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Abstract: Rice, a world food crop and one of the most essential elements of the food security chain, 

is highly susceptible to various leaf diseases, which have a devastating impact on production and 

quality. Some of the most widespread rice diseases include Bacterial Blight, Brown Spot, Tungro, 

and Blast, which can potentially cost the production and economy a lot when not detected early. To 

solve this problem, this paper will present a specific Convolutional Neural Network (CNN) model 

to perform the automated classification of four types of rice leaf disease, relying solely on diseased 

leaf images as available in the Kaggle dataset of 6,431 samples. The preprocessing of the images 

consisted of resizing the images to 224x224 pixels, normalization, and augmentation methods of 

rotation, flipping, and zooming to improve the generalization. The proposed CNN architecture 

includes several convolutional layers with ReLU activation, max-pooling that would reduce the 

dimension, dropout as a regularization technique, and fully connected dense layers with a softmax 

classifier. The model achieved 98% classification accuracy on a 70:30 train-test split, with high per-

class precision, recall, and F1-scores, demonstrating its effectiveness and robustness. These findings 

underscore the possible applications of the suggested lightweight CNN as a low-cost and easily 

applicable system to effectively classify rice disease to facilitate early disease diagnosis and long-

term control of the crop. 
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1. Introduction 

Agriculture is one of the most vital sectors worldwide, serving as the backbone of food security, rural 

livelihoods, and economic stability. It provides staple crops to feed the growing global population, supplies 

raw materials to various industries, and contributes significantly to international trade. As the issues of 

climate change, pest populations, and plant diseases grow, the agricultural industry is under pressure to 

be more productive and sustainable [1]. To address these, contemporary technologies like artificial 

intelligence, machine learning, and deep learning have emerged as the key to improving crop monitoring, 

disease detection, and precision farming. 

The Pakistani agricultural industry is a key part of the Pakistani economy, which plays a role of about 

23.5% in the country’s GDP during fiscal year 2024-2025 and employs many labour force. It is a significant 

source of foreign exchange earnings and a primary source of raw materials needed by downstream 

industries and the central market of industrial products like fertilizers, pesticides, and machines [2]. 

Further, because almost two-thirds of the Pakistani population is rural, and most are directly and indirectly 

reliant on agriculture as their means of livelihood, the socio-economic significance of the sector is 

highlighted.  
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In recent years, agriculture has been transformed into a more innovative and efficient system due to 

the integration of modern technologies. Deep learning has become a disruptive technology, and it is now 

possible to automate agricultural processes, identify crop diseases early, communicate wirelessly with 

sensors, and make more sophisticated decisions based on cloud computing. The innovations have 

tremendous potential to boost productivity, guarantee sustainability, and reinforce agriculture’s position 

in overall economic development. 

Rice Leaf Diseases: Rice plants are vulnerable to numerous diseases throughout their growth cycle, and 

this study focuses on the most severe ones that significantly impact yield and quality. 

a) Bacterial blight:  One of the most toxic diseases that impacts rice leaves and plants is bacterial blight. 

It has been known to destroy up to 70% of the grain crop and has also been known to destroy a large 

area of field covering hundreds of acres [3]. The disease attacks the plant in its early stages of growth. 

Powerful winds and rains significantly contribute to the dispersion of the bacteria on the fields. The 

first symptom of the disease is that infected rice leaves first appear yellow, then slowly roll up, and 

then the yellow color changes into a straw-like color. The proliferation of bacterial blight results in low-

quality grains, and the yield is significantly decreased. However, this disease is treatable with practical, 

cost-effective, and trustworthy control mechanisms. Balanced use of nitrogen, timing irrigation, 

removing weeds at the right time, and keeping the fields clean can be applied to control this disease. 

In addition, the biological control methods, e.g., antagonistic pathogens, have worked quite well in 

controlling bacterial blight in rice crops. 

b) Blast: Rice blast is a fungal disease regarded as one of the biggest menaces to rice production 

worldwide, with yields of 10-30% losses. This disease is first found in small necrotic spots on the leaves, 

which then continue to increase and extend to the leaf blade and leaf sheath [4]At an advanced stage, 

infection disrupts grain filling and can also get to the roots, inhibiting the overall progress of the plant. 

In a desirable environmental condition, the rice blast may destroy whole fields, causing a lot of crop 

losses. Common symptoms consist of spots of different sizes and shapes, which differ according to 

climatic factors. The control of this disease mostly depends on the usage of registered fungicides. 

c) Brown spot: Brown spot is a highly destructive rice disease caused by the fungus Cochliobolus 

miyabeanus. The disease mainly affects rice leaves, and its symptoms include spots that are different 

in size and color; they are small reddish-brown spots and large dark-brown oval spots. Serious 

infection may result in massive yield loss, approximately 60 to 90%. Nutrient deficiency, poor soil 

preparation, and poor drainage are among the factors that promote the disease in situations where 

there is poor crop management [5]. The core control strategies entail balanced fertilization, land 

leveling, correct soil management, placement of fungicide-treated seeds, and incorporation of disease 

management techniques.  

d) Tungro: Rice tungro disease is an infection that results from two viruses carried by rice hoppers. The 

ailment causes severe signs, such as leaf discoloration, mottling, stunted growth, and decreased 

yield. This is because losses have been realized up to 68%. The infected leaves turn orange-yellow to 

dark blue on the tip, and when they spread downward, they make the plant look striped or mottled. 

Infection during the growing period can be highly destructive, especially in the initial stages, since it 

can lead to the loss of complete rice acreage [6]Tungro propagates very fast in cultivated rice fields, 

and this is mainly caused by the action of leafhoppers. Nutrient deficiencies, including nitrogen and 

zinc, and environmental stressors, including water scarcity or rat infestation, also contribute to the 

worsening of the disease. Tungro management techniques incorporate the use of insecticides to curb 

the population of leafhoppers and the adoption of proper nutrient and field management. 
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Figure 1. Image samples of all the rice plant diseases (a) Bacterial blight (b) Blast (c) Brown spot (d) 

Tungro 

2. Literature review 

Automated crop disease detection has been a highly developed field in recent years, and artificial 

intelligence (AI), in particular, deep learning, has been significantly applied to this area. Manual inspection 

processes can be tedious, subjective, and prone to error by humans, and it is here that automated methods 

are required. As a crop susceptible to bacterial blight, blast, brown spot, and tungro, rice has been the target 

of various studies on developing computer vision models to aid in early detection, minimize losses, and 

ensure food security. In the following section, we abide by the recent studies using CNNs, transfer learning, 

and hybrid deep learning models to detect rice leaf disease and discuss their datasets, methods, 

performance, and limitations.  

Adoption of artificial intelligence and intense learning has contributed significantly to the automated 

detection of crop diseases. Rice is particularly susceptible to bacterial infections, such as bacterial blight, 

blast, brown spot, and tungro. Therefore, rice has been particularly interested in the recent literature on 

computer vision models that would help control the disease before its outbreak and decrease yield losses. 

 Designed a personalized CNN with MATLAB to detect four diseases of rice leaves and healthy 

leaves with 99.83% accuracy [7]However, the data set was restricted to field images in certain areas, the 

training was also limited to seven epochs, and the evaluation was limited to overall accuracy. This raises 

questions of overfitting and the absence of generalizability. We only used YOLOv5 on a 400-image Kaggle 

dataset. The model was exact (1.0) and recalls (0.94), although the mean average precision (mAP) was poor 

(0.62), which represented a limitation in robustness and scalability because of the small size of the dataset. 

[8]. 

 Investigated the transfer learning models, including VGG19, ResNet101, and Inception-ResNet-V2, 

on 984 rice leaf images, with the highest result on 92.68 [9]Although the existing architectures were used, 

the dataset size was not very high, and the evaluation metrics were not exhaustive, so there are gaps in 

reliability. 

Hybrid deep learning and machine learning methods were proposed, with an accuracy of less than 

95%. Though novel, these models were computationally inexpensive, had poor consistency across datasets, 

and were less practically applicable in the real world. [10]. 

The Presented Detection Transformer (DHLC-DETR) with an improved model, combining Res2Net 

and a dense feature pyramid network, attains 97.44% accuracy on the IDADP dataset. They particularly 

worked with small-target detection; however, the method needed heavy augmentation (17,640 images) and 

was computationally intensive. [11].  

Used CNNs and compared them with the conventional ML methods on the dataset of 1,600 images 

of four classes (Hispa, Brown Spot, Leaf Blast, Healthy). CNN had the highest accuracy of just 78.2, which 

demonstrates the weakness of shallow models and small datasets [12].  

CNN architecture was assessed on a Kaggle dataset on four rice leaf diseases. Although the potential 

of CNNs was proven, the dataset was limited (fewer than 2,000 images), and the accuracy was under 85%, 

again highlighting the difficulty of dataset size and generalization. 

Across the reviewed works, several common limitations emerge: 

1. Small dataset sizes (often <2,000 images), limiting robustness. 

2. It was evaluated based on the accuracy rather than precision, recall, F1-score, and the confusion matrix. 

3. Limited disease coverage in some studies (only 3–4 classes). 

4. Complex models (e.g., DETR, hybrids) that are difficult to deploy in resource-limited settings. 

To address these gaps, the present research employs a custom CNN model trained on a 

comparatively large Kaggle dataset of 6,431 images, with four large rice leaf diseases ( bact. blight, blast, 

brown spot, and tungro). Unlike many previous works, the model achieves 98% accuracy and provides a 

comprehensive assessment, such as precision, recall, F1-score, and confusion matrix. The proposed CNN 

is lightweight and scalable, making it applicable to practical use, such as mobile or IoT-based systems in 

agriculture. 

Table 1. Summary of Related Work 
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Author & 

Year 
Dataset Diseases Model 

Accuracy / 

Results 
Weakness 

Difference 

(Our Study) 

Singha et 

al. (2023) 

Field 

images 

(India) 

4 + 

Healthy 

Custom CNN 

(MATLAB) 

99.83% (7 

epochs) 

Small 

dataset, 

limited 

metrics 

Larger dataset 

(6431), more 

epochs, full 

metrics 

Jhatial et 

al. (2022) 

400 

(Kaggle) 
4 YOLOv5 

Prec=1.0, 

Recall=0.94, 

mAP=0.62 

Very small 

dataset, low 

robustness 

Larger dataset, 

higher 

accuracy, 

comprehensive 

metrics 

Islam et 

al. (2021) 

984 (Kaggle 

+ UCI) 
5 

VGG19, 

ResNet101, 

Incep-

ResNetV2 

92.68% 

Small 

dataset, 

lower 

accuracy 

Larger dataset, 

improved 

accuracy (98%) 

Elsevier 

(2025) 

Public 

datasets 
4–5 

Hybrid 

DL+ML 
<95% 

Complex, 

inconsistent 

Lightweight 

CNN, scalable, 

higher 

accuracy 

Yang et 

al. (2023) 

17,640 

(augmented 

IDADP) 

3 
DHLC-DETR 

(Transformer) 
97.44% 

Heavy 

model, high 

computation 

Simple CNN, 

less 

computational 

cost 

Tejaswini 

et al. 

(2022) 

1,600 

(India) 
4 

CNN (5-

layer, 

VGG16) 

78.2% 

(best) 

Low 

accuracy, 

shallow 

model 

Better tuned 

CNN, 98% 

accuracy 

The reviewed studies collectively demonstrate that deep learning approaches, particularly CNN-

based models, have strong potential for rice disease detection. However, several challenges remain 

unaddressed. To begin with, the datasets of these studies are generally small: in many cases, they consist 

of less than 2,000 images, which restricts the stability of the trained models. Conversely, the paper uses 

over 6,000 pictures, providing more confident training and testing.  

Second, earlier research used only accuracy as the performance metric, which is confounding when there is class 

imbalance or misclassification. Not many studies have given a detailed analysis of confusion matrices, precision, 

recall, and F1-scores. These metrics are expressly included in our work and provide a more detailed analysis of 

performance [13]. 

Third, other papers tried higher architectures like transformers or hybrid CNN-ML frameworks. Still, 

these were computationally intensive and not practically applicable to real-world agriculture in developed 

countries because developing countries have limited resources. Our CNN is a light but effective and 

scalable network suitable for precision agriculture applications that require a mobile and IoT-based 

network.  

Lastly, one of the major lessons is that most previous works trained their models with tiny numbers 

of epochs (e.g., 7 epochs in [7] ), which casts doubt on the stability and generalizability of findings. In 

comparison, our experiment trained the CNN model using 35 epochs and reached a steady convergence, 

presenting a high generalization potential with unknown data. 

 

3. Materials and Methods  

This part presents the dataset and the method of the suggested CNN structure of the study. 

Dataset: The dataset used in this work was obtained from the Kaggle repository and consists 

exclusively of infected rice leaf images belonging to four major disease categories: Bacterial Blight, Blast, 

Brown Spot, and Tungro. In contrast to some of the earlier studies that have considered the diseased and 
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healthy samples of leaves, the current research focused on diseased samples only to develop disease-

specific feature extraction and classification. There are 6,431 images in the dataset, which were gathered in 

various real-field conditions and provided by multiple sources on Kaggle, ensuring that they varied in 

terms of backgrounds, lighting, and orientations of the leaf. 

Table 2. Dataset 

Classes Images  Training Image Testing image 

Bacterial Blight 2083 1519 564 

Blast 1440 1007 433 

Brown Spot 1600 1120 480 

Tungro 1308 915 393 

  6431 4561 1870 

 

4. Methodology 

The rice leaf disease images were acquired on Kaggle and consist of pictures taken in the field with 

different backgrounds, lights, and leaf positions. Every picture was scaled to 224x224 pixels and brought 

to the range of     [0, 1] as a normalization measure. There was no data augmentation before any data 

was split into training and testing sizes to avoid data leakage. Random rotation (±20 ) and 

horizontal/vertical flipping and zooming (range 0.2) were only used in the training set to enhance the data 

diversity and model resilience. In the training, 20% of the training data was used internally by validation 

with the validation split option of Keras, which allows monitoring the model’s performance without 

having a separate validation folder. Fixed random seed values ( seed = 42) were used to ensure 

reproducibility of experimental results. This data preparation plan provided a valid assessment of the 

recommended CNN model. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed methodology 

 

Figure 2: Proposed methodology 

 

 

 

 

 

 

Figure 2. Propose Methodolgy 

The proposed model is a tailor-made Convolutional Neural Network (CNN) used to predict four 

types of rice leaf diseases, such as Bacterial Blight, Blast, Brown Spot, and Tungro. The input images were 

made 224x 224x 3 and scaled in the range [0, 1]. The model represents three convolutional blocks, which 

are then succeeded by a fully connected layer and a softmax output. Individual convolutional layers 

employ a 3 x 3 kernel, a stride of 1, and the same padding to maintain spatial dimensions. ReLU was used 
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as an activation to add non-linearity, and MaxPooling (2×2) was utilized to reduce the number of feature 

maps. Regularization was done by having dropout layers to cut down on overfitting. 

 

Table 3. Summary of the proposed CNN model architecture. 

Layer Filters / Units Kernel Parameters Activation Dropout 

Input 224×224×3 – – Rescaling – 

Conv2D 32 3×3 896 ReLU – 

MaxPooling2D – 2×2 0 – 0.3 

Conv2D 64 3×3 18,496 ReLU – 

MaxPooling2D – 2×2 0 – 0.3 

Conv2D 128 3×3 73,856 ReLU – 

MaxPooling2D – 2×2 0 – 0.4 

Flatten – – 0 – – 

Dense 256 – ~6,425,600 ReLU 0.5 

Output Dense 4 – 1,028 Softmax – 

 

  

 

 

 

 

 

 

 

 

Figure 3. Proposed custom CNN architecture. 

Convolution Layer: This constitutes the first layer of the neural network, which is the basic unit of 

the architecture. The convolutional layer that contains multiple feature detectors is referred to as a kernel 

or filters, which are dragged by a stride throughout the image to draw attention to the occurrence of the 

particular feature. 

The Batch Normalization Layer decorrelates every layer’s inputs, standardizing each mini-batch. This 

method averts the learning process and enables deep networks to train using much smaller epochs. [14]. 

Given a mini-batch 𝐵 = {𝑥1, 𝑥2, … , 𝑥𝑚} , each activation 𝑥𝑖 is normalized using the batch mean 𝜇𝐵 and batch 

variance 𝜎𝐵
2as follows: 

 

                                                                        (1) 

                                                                                                                                                                                        

 

Lastly, linear transformation is used to recover the power of representation:  

                                                                                                                                                                                       

                                                                        (2) 

 

 

where 𝛾 and 𝛽 They are learnable parameters that scale and shift the normalized value, respectively. 

Max Pooling Layer: The main reason the pooling layer is required is that it cuts in half the size of the 

output of the previously mentioned convolutional layer, making the computing cost of the following layer 
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less expensive. Max pooling is definitely the most popular pooling. It breaks down the picture into sub-

region rectangles delimited by the kernel and will only output the maximum of every stage of the kernel. 

The proposed architecture is 2x2 in dimension, and its stride is 2. 

 

 

 

 

 

 

Figure 4.. An example of max-pooling operation. 

Activation Function Layer: The second layer is the activation function layer. The neural network is 

non-linear due to this layer. A choice in favor of non-linearity, one can either modify or cut off the layer's 

output before it. This is applied to restrict the output manufactured. Activation function of the Rectified 

Linear Unit (ReLU) has recently been applied in the works of CNN due to the possibility caused by a 

mixture of the following reasons: 

 

                                                                               (3)                                                                                                                                                    

                                                                                                                                                                        

 

                                         

                                                                        (4)                                                                                                                           

 

a) Simplicity in function and derivative of the type in (3) and (4). 

b) Reduced the possibility of vanishing gradient. 

c) ReLU produces a sparser representation. The reason is that the zero in the gradient yields a 

complete zero.  

Fully Connected Layer:  The fully-connected layer is the same as the structure of neurons in 

traditional neural networks. This makes every neuron in the fully connected layer completely connected 

to all the neurons in the earlier and later layers. The drawback of the fully connected layer is that it 

possesses many parameters, which are very expensive to compute at any point during the training. 

Therefore, the proposed model employed a single connected layer to reduce complexity, yet many 

discriminative features were learned. In our implementation, the fully connected layer has 6,526,308 

trainable parameters, demonstrating its computational intensity. And lastly, the result of this layer is 

overlaid with the Softmax activation function that transforms the real-valued outputs to a probability 

distribution of the four target classes (Bacterial Blight, Blast, Brown Spot, and Tungro). 

Training the proposed custom CNN models: The CNN model was built based on Kaggle’s data on 

four types of diseases of rice leaves: Bacterial Blight, Blast, Brown Spot, and Tungro. The data was divided 

into training and testing groups in a 70:30 ratio to regulate practical performance evaluation. All images 

were resized ( 224x224 pixels), normalized (to range [0,1]), and random rotations, flips, and zooming were 

added. These preprocessing steps assisted the model in extrapolating further and reduced the risk of 

overfitting.  

Adaptive Moment Estimation (Adam): Our loss function was categorical cross-entropy, and model 

training was done using the Adam optimizer. To avoid overfitting, 35 epochs of training, a 32-batch size, 

and dropout layers (0.3, 0.4, and 0.5) were introduced on the different network levels. 

The basic principles of the Adaptive Moment Estimation (Adam) algorithm update the gradient and 

squared gradient of the exponentially moving average using the hyperparameters. 𝛽𝛽1, 𝛽𝛽2 ∈ [0,1) 

 

                                        (5)                                                                                                   

                                                                                                     

The reason is that the moment estimates of the moving average are concentrated around zero, since 

they will be vectors of zeros. To overcome these biases, the writer of Adam calculates bias-corrected 

estimates m and v. 
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                                                        (6)                                                                                                                             

 

                                                                      (7)                                                                                                                                                   

After that, the weights are updated with the following update rule in (8) 

  

                                                                      (8)                        

                                                                                                                                            

 

Experimental Setup: All experiments were conducted on a Windows 10 operating system computer. 

This computer had an Intel(R) Core i7-6600U CPU with a frequency of 2.60 GHz and 8 GB RAM. The 

model’s implementation, training, and evaluation were conducted in Jupyter Notebook version with 

Python 3.9 and TensorFlow and Keras as a deep learning framework.  

All the data processing (resizing and normalization), model training, and evaluation metrics (accuracy, precision, 

recall, F1-score, and confusion matrix) were conducted in the same environment. 

 

5. Results 

Evaluation of the dataset of four classes of rice plant diseases. The experimental data set consisted of 

four types of courses of rice leaf disease: Bacterial Blight, Blast, Brown Spot, and Tungro. The suggested 

custom CNN has been trained through the Adam optimizer and validated through training and test data 

sets. This model was validated in the first epochs of training, and it demonstrated Adam’s efficiency in 

refining the learning process. 

An additional examination of the model performance to identify the predictions made on a class-by-

class basis was conducted, assisted by a confusion matrix. The leading performance indicators, accuracy, 

precision, recall, and F1-score, were computed to make the model robust. It was determined that the model 

can reach a maximum test accuracy of 98 percent, which means it is overly generalized on unexplored data. 

 

                                                                      (9)                                                                                                                                  

 

                                                                      (10)                                                                                                                                              

 

 

                                                                      (11)                                                                                                                                                 

 

                                                                      (12) 

                                                                                                                                      

Where, TN = true negative, TP= true positive, FP= false positive and FN = false negative  

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

Figure 5. Accuracy and loss graph of Custom CNN 
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A Custom CNN was utilized to label rice leaf disease, with a test accuracy of 98%. The model was 

found to have a training accuracy of 96.34% and a validation a 

ccuracy of 97.75%, with minimal overfitting, as noticed during the training. The training and 

validation loss curves gradually decreased during an epoch of steady convergence and learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Confusion matrix of Custom CNN 

The confusion matrix was used further to evaluate the CNN model's classification performance. The 

fact that most of the images were correctly classified in all four classes of rice leaf disease indicates that the 

model is correct. The diagonal values are high and represent high accuracy of each category, and the 

misclassifications are minimal, which testifies to the power and reliability of the model. 

Table 4. Evaluation of Rice Leaf Diseases Identification 

Disease Class Precision (%) Recall (%) F1-Score (%) Support 

Bacterial Blight 0.98 0.98 0.98 564 

Blast 0.97 0.97 0.97 433 

Brown Spot 0.99 0.97 0.98 480 

Tungro 0.97 0.99 0.98 393 

Overall Accuracy     0.98 1870 

Macro Average 0.98 0.98 0.98 1870 

Weighted Average 0.98 0.98 0.98 1870 

A detailed classification report was received to further evaluate the proposed CNN model’s 

performance. This report's key performance indicators include precision, recall, F1-score, and support of 

the four target classes: Bacterial Blight, Blast, Brown Spot, and Tungro. These measures give more insight 

into the model’s classification ability by each disease category rather than its general accuracy. The high 

scores in these indicators prove the model’s ability to achieve accurate and reliable multi-class classification. 

 

6. Conclusions 

This paper expounded on a Custom Convolutional Neural Network (CNN) employed to develop an 

automated detection system for four rice leaf diseases: Bacterial Blight, Blast, Brown Spot, and Tungro. The 

data set was downloaded from Kaggle and pre-processed with resizing, normalization, and data 

augmentation to maximize the model’s generalization. The CNN model comprising convolutional, pooling, 

dropout, and fully connected layers was trained on Adam optimization and categorical cross-entropy loss. 
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The test accuracy of the proposed model was found to be 98%, the training accuracy of the model was 96.34% 

and the validation accuracy was 97.75%. This implies that the model will generalise and possess excellent 

robustness. The loss curves of training and validation showed steady convergence without overfitting. Still, 

the confusion matrix and the classification report showed that the correct classification was well-founded 

in all four disease classes at high precision, recall, and F1-scores. The proposed model had a high 

performance and strength compared to the existing ones, which usually reported between 88 and 96 

percent accuracy. This is an enhancement that highlights the study’s input in the development of deep 

learning-based rice disease detection. To summarize, the proposed CNN model can be an effective, precise, 

and scalable way of diagnosing rice leaf diseases at an early stage. The model facilitates the production of 

precision agricultural practices by promoting yield protection, minimizing crop loss, and ensuring 

sustainable rice production through effective detection and intervention. 

 

7. Future work 

A large dataset with more rice diseases, healthy leaf samples, and actual rice can be considered in 

future studies. Images on fields to enhance generalization. The other direction worth pursuing is the 

creation of a lightweight CNN  that can be deployed on mobile or edge devices, and this will allow 

farmers to diagnose diseases on-site in real-time. Lastly, the model can be expanded into a decision support 

system, which can not only identify rice leaf diseases but also provide farmers with an adequate 

management practice (e.g., using pesticides, adjusting nutrients, or managing the field), thus making the 

model more useful in precision agriculture 
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