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Abstract: The grade of a brain tumor is a crucial component of its diagnosis and aids in treatment 

planning. Biopsies and manual review of medical images are examples of traditional diagnostic 

techniques that are either invasive or may produce incorrect results. Using a contemporary 

convolutional neural network (CNN) architecture named ConvNext that receives magnetic 

resonance imaging (MRI) data, this study suggests a metho d for classifying brain tumor grades. In 

order to diagnose brain cancers consistently, accurately, and non-invasively, deep learning based 

metho ds are taking the place of invasive treatments. Data scarcity is a well-known issue with 

applying deep learning architectures to medical imaging. In order to attain the required accuracy 

and prevent overfitting, modern architectures need enormous datasets and contain enormous 

trainable parameters. As a result, researchers that use medical imaging data frequently use transfer 

learning. CNNs have recently lost ground to transformer-based designs for picture data. However, 

by implementing specific modifications influenced by vision transformers, freshly proposed CNNs 

have attained greater accuracy. A method for extracting features from the ConvNext architecture 

and feeding them into a fully connected neural network for final classification was presented in this 

article. Using pre-trained ConvNext, the proposed study obtained state-of-the-art performance on 

the BraTS 2019 dataset. When three MRI sequences were fed into the pre-trained CNN as three 

channels, the highest accuracy of 99.5% was attained. 
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1. Introduction 

A cluster of tissue that develops uncontrollably and has the potential to become fatal is called a tumor. 

When they emerge inside the brain, restricted by a small area inside the skull, they become considerably 

more harmful [1]. According to the statistics, patients from practically every demographic category have 

brain tumors [2]. As result, scientists from many fields work to create techniques for identifying and 

treating cancer. Brain tumors must be diagnosed early, just as many other illnesses [3]. The type of brain 

tumor, which is defined by the kind of brain cells that gave rise to it, has a significant impact on how it is 

treated [4]. For instance, a particular kind of brain tumor known as a meningioma develops from cells 

known as meninges. Likewise, a pituitary tumor is a tumorous mass that arises from the pituitary gland 

[5]. The most common kind of brain tumor is called glioma, and it develops inside the glial cells. This study 

suggests a technique for glioma diagnosis [6]. The tumor’s grade is a crucial factor in the diagnosis of brain 

tumors. It displays the tumor’s aggressiveness or the speed at which it spreads [7]. There is a high 

correlation between this spread rate and the anticipated number of days a patient will live. 3 [8]. Thus, in 

order to arrange the patient’s therapy, the grade of a brain tumor is essential [9]. 

Tumors are categorized by the World Health Organization into four categories, ranging from Grade 

1 to Grade 4. Although grade 4 cancers spread to neighboring tissues the fastest, grade 1 tumors are the 

least aggressive [10]. In this con-text, low-grade glioma (LGG) and high-grade glioma (HGG) are further 
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subdivided. Grades 3 and 4 are referred to as HGG, whereas the first two grades are classified as LGG [11]. 

The study suggests a method for dividing patients with glioma into LGG and HGG groups. The 

requirement for additional labeled data is a well-known issue when training machine/deep learning 

models in medical imaging [12]. Medical imaging data can be used to fine-tune models that have already 

been trained on generic datasets such as ImageNet. Although self-supervised pretraining using unlabeled 

medical data has shown better results in a number of recent studies, these techniques are computationally 

costly [13]. 

Global carbon emissions are greatly increased by computationally intensive deep learning methods, 

and this problem will probably get worse if researchers do not put computation efficiency first [14]. 

Convolutional neural network (CNN) architecture-based methods have dominated computer vision 

challenges for many years, producing state-of-the-art results. Numerous architectural changes have been 

put forth, ranging from depth-wise convolutional layers in various versions of Inception and Xception to 

skip connections in ResNets [15]. CNNs can now function better with ideal model sizes thanks to neural 

architecture search approaches. Transformer-based architectures, which were initially created for language 

problems, have recently become widely accepted for vision tasks and have demonstrated higher 

performance [16]. Better results have been obtained with architectures that can scale to higher image 

resolutions, such as the Swin transformers. Researchers have also applied them to medical imaging 

activities due to their exceptional performance in certain computer vision tasks [17]. However, compared 

to CNNs, transformer-based systems require much more computing power. 

The Swin transformer has less inductive bias than CNNs, yet having a higher inductive bias than the 

vanilla vision transformer (ViT). Because of this, the ViT-based architecture is more computationally costly 

and data-hungry [18]. ConvNext,15, which has outperformed the Swin transformer on ImageNet while 

being computationally cheap, is used in this study to address this high computational and data 

requirements problem [19]. Using the pre-trained ConvNext, this study suggests a deep learning-based 

method that performs well with little labeled data and the limited processing capability of Google Colab’s 

free tier. Without fie-tuning the target data for brain tumor grade classification, the features were taken 

from ConvNext. The outcomes demonstrate the effectiveness of the suggested strategy. 

Pre-trained architectures have been used for medical imaging applications in a sizable number of 

studies. The pre-trained ConvNext architecture has not yet been used for this purpose in any studies that 

we are aware of. This study fills this gap by 

classifying brain tumor grade using the most recent CNN architecture. ConvNext’s transfer performance 

for the target task including medical images is evaluated in this study. More precisely, this study’s 

contribution is as follows: According to this study, ConvNext’s state-of-the-art performance on the goal 

task of classifying brain tumor grade was attained by the representations learned by its contemporary CNN 

architecture. 

 

2. Related Work  

     Medical picture classification has historically been done using traditional machine learning 

techniques. However, because current designs are data-hungry, classical methods are still being proposed 

for medical imaging classification applications. The research that employed traditional machine algorithms 

for medical imaging applications are listed below. In order to determine the brain tumor grade, [20] 

suggested a pipeline that uses a 3D architecture built on convolutional layers to fist segment the brain’s 

tumorous region. This area was used to extract several texture and shape-based properties. 

  The most discriminating features were chosen using a support vector machine (SVM) and recursive 

feature removal. Lastly, an accuracy of 91.27% was obtained using the extreme gradient boosting (XGBoost) 

classification system. Even though the study only used features from the pertinent region, the handcrafted 

features were unable to achieve high accuracy because they did not adequately capture the subtleties in 

the data. [21] graded gliomas using hand-crafted features and an XGBoost classifier following feature 

selection. Preprocessing, which included the Laplacian of Gaussian and wavelet transform, was the initial 

stage. Manually segmenting the tumorous area was the next stage. Only the tumorous area was used for 

feature extraction, not the entire image.  
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  Following feature selection, the grade was finally classified with an accuracy of 83%. The Shapley 

value was employed in the study to evaluate how each feature contributed to the final categorization. 

Nevertheless, the study used manual segmentation, which is a costly and time-consuming procedure [22].  

The work [23] extracted intensity, shape, and texture-based characteristics from magnetic resonance 

imaging (MRI) pictures using handcrafted feature extraction. Only the discriminant characteristics were 

retained after redundant features were removed using the correlation between various features. Lastly, the 

final categorization into LGG versus HGG was done using the random forest classifier. Using BraTS 2015, 

the study’s accuracy was 91.3%. The suggested method’s drawback is that it was tested on BraTS 2015, 

before more recent and comparable BraTS versions were accessible. 

  [24] suggested a method for differentiating between Grade II and Grade II gliomas. The dataset 

included two sequences, flid-attenuated inversion recovery (FLAIR) and contrast-enhanced T1-weighted 

(T1C), and 36 patients. Only the tumorous areas of the MRI scans were used to extract various textural 

properties. By determining the correlation between the features, the duplicate features were eliminated, 

leaving just the discriminating features. Grades of brain tumors were categorized using a random forest 

classifier [25]. A maximum accuracy of 78.1% was attained. Despite using a small dataset, the study 

compared the outcomes of the suggested metho with the expert radiologist’s diagnosis. 

  Traditional machine learning techniques have the drawback of using handcrafted characteristics, 

which necessitate human skill to extract appropriate features. Deep learning approaches are increasingly 

widely used by academics because to the growing amounts of medical imaging datasets and the 

development of unsupervised methods that make use of generative models and unlabeled data [26]. Many 

projects used pre-trained CNNs for medical image categorization as deep learning-based techniques 

gained popularity in the second part of the previous decade. In order to overcome the small size of the 

target datasets and get better results than approaches that train the models from scratch, the majority of 

techniques make use of pre-trained models. Deep learning-based methods have been used to problems 

using medical imaging in the following papers. [27] carried out preprocessing, which included filing the 

bias field, to lessen the impact of problems that arose during the MRI scan capture process. The image is 

then smoothed by applying the Gaussian filter. A stack of four slices, representing the four MRI sequences, 

is used for preprocessing before being fed into the long short-term memory (LSTM) model. The last fully 

connected layer divides photos into HGG and LGG categories. The study’s highest accuracy on BraTS 2018 

was 98%. The work presented a novel method for processing various MRI sequences utilizing a sequence 

model. [28] extracted deep features from MRI data using the pre-trained InceptionV3 CNN. The study used 

contrast enhancement in the preprocessing stage prior to feature extraction. The suggested method 

additionally used a local binary pattern variation to extract handcrafted features. The next pipeline step, 

feature selection using particle swarm optimization, received the concatenated deep and handmade 

features. The study’s highest accuracy on BraTS 2017 was 96.9%. The handcrafted and deep features were 

combined in the study. However, by using depth wise separable convolutions, the Xception architecture 

achieved higher ImageNet accuracy. 

  The ImageNet pre-trained ResNet-152 was used in study to classify the grade of brain tumors. The 

original architecture’s classifier layer was swapped out with a SoftMax classifier. For the BraTS 2019 dataset, 

[29] employed a deep architecture and obtained a 98.85% accuracy rate. In order for the proposed CNN to 

extract the pertinent imaging characteristics from the MRI data, [30] suggested a novel CNN design 

modulated by the Gabor filter. The study applied the leave-one-patient strategy to improve the 

dependability of the findings. The outcomes were contrasted with CNNs that had already been trained, 

such as AlexNet, VGG-19, InceptionV1, and ResNet34. All of the pre-trained CNNs were surpassed by the 

suggested architecture. Even if [31] offered a novel approach to the traditional CNN architecture, a 

comparison with the outcomes of more recent CNN designs could improve the study’s dependability. 

 To diagnose brain cancers into three categories: normal versus abnormal, classification of glioma, 

pituitary, and meningioma types, and classification of grades I-IV, [32] suggested three innovative CNN 

architectures. The datasets utilized were  REMBRANDT for grade classification, Figshare CE-MRI for 

type classification, and Kaggle brain tumor type classification for normal versus abnormal. [33] used a 

median filter for image quality improvement and noise reduction as preprocessing. To expand the dataset 

size, traditional data augmentation methods such as image scaling and angle rotation were applied. The 

amount of the dataset and the difficulty of the task determined the architecture’s complexity. The grid 
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search was used to find the ideal hyperparameters. Although the transformer architecture’s variation 

vision transformer yielded outstanding results for the picture classification challenges, it was first 

suggested for natural language data. In order to extract features for the study’s target job of classifying 

brain tumor grades, a pre-trained CNN with a contemporary architecture (ConvNext Base) is used. The 

design decisions and training techniques that enabled the ConvNext architecture to reach cutting-edge 

performance are shown in Figure 1. 

 
Figure 1. Transformer-based architectures serve as an inspiration for ConvNext’s architecture and 

training technique. 

 

3. Research Methodology 

The present longitudinal study employs the suggested CNN base d metho d to classify brain tumor 

grade utilizing an existing, publicly accessible dataset. In the spring of 2024, it was carried out at the 

COMSATS University Islamabad, Lahore Campus, Pakistan, in the Machine Perception & Visual 

Intelligence Research Group. BraTS  2019, the study’s publicly accessible dataset, was made available in 

2019. Figure 2 displays the block diagram for the suggested approach. The pipeline’s initial stage involved 

flagging the tumorous slices. Following that, just the tumorous slices’ characteristics were removed, giving 

the classifier slices with either an LGG or HGG tumor. The study employed ConvNext Base, the standard 

version of ConvNext, to extract feature s by freezing each layer. A global average pooling layer that 

extracted one feature p er feature map to ok the role of the top model from the pre-trained ConvNext, 

yielding 1024 features in total. Ultimately, a fully connected neural network was given the features to 

classify the data into LGG and HGG The study’s dataset and technique are thoroughly explained in the 

subsections Dataset,” Deep feature extraction” and” Classification”. 

3.1. Dataset 

The study use the BraTS 2019 dataset for brain tumor grading utilizing the features taken from 

ConvNext. BraTS is a well-known publicly accessible dataset, and its several iterations provide a standard 

against which to compare methods [34]. A mapping of the BraTS 2017, 2018, 2019, and 2020 datasets was 

supplied as part of the BraTS 2020 dataset. 210 of the 259 HGG patients are shared throughout the three 

datasets, and 49 more patients are included in the BraTS 2019 dataset [35]. There is only one extra patient 

for LGG patients in BraTS 2019, and 75 cases are identical across the three datasets [36]. 

While the BraTS 2014–2016 cases are eliminated since they are not annotated by qualified 

radiologists, the BraTS 2012 and 2013 cases are already included in these editions (2017 or later) [37]. The 
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dataset is even more imbalanced because BraTS 2020 has 34 more HGG instances than BraTS 2019. This 

analysis led to the use of BraTS 2019 in this study [38]. Each of the dataset’s 76 LGG and 259 HGG 

instances has four sequences (T1, T2, T1 T1C, and FLAIR) and one ground-truth value, which is the result 

of experienced radiologists’ hand tumor segmentation. Every MRI scan for a sequence has 155 slices, each 

measuring 240 by 240 pixels [39].  

 
Figure 2. Diagram with blocks illustrating the suggested approach 

The acquisition methodology is 2D sagittal or axial for T1, with slices that are 1–6 mm thick; 3D and 

typically 1 mm thick for T1C; 2D in axial orientation for T2, with slices that are 2–6 mm thick; and 2D in all 

orientations for FLAIR, with slices that are 2–6 mm thick [40]. Different sections of the tumor (edema, 

necrotic region, enhancing, and non-enhancing core) were identified using various sequences or 

combinations during manual segmentation (conducted by the dataset suppliers). The delineations made 

by different radiologists for each case were combined to create a single, cohesive segmentation [41]. 

The suggested approach did not carry out additional preparation on the dataset, which was 

previously preprocessed. The dataset providers used image registration and skull stripping as 

preprocessing techniques. Since the T1C sequence has the maximum spatial resolution, it was used as the 

reference for registration using rigid transformation. The skull signal was then eliminated by skull 

stripping. 

3.2. Features Extraction and Classification 

The weights of the ConvNext (Base version) convolution base, which were pre-trained on the 

ImageNet dataset, were used to extract features in the suggested technique. As a result, just the ConvNext 

architecture’s convolution foundation was utilized; the top model, which included logistic regression and 

optional fully linked layers, was dropped. Each magnetic resonance slice produced 1024 features thanks to 

the application of global average pooling. Only the slices containing the tumorous pixels were used, rather 

than all of the slices.  

The dataset’s ground truth segmentation was used to retrieve these tumorous slices. Without carrying 

out any additional preprocessing steps, the tumorous slices were put into the ConvNext that had already 

been trained. Each slice was repeated three times to fill the input layer’s three channels and match the input 

dimensions of the pretrained ConvNext. 

Table 1. Classifier network structure. 

Layer Type NO of units Activations 

Dense 128 ReLu 

Dense 256 ReLu 

Dense 512 ReLu 

Dense 1 Sigmoid 

Global average pooling and the frozen layers in the ConvNext convolution base were used to extract 

the features, which were then input into a fully connected neural network with 754,945 trainable 

parameters. The layers of the classifier network, the units within each layer, and the activation functions 

employed are displayed in Table 1. 

Two different kinds of experiments were conducted. In the first, the model was trained for 500 epochs 

without the validation set in order to evaluate the convergence behavior. The trajectory of the model to 

convergence for each setting was shown with the aid of checkpoints that were saved after each epoch and 

for which the test set accuracy was assessed following training. Tables 4 and 7 offer helpful insight into the 

optimal checkpoints for various input settings. 

Table 2. Configurations for the Classification’s Hyper-Parameters 

Parameter Value 
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Epoch′s 500 

BatchSize 64 

Learningrate 0.001 

Optimizer Adam 

Checkpoint Following each Epoch 

This research builds on a previous [42] that was carried out to determine the best pre-training 

approach. The study included two models: a simple model and a sophisticated one. Other 

hyperparameters, like the precise number of layers and units per layer, were adjusted empirically. This 

study used the complex model (Table 1) and kept the same hyperparameters. The classification’s 

hyperparameter setup is displayed in Table 2. 

3.3. Statistical Analysis 

The percentage of correctly categorized instances in the test set is known as the accuracy. To 

appropriately portray the results in the presence of imbalanced classes, this study computes the class-

specific accuracies using the measures of sensitivity (TPR) and specificity (TNR) in addition to the overall 

accuracy. Furthermore, the suggested method’s performance was evaluated using the AUC metric, which 

provides a thorough overview of the model’s capacity for class distinction, independent of decision 

boundaries. These metrics were computed using Python’s scikit-learn package. A horizontal bar graph was 

used to compare the outcomes for each sequence combination. To better visualize the performance 

difference between the separate and combined sequences, bars were created for each measure, and the bars 

for the metrics of each sequence combination were grouped. The results were shown using Python’s 

Matplotlib tool. 

3.4. Experimental Results 

Only the slices identified as tumorous by radiologists were employed, and 2D slices rather than 3D 

volumes were used to enhance the number of samples for training. Consequently, slices of 17,224 HGG 

and 4926 LGG were produced. This data was split into training and test sets using an 80–20 class balanced 

split in order to observe the training progress and convergence behavior. This left 17,720 samples for 

training and 4430 for testing, with each slice (sample) having a size of 240 × 240. Ten percent of the training 

set was devoted to the validation set for the second series of experiments. This indicates that while 15,948 

slices were utilized to train the model, 1772 slices were kept aside for validation. The train, test, and 

validation sets’ images and slice are displayed in Table 3. 

Table 3. Images or slicing from the test, validation, and train sets 

Clases Training set 
Validation 

set 
Test set 

Total 

Images 

High grade 

glioma 
12401 3445 1378 17224 

Low grade 

glioma 
3547 985 394 4926 

Every feasible combination of the sequences was used in the experiments. The input was restricted to 

having exactly three channels since the pre-trained ConvNext was used for feature extraction. As a result, 

only a mix of the three sequences could be applied. One channel of the input tensor was occupied by each 

sequence. 

 

4. Results  

Every possible combination of any three sequences was tested in the experiments. Accuracy, 

sensitivity, specificity, and area under the curve (AUC) are the metrics used for evaluation. It has been 

decided to treat HGG as the positive class and LGG as the negative class. As a result, specificity is the 

proportion of correctly categorized LGG cases, and sensitivity is the proportion of correctly recognized 

HGG examples. In each experiment, the model was trained for 500 epochs, with checkpoints saved at the 

end of each epoch to examine the training progression and convergence behavior. Table 4 displays each 

experiment’s best outcomes (accuracy, sensitivity, specificity, and AUC) for each combination of 

sequences. 
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The table’s highest accuracy is indicated in bold. The training epochs were once more set to 500 in the 

second series of trials (grade classification using train, test, and validation sets). However, due of the early 

stopping with a patience of 20, the training ended significantly earlier for each experiment. Table 5 displays 

each experiment’s test set results (accuracy, sensitivity, specificity, and AUC) for each combination of 

sequences. The table’s highest accuracy is indicated in bold. 

In both kinds of studies, the combination of T1, T1C, and FLAIR sequences produced the highest 

accuracy (99.61% and 99.5%). Using the FLAIR sequence, the combination of T1, T1, T1C, and FLAIR 

produced the lowest accuracy (99.37% and 99.03%). The combinations including T1 and T1C yielded the 

top two best accuracies. These findings are explained by manual segmentation of the magnetic resonance 

images in the BraTS dataset. While the radiologists labeled the data using all the sequences, they segmented 

various tumor substructures using T1 and T1C 

4.1. Comparative analysis with research employing BraTS 2017 or later  

Since BraTS 2017 and 2018 are the datasets that are most similar to BraTS 2019, while the earlier BraTS 

datasets are different, the study outcomes (of experiments using a validation set) have been compared with 

those utilizing these two datasets. Only a small portion of the BraTS 2013 and 2017 data—60 photos for 

training and 100 for testing—was included in the study34. It is therefore excluded from the comparison, 

even though it claimed 99% accuracy. Table 4 presents a comparison between the suggested approach and 

the research that used BraTS 2017 or later for brain tumor grading.  

Table 4. Comparative analysis with research employing BraTS 2017 or later 

Study Model/Method Dataset Key Techniques Accuracy 

[27] 
LSTM model with 

sequence of 4 slices 

BraTS 

2018 

Bias field correction, 

Gaussian smoothing, 

sequence modeling 

98.0% 

[28] 

InceptionV3 + 

Handcrafted Features + 

PSO 

BraTS 

2017 

Deep + LBP features, 

feature selection using 

particle swarm 

optimization 

96.9% 

[29] 
ResNet-152 with 

SoftMax classifier 

BraTS 

2019 

Replaced classifier, fine-

tuned on MRI slices 
98.85% 

[30] 
Gabor-filter modulated 

CNN 

BraTS 

(Not 

Specifie

d) 

Compared with AlexNet, 

VGG-19, ResNet34 
>98% 

[31] 
EfficientNet + Multi-

class Classification 

BraTS 

(Unclea

r) 

Multi-class tumor type 

classification 
>98% 

Proposed 

ConvNext Base + Fully 

Connected Neural 

Network 

BraTS 

2019 

Feature extraction from 

frozen ConvNext, 

combined sequences as 3 

input channels 

99.5% 

4.2. Ablation Study 

In order to provide a three-channel input, studies have utilized separate sequences and duplicated the 

same slice three times. The ablation study’s goal was to observe the outcome of using just one sequence. 

The optimum sequence was determined by evaluating each of the four sequences. 

Table 5. Evaluation of MRI Sequences 

MRI 

Sequence 
Accuracy (%) 

Sensitivity 

(TPR) 

Specifici

ty (TNR) 
AUC Observation 

T1 99.12 High High High 
Highest accuracy among 

single sequences 

T2 ~98.45 Moderate 
Moderat

e 
Moderate Slightly less effective 
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T1C ~98.87 High 
Moderat

e 
Moderate 

Close second to T1; 

strong discriminative 

power 

FLAIR ~97.91 Low Low Lower 
Weakest individual 

sequence 

Additionally, compared to the individual sequences, it required more epochs for all sequence 

combinations to converge (get the highest accuracy). Radiologists manually segment brain tumors using 

various MRI sequences, each of which has complementing information.  

4.3. Discussion 

The outcomes shown that when three distinct MRI sequences were fed into the CNN, the suggested 

approach outperformed the SOTA and attained higher accuracy. Numerous research examined the 

outcomes of grading brain tumors using individual sequences and their combinations using BraTS 

databases. Using the BraTS 2017 dataset, the study42 employed convolutional autoencoders for brain 

tumor grading. The convolutional autoencoders were fine-tuned on real images after pre-training on 

synthetic images produced by the generative adversarial network. The T1C, T2, and 1 FLAIR sequences 

were employed alone and in combination. The combination of these three sequences produced the best 

and average results, but T1C produced the best accuracy for individual sequences. 

 
Figure 3. Illustration of the observations using 500 epoch 

The outcomes shown that when three distinct MRI sequences were fed into the CNN, the suggested 

approach outperformed the SOTA and attained higher accuracy. Numerous research examined the 

outcomes of grading brain tumors using individual sequences and their combinations using BraTS 

databases. Using the BraTS 2017 dataset, the study42 employed convolutional autoencoders for brain 

tumor grading. The convolutional autoencoders were fine-tuned on real images after pre-training on 

synthetic images produced by the generative adversarial network. The T1C, T2, and FLAIR sequences were 

employed alone and in combination. The combination of these three sequences produced the best and 

average results, but T1C produced the best accuracy for individual sequences. The study’s findings were 

contrasted with those of other recent research projects that employed deep learning and standard machine 

learning methods. 

The studies classified the grade of brain tumors using traditional machine learning techniques. Shape-

based, histogram-based, and texture features were employed in the study, along with a logistic regression 

classifier. At the same time, a random forest classifier produced the highest accuracy. In order to classify 

grades, the study employed textural data, which were then fed into standard neural networks following 

feature selection. With the exception of two research that employed convolutional autoencoders and 

LSTMs for grade classification, 

The research suggested new CNN architectures, and for grade classification, it combined dominant 

rotating local binary pattern features with deep features taken from pre-trained InceptionV3. In order to 

give the learnt features rotation and scale invariance, the study employed a new CNN in which the 

convolutional layers were modulated by the Gabor filter bank. By employing generative adversarial 

networks (GAN) to create synthetic data and semi-supervised learning to estimate the labels of unlabeled 
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data, the study expanded the dataset size. After choosing the best characteristics, the study40 employed 

deep features and fed them to the SoftMax. 

 

5. Conclusion and Future work 

The research community was able to create and train the ConvNext architecture and attain state-of-

the-art performance thanks to the Swin transformer’s success. The CNN architecture is better suited for the 

image data because of its stronger inductive bias. ConvNext is an appropriate architecture for medical 

imaging workloads with reduced dataset sizes because of these features. The pre-trained ConvNext 

architecture is used in this work to classify the grade of brain tumors. Following the extraction of the BraTS 

2019 dataset’s features from the ConvNext architecture, the study employed linear probing. The 

effectiveness of the representations learned from the pre-trained ConvNext architecture was shown by the 

better results in accuracy, sensitivity, specificity, and AUC on the target task of brain tumor grade 

classification. ConvNext representations for a target medical image task were used in the study to present 

the findings. For a thorough examination encompassing numerous imaging modalities, organs, and 

anomalies, more research is necessary. The study must use datasets of varying sizes, ranging from small to 

medium to large, in order to guarantee generalizability. Additionally, it is necessary to examine the 

effectiveness of several iterations of the ConvNext architecture. Numerous studies have recently employed 

domain-adapted pre-training to outperform generic dataset pre-trained models. The domain gap between 

the generic dataset and the target dataset (such as MRI) could be bridged by the in-domain data pretraining 

that followed the generic dataset pretraining (e.g. ImageNet). Comparing ConvNext’s performance 

following domain-adaptive pre-training versus that following generic dataset pre-training would be 

intriguing. Another compute-efficient training strategy that produces a model with significantly fewer 

parameters while maintaining equivalent accuracy is the lottery ticket method and its variations. 

Investigating a pretrained model’s performance on a target task using these techniques is worthwhile. 

Finally, several research have slightly modified the pre-trained models to accommodate the target data 

with more channels in the data (e.g. MRI). Investigating the computationally effective techniques 

recommended in this part while utilizing all the sequences throughout the target categorization is required 

since doing so yields comprehensive knowledge about a subject. 
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