a risky step to rely on the predictions, regardless of how useful, to form the foundation of a social policy. 

Beyond hybrid architectures, innovations in input data and training strategies have improved 

accuracy. Hu et al.[21] developed an attention-enhanced transfer learning LSTM (TLLA) that consistently 

reduced MAE and RMSE compared to traditional LSTMs. Jiao et al.[22] Incorporated human mobility data 

into an LSTM-attention model for Japan, significantly reducing long-term forecasting errors. These 

findings demonstrate that combining epidemiological knowledge, auxiliary datasets, and deep learning 

improves not only predictive accuracy but also model interpretability. Another level of complexity was 

brought about by spatial heterogeneity. The population density, as well as the infrastructure and mobility 

patterns in a particular region, are significantly different, so that the model trained on data in one of the 

countries cannot be generalized to another without relevant modifications. To overcome this problem, 

other research adopted hierarchical or multi-scale modeling models that related localized predictions to 

national trends. The other ones built up groupings that integrated parallel regional models. However, these 

methods demanded quality local data, which is not always available in detail. The empirical case studies 

reveal that data mining is useful in operational forecasting. Government agencies and research consortia 

created national forecast hubs, which take predictions of various models and provide real-time 

comparative analyses. Hospitals used machine-learning predictions to predict spikes in the patient inflow 

and to distribute the limited resources like ventilators and ICU beds. Telecommunications-based mobility 

data helped in identifying potential hotspots before the confirmed cases increased in number and 

subsequently provided the basis of appropriate interventions. These case studies serve to point out that 

data-mining services can be used to greatest effect when coupled with human insight and domain 

knowledge, but not as independent higher-order automation. Ethical and social issues have been 

simultaneously brought up by the increased data-driven forecasting of COVID-19. The process of 

mobilizing mobility and health data is often associated with personal sensitive information, increasing the 

risks of privacy invasions. The strong anonymization protocols and the responsible use of data are one of 

the primary priorities. There are also problems of equity and bias because the models that are trained on 

unfinished or biased datasets can generate inefficient predictions of specific communities, especially when 

they have lower testing rates or limited technological access. Openness about the restrictions of the model 

used and meticulous information conveyed to the populace about the uncertainties is fundamental to 

sustaining trust in the forecasting systems. The future research directions are focused on realizing an 

alternative hybrid model that will combine both the causal inference of epidemiology and the pattern-

recognition abilities of machine learning. By developing the capability to build adaptive or continuous 

learning systems that can automatically revise with the incoming data, the forecast fidelity will improve 

when the conditions change rapidly.  

In summary, prior literature demonstrates the growing role of AI and data-driven models in 

pandemic management. However, limitations such as class imbalance, lack of real-time adaptability, and 

underperformance in diverse imaging conditions remain. Our work addresses these gaps by proposing a 
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CNN-based classification framework using chest X-ray images, evaluated with high-performance metrics 

on a large and diverse dataset. 

 

Table 1. Related Work 

 

 

3. Proposed Methodology 

This study presents a CNN-based method with transfer learning for COVID-19 detection and 

prediction using chest X-ray images. The workflow includes five stages: data acquisition, preprocessing, 

transfer learning, CNN training, and classification. X-ray images from public datasets, collected in different 

formats and resolutions, were preprocessed by converting to RGB (if needed), resizing to 180×180, and 

normalizing pixel values to 0–1. Transfer learning was then applied using a pre-trained CNN to extract 

features and reduce overfitting, with the model fine-tuned on the COVID-19 dataset. 

During training, the CNN—composed of convolutional, pooling, and fully connected layers—learned 

image features effectively. In the final stage, the trained model classified input X-rays as either COVID-19 

positive or normal. 

Figure 1. Flow Diagram of the proposed model 

3.1. Dataset Description 

For this study, the dataset used was from a Kaggle repository and comprised 5,863 chest X-ray images 

in JPEG format, collected from patients aged five years and older. To maintain reliability in model training, 

the images were preprocessed by eliminating unreadable, duplicate, or poor-quality scans. The refined 

dataset was then split into three parts: 70% for training, 15% for validation, and 15% for testing. Each subset 

was further organized into two categories: COVID-19 and Normal, a strategy consistent with prior studies 

[29]. Figure 2 illustrates the distribution of X-ray images across these two classes. 

3.1.1. Data Preprocessing 

To maintain uniformity and enhance model efficiency, several preprocessing steps were carried out: 

Image Normalization: Pixel values were scaled within the 0 to 1 range to facilitate smoother convergence 

during training. All images were fixed to a resolution of 180 × 180 pixels to align with the CNN input layer. 

RGB Conversion – images not originally in RGB were transformed into three-channel RGB format for 

consistent data representation. 

Data Augmentation: operations such as horizontal flips, zoom adjustments, and slight rotations were 

applied to strengthen the model’s generalization and minimize overfitting. These preprocessing measures 

ensured that the CNN received clean, standardized, and enhanced input data. 

 

Author & Year Method Used Dataset Source Accuracy 

(%) 

Key Limitation 

Khan et al.[23] Channel Boosted 

CNN 

Chest X-rays 97.94 Limited to small image 

variations 

Hira et al.[24] CNN-Based Auto 

Model 

Chest X-rays 90.80 No F1 or Recall 

reported 

Gunraj et 

al.[25] 

CovidNet-CT 

(CNN) 

CT Scan images 93.10 CT data—not suitable 

for mass screening 

Majeed et al. [9] Transfer Learning 

+ CNN 

Chest X-rays 96.45 Lacked precision in 

class imbalance 

Wang et al.[26] COVID-Net (CNN) COVIDx Chest 

X-ray Dataset 

92.4 The model is biased 

toward the majority 

class 

Apostolopoulos 

et al.[27] 

MobileNet v2 

Transfer Learning 

Public X-ray 

dataset 

96.78 Limited data variety 

Hemdan et 

al.[28] 

COVIDX-Net (7 

CNN models) 

COVID-19 X-ray 

Dataset 

90.00 Performance varies 

significantly by model 

Dataset Preprocessing
Transfer 
Learning

Training (CNN) Output
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Figure 2. Samples from the Dataset 

3.1.2. Transfer Learning  

Transfer learning was adopted in this study as an efficient way to reduce training time and improve 

feature extraction when working with medical imaging data. The approach begins with a pre-trained CNN 

model, such as VGG16 or ResNet50, that has already been trained on the large-scale ImageNet dataset. 

These models contain early layers capable of capturing universal visual elements like lines, textures, and 

basic shapes, which remain useful across many domains. Instead of training a network from scratch, these 

generalized layers were retained to preserve their feature-detection ability. The higher layers of the model, 

however, were replaced and a fine-tuned dataset to make the network sensitive to domain-specific 

patterns. This adjustment allowed the system to adapt existing visual knowledge to the context of medical 

diagnostics. By leveraging transfer learning, the model not only achieved higher accuracy with relatively 

limited labeled data but also significantly reduced computational cost and training duration. Moreover, 

this strategy improves model generalization, resulting being suitable for practical applications where large 

annotated datasets are often unavailable. 

3.1.3. CNN 

A Convolutional Neural Network (CNN) is designed for tasks involving image and pattern 

recognition. Unlike traditional neural networks that primarily rely on fully connected layers and activation 

functions, CNNs also integrate convolution and pooling layers, which allow them to efficiently capture 

spatial hierarchies in data. The foundation of CNNs can be traced back to the visual perception studies of 

K. Fukushima in 1980, which inspired the concept of hierarchical feature extraction. Nearly two decades 

later, in 1998, Yann LeCun introduced the LeNet architecture, which gained prominence for its 

effectiveness in handwriting recognition. This marked the beginning of CNNs as a core component of 

modern computer vision research. The CNN model used in this study is shown in Figure 3. 

 
Figure 3. Proposed Model Diagram 

 The convolutional layer serves as the backbone of a CNN, where the process of feature extraction 

takes place. In this layer, pixel values from an input image (defined by height and width) are convolved 

with filters or kernels, resulting in feature maps that typically have reduced dimensions compared to the 

original input. Several hyperparameters, such as filter size, stride, and padding, must be tuned for optimal 

performance. To illustrate, convolution operations on 7×7×1 images are depicted in the figures that follow. 
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Mathematically, the convolution operation can be expressed as in Equation (1): 
 

∑ 𝐵 ∗ 𝛼 + 𝑏𝑖=𝑛
𝑖=0                                    (1) 

Here, B is the input, α the filter, and b the bias. The output size after convolution is determined using 

equation (2). 
 

[
𝑛+2𝑖−𝑘

𝑣
+ 1]                                        (2) 

Here, n is the original image size, i corresponds to the padding, k is the kernel dimension, and v is the 

stride value. 

Pooling layers are integrated after convolutional operations to progressively reduce the spatial 

resolution of feature maps. By compressing feature representations, pooling decreases the number of 

learnable parameters, reduces memory usage, and lowers computational complexity. This process also 

enhances the model’s generalization capability. Key hyperparameters include the pooling kernel size, 

stride, and padding. The most common pooling strategies are max pooling and average pooling, where 

max pooling emphasizes the most prominent features while average pooling provides a smoothed 

aggregation of activations [30]. 

3.2. Classification 

Once training is completed, the model classifies new chest X-ray inputs as either COVID-19 positive or 

Normal. The model generates probability scores, and a threshold set at 0.5 is applied to assign the final 

class label. 

 

4. Results and Discussion 

 The proposed CNN was evaluated on the preprocessed Kaggle chest X-ray dataset, with all inputs 

resized to 180×180×3. Its architecture started with two convolutional layers and a pooling layer for basic 

feature extraction, followed by a dropout layer to reduce overfitting. Additional convolutional and pooling 

layers captured higher-level patterns, after which the output passed through a flattening layer, another 

dropout, and finally a dense layer for binary classification of COVID-19 and normal cases. ReLU activation, 

SAME padding, and a consistent 3×3 filter sizes were applied throughout to ensure effective learning while 

preserving spatial details. 

4.1. Evaluation Metric 

To thoroughly evaluate the performance of the model, several metrics were applied as given in 

Equations (3), (4), (5), and (6). 

Accuracy: The proportion of correctly classified images over the total number of test images. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                 (3) 

 

For a comprehensive evaluation of the model’s effectiveness, multiple performance metrics were 

employed: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (4) 

Recall (Sensitivity): The ratio of true positive predictions to the actual positive cases. It reflects the 

model's ability to detect positive samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (5) 

F1 Score: The harmonic average of precision and recall, providing a balanced measure between the 

two. 

𝐹1 = 2.  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (6) 

Loss: Binary cross-entropy loss was used to measure the difference between predicted and actual 

outputs during training. 

4.2. Model Performance 

The model’s performance was assessed over 20 epochs, with accuracy and loss trends shown in 

Figures 4 and 5. The accuracy curve in Figure 4 indicates rapid convergence, reflecting the benefit of 

transfer learning in speeding up training and improving results. The loss curve in Figure 5 shows a steady 

decline, confirming effective learning and error reduction. Sample outputs in Figure 6 further validate the 

model’s ability to distinguish COVID-19 positive cases from normal ones. 
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Figure 4. Confusion Matrix of SVM 

 
Figure 5. Accuracy of classifiers 

 
Figure 6. Political Sentiment Analysis 

The main crux is that results collectively highlight the robustness of the proposed architecture. The 

final performance metrics achieved after 20 epochs are summarized in Table 2. 

Table 2. Results of the CNN Proposed Model  

Epoch  Accuracy Recall F1 

score 

Precision  Loss 

rate 

20 0.989 0.979 0.987 0.995 0.042 
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4.3. Comparative Analysis 

Table 3 presents a comparison with earlier studies, showing that the proposed CNN with transfer 

learning achieves superior accuracy, precision, and F1 score, confirming its effectiveness for COVID-19 

detection. 

Table 3. Result Comparison with Existing Techniques  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The incorporation of transfer learning enabled faster convergence and high accuracy with a smaller 

dataset, making this approach suitable for real-time medical image classification systems where quick and 

reliable predictions are critical. 

 

5. Conclusion & Future Work 

This study aimed to build a cost-effective system for early COVID-19 detection using a CNN-based 

algorithm with transfer learning. Trained on chest X-ray data, the model classified images as normal or 

COVID-19 positive with 98.82% accuracy, demonstrating strong diagnostic capability and confirming its 

effectiveness. 

The findings emphasize the promise of deep learning and transfer learning in vital healthcare 

applications, particularly when data availability is limited. By leveraging X-ray imaging as a low-cost and 

widely accessible diagnostic option, the proposed method becomes highly suitable for use in resource-

constrained regions. Additionally, the framework has potential for integration into rapid screening 

processes within clinical settings, alleviating reliance on PCR-based tests. For future research, the focus 

will be on applying and testing additional CNN architectures and AI models to expand the system for 

diagnosing other viral infections, including flu, SARS, and pneumonia. Another direction will involve 

investigating post-COVID complications and their detection through longitudinal imaging and predictive 

modeling. 

 

 

  

Author & Year Method Used Dataset 

Source 

Accuracy 

(%) 

Key Limitation 

Khan et al.[23] Channel Boosted CNN Chest X-rays 97.94 Limited to small 

image variations 

Hira et al.[24] CNN-Based Auto 

Model 

Chest X-rays 90.80 No F1 or Recall 

reported 

Gunraj et al.[25] CovidNet-CT (CNN) CT Scan 

images 

93.10 CT data—not 

suitable for mass 

screening 

Majeed et al.[9] Transfer Learning + 

CNN 

Chest X-rays 96.45 Lacked precision 

in class imbalance 

Wang et al.[26] COVID-Net (CNN) COVIDX 

Chest X-ray 

Dataset 

92.4 Model biased 

toward majority 

class 

Apostol Poulos et 

al.[27] 

MobileNet v2 Transfer 

Learning 

Public X-ray 

dataset 

96.78 Limited data 

variety 

Hemdan et al.[28] COVIDX-Net (7 CNN 

models) 

COVID-19 X-

ray Dataset 

90.00 Performance 

varies significantly 

by model 

Proposed Model Custom CNN + 

Transfer Learning 

Kaggle Chest 

X-ray Dataset 

98.82 Currently limited 

to binary classes 
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