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Abstract: Rice, a world food crop and one of the most essential elements of the food security chain,
is highly susceptible to various leaf diseases, which have a devastating impact on production and
quality. Some of the most widespread rice diseases include Bacterial Blight, Brown Spot, Tungro,
and Blast, which can potentially cost the production and economy a lot when not detected early. To
solve this problem, this paper will present a specific Convolutional Neural Network (CNN) model
to perform the automated classification of four types of rice leaf disease, relying solely on diseased
leaf images as available in the Kaggle dataset of 6,431 samples. The preprocessing of the images
consisted of resizing the images to 224x224 pixels, normalization, and augmentation methods of
rotation, flipping, and zooming to improve the generalization. The proposed CNN architecture
includes several convolutional layers with ReLU activation, max-pooling that would reduce the
dimension, dropout as a regularization technique, and fully connected dense layers with a softmax
classifier. The model achieved 98% classification accuracy on a 70:30 train-test split, with high per-
class precision, recall, and F1-scores, demonstrating its effectiveness and robustness. These findings
underscore the possible applications of the suggested lightweight CNN as a low-cost and easily
applicable system to effectively classify rice disease to facilitate early disease diagnosis and long-
term control of the crop.
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1. Introduction

Agriculture is one of the most vital sectors worldwide, serving as the backbone of food security, rural
livelihoods, and economic stability. It provides staple crops to feed the growing global population, supplies
raw materials to various industries, and contributes significantly to international trade. As the issues of
climate change, pest populations, and plant diseases grow, the agricultural industry is under pressure to
be more productive and sustainable [1]. To address these, contemporary technologies like artificial
intelligence, machine learning, and deep learning have emerged as the key to improving crop monitoring,
disease detection, and precision farming.

The Pakistani agricultural industry is a key part of the Pakistani economy, which plays a role of about
23.5% in the country’s GDP during fiscal year 2024-2025 and employs many labour force. It is a significant
source of foreign exchange earnings and a primary source of raw materials needed by downstream
industries and the central market of industrial products like fertilizers, pesticides, and machines [2].
Further, because almost two-thirds of the Pakistani population is rural, and most are directly and indirectly
reliant on agriculture as their means of livelihood, the socio-economic significance of the sector is
highlighted.
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In recent years, agriculture has been transformed into a more innovative and efficient system due to
the integration of modern technologies. Deep learning has become a disruptive technology, and it is now
possible to automate agricultural processes, identify crop diseases early, communicate wirelessly with
sensors, and make more sophisticated decisions based on cloud computing. The innovations have
tremendous potential to boost productivity, guarantee sustainability, and reinforce agriculture’s position
in overall economic development.

Rice Leaf Diseases: Rice plants are vulnerable to numerous diseases throughout their growth cycle, and

this study focuses on the most severe ones that significantly impact yield and quality.

a) Bacterial blight: One of the most toxic diseases that impacts rice leaves and plants is bacterial blight.
It has been known to destroy up to 70% of the grain crop and has also been known to destroy a large
area of field covering hundreds of acres [3]. The disease attacks the plant in its early stages of growth.
Powerful winds and rains significantly contribute to the dispersion of the bacteria on the fields. The
first symptom of the disease is that infected rice leaves first appear yellow, then slowly roll up, and
then the yellow color changes into a straw-like color. The proliferation of bacterial blight results in low-
quality grains, and the yield is significantly decreased. However, this disease is treatable with practical,
cost-effective, and trustworthy control mechanisms. Balanced use of nitrogen, timing irrigation,
removing weeds at the right time, and keeping the fields clean can be applied to control this disease.
In addition, the biological control methods, e.g., antagonistic pathogens, have worked quite well in
controlling bacterial blight in rice crops.

b) Blast: Rice blast is a fungal disease regarded as one of the biggest menaces to rice production
worldwide, with yields of 10-30% losses. This disease is first found in small necrotic spots on the leaves,
which then continue to increase and extend to the leaf blade and leaf sheath [4]At an advanced stage,
infection disrupts grain filling and can also get to the roots, inhibiting the overall progress of the plant.
In a desirable environmental condition, the rice blast may destroy whole fields, causing a lot of crop
losses. Common symptoms consist of spots of different sizes and shapes, which differ according to
climatic factors. The control of this disease mostly depends on the usage of registered fungicides.

c¢) Brown spot: Brown spot is a highly destructive rice disease caused by the fungus Cochliobolus
miyabeanus. The disease mainly affects rice leaves, and its symptoms include spots that are different
in size and color; they are small reddish-brown spots and large dark-brown oval spots. Serious
infection may result in massive yield loss, approximately 60 to 90%. Nutrient deficiency, poor soil
preparation, and poor drainage are among the factors that promote the disease in situations where
there is poor crop management [5]. The core control strategies entail balanced fertilization, land
leveling, correct soil management, placement of fungicide-treated seeds, and incorporation of disease
management techniques.

d) Tungro: Rice tungro disease is an infection that results from two viruses carried by rice hoppers. The
ailment causes severe signs, such as leaf discoloration, mottling, stunted growth, and decreased
yield. This is because losses have been realized up to 68%. The infected leaves turn orange-yellow to
dark blue on the tip, and when they spread downward, they make the plant look striped or mottled.
Infection during the growing period can be highly destructive, especially in the initial stages, since it
can lead to the loss of complete rice acreage [6]Tungro propagates very fast in cultivated rice fields,
and this is mainly caused by the action of leafhoppers. Nutrient deficiencies, including nitrogen and
zing, and environmental stressors, including water scarcity or rat infestation, also contribute to the
worsening of the disease. Tungro management techniques incorporate the use of insecticides to curb
the population of leathoppers and the adoption of proper nutrient and field management.
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Figure 1. Image samples of all the rice plant diseases (a) Bacterial blight (b) Blast (c) Brown spot (d)
Tungro
2. Literature review

Automated crop disease detection has been a highly developed field in recent years, and artificial
intelligence (Al), in particular, deep learning, has been significantly applied to this area. Manual inspection
processes can be tedious, subjective, and prone to error by humans, and it is here that automated methods
are required. As a crop susceptible to bacterial blight, blast, brown spot, and tungro, rice has been the target
of various studies on developing computer vision models to aid in early detection, minimize losses, and
ensure food security. In the following section, we abide by the recent studies using CNNs, transfer learning,
and hybrid deep learning models to detect rice leaf disease and discuss their datasets, methods,
performance, and limitations.

Adoption of artificial intelligence and intense learning has contributed significantly to the automated
detection of crop diseases. Rice is particularly susceptible to bacterial infections, such as bacterial blight,
blast, brown spot, and tungro. Therefore, rice has been particularly interested in the recent literature on
computer vision models that would help control the disease before its outbreak and decrease yield losses.

Designed a personalized CNN with MATLAB to detect four diseases of rice leaves and healthy
leaves with 99.83% accuracy [7]However, the data set was restricted to field images in certain areas, the
training was also limited to seven epochs, and the evaluation was limited to overall accuracy. This raises
questions of overfitting and the absence of generalizability. We only used YOLOvVS5 on a 400-image Kaggle
dataset. The model was exact (1.0) and recalls (0.94), although the mean average precision (mAP) was poor
(0.62), which represented a limitation in robustness and scalability because of the small size of the dataset.
[8].

Investigated the transfer learning models, including VGG19, ResNet101, and Inception-ResNet-V2,
on 984 rice leaf images, with the highest result on 92.68 [9]Although the existing architectures were used,
the dataset size was not very high, and the evaluation metrics were not exhaustive, so there are gaps in
reliability.

Hybrid deep learning and machine learning methods were proposed, with an accuracy of less than
95%. Though novel, these models were computationally inexpensive, had poor consistency across datasets,
and were less practically applicable in the real world. [10].

The Presented Detection Transformer (DHLC-DETR) with an improved model, combining Res2Net
and a dense feature pyramid network, attains 97.44% accuracy on the IDADP dataset. They particularly
worked with small-target detection; however, the method needed heavy augmentation (17,640 images) and
was computationally intensive. [11].

Used CNNs and compared them with the conventional ML methods on the dataset of 1,600 images
of four classes (Hispa, Brown Spot, Leaf Blast, Healthy). CNN had the highest accuracy of just 78.2, which
demonstrates the weakness of shallow models and small datasets [12].

CNN architecture was assessed on a Kaggle dataset on four rice leaf diseases. Although the potential
of CNNs was proven, the dataset was limited (fewer than 2,000 images), and the accuracy was under 85%,
again highlighting the difficulty of dataset size and generalization.

Across the reviewed works, several common limitations emerge:

1. Small dataset sizes (often <2,000 images), limiting robustness.

2. It was evaluated based on the accuracy rather than precision, recall, F1-score, and the confusion matrix.
3. Limited disease coverage in some studies (only 3—4 classes).

4. Complex models (e.g., DETR, hybrids) that are difficult to deploy in resource-limited settings.

To address these gaps, the present research employs a custom CNN model trained on a
comparatively large Kaggle dataset of 6,431 images, with four large rice leaf diseases ( bact. blight, blast,
brown spot, and tungro). Unlike many previous works, the model achieves 98% accuracy and provides a
comprehensive assessment, such as precision, recall, F1-score, and confusion matrix. The proposed CNN
is lightweight and scalable, making it applicable to practical use, such as mobile or IoT-based systems in
agriculture.

Table 1. Summary of Related Work
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The reviewed studies collectively demonstrate that deep learning approaches, particularly CNN-

based models, have strong potential for rice disease detection. However, several challenges remain
unaddressed. To begin with, the datasets of these studies are generally small: in many cases, they consist
of less than 2,000 images, which restricts the stability of the trained models. Conversely, the paper uses
over 6,000 pictures, providing more confident training and testing.
Second, earlier research used only accuracy as the performance metric, which is confounding when there is class
imbalance or misclassification. Not many studies have given a detailed analysis of confusion matrices, precision,
recall, and F1-scores. These metrics are expressly included in our work and provide a more detailed analysis of
performance [13].

Third, other papers tried higher architectures like transformers or hybrid CNN-ML frameworks. Still,
these were computationally intensive and not practically applicable to real-world agriculture in developed
countries because developing countries have limited resources. Our CNN is a light but effective and
scalable network suitable for precision agriculture applications that require a mobile and IoT-based
network.

Lastly, one of the major lessons is that most previous works trained their models with tiny numbers
of epochs (e.g., 7 epochs in [7] ), which casts doubt on the stability and generalizability of findings. In
comparison, our experiment trained the CNN model using 35 epochs and reached a steady convergence,
presenting a high generalization potential with unknown data.

3. Materials and Methods

This part presents the dataset and the method of the suggested CNN structure of the study.

Dataset: The dataset used in this work was obtained from the Kaggle repository and consists
exclusively of infected rice leaf images belonging to four major disease categories: Bacterial Blight, Blast,
Brown Spot, and Tungro. In contrast to some of the earlier studies that have considered the diseased and
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healthy samples of leaves, the current research focused on diseased samples only to develop disease-
specific feature extraction and classification. There are 6,431 images in the dataset, which were gathered in
various real-field conditions and provided by multiple sources on Kaggle, ensuring that they varied in
terms of backgrounds, lighting, and orientations of the leaf.

Table 2. Dataset

Classes Images Training Image Testing image
Bacterial Blight 2083 1519 564
Blast 1440 1007 433
Brown Spot 1600 1120 480
Tungro 1308 915 393
6431 4561 1870

4. Methodology

The rice leaf disease images were acquired on Kaggle and consist of pictures taken in the field with
different backgrounds, lights, and leaf positions. Every picture was scaled to 224x224 pixels and brought
to the range of [0, 1] as a normalization measure. There was no data augmentation before any data
was split into training and testing sizes to avoid data leakage. Random rotation (20 ) and
horizontal/vertical flipping and zooming (range 0.2) were only used in the training set to enhance the data
diversity and model resilience. In the training, 20% of the training data was used internally by validation
with the validation split option of Keras, which allows monitoring the model’s performance without
having a separate validation folder. Fixed random seed values ( seed = 42) were used to ensure
reproducibility of experimental results. This data preparation plan provided a valid assessment of the
recommended CNN model.

Image Dataset
of Rice Leaf
Disease

l

Data Pre-Processing

Rescallin Dataset Division Resizin
g into Train, and g

Test

1

Defining Model and
Hyperparameter Setting

l

709 of Model Predictions 30% of
Dataset Validation

[ Results J

Figure 2. Propose Methodolgy
The proposed model is a tailor-made Convolutional Neural Network (CNN) used to predict four
types of rice leaf diseases, such as Bacterial Blight, Blast, Brown Spot, and Tungro. The input images were
made 224x 224x 3 and scaled in the range [0, 1]. The model represents three convolutional blocks, which
are then succeeded by a fully connected layer and a softmax output. Individual convolutional layers
employ a 3 x 3 kernel, a stride of 1, and the same padding to maintain spatial dimensions. ReLU was used
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as an activation to add non-linearity, and MaxPooling (2x2) was utilized to reduce the number of feature
maps. Regularization was done by having dropout layers to cut down on overfitting.

Table 3. Summary of the proposed CNN model architecture.

Layer Filters / Units Kernel Parameters Activation Dropout
Input 224x224x3 - - Rescaling -
Conv2D 32 3x3 896 ReLU -
MaxPooling2D - 2x2 0 - 0.3
Conv2D 64 3x3 18,496 ReLU -
MaxPooling2D - 2x2 0 - 0.3
Conv2D 128 3x3 73,856 ReLU -
MaxPooling2D - 2x2 0 - 0.4
Flatten - - 0 - -
Dense 256 - ~6,425,600 ReLU 0.5
Output Dense 4 - 1,028 Softmax -

Output Layer

Dense(d) + Softmax
Classes:
1. Bacterial Blight
2, Blast
3. Brown Spot
4, Tungro

—

Com2D (3| (Conv2D(64))  (Conv2D((26
Relll Rell RellU

MaxPoolng | | MaxPooling | | MaxPolng
Dropout(03)| | Dropout(0.3)| | Dropout(04)

Flatten
Convert 20= 1D

Figure 3. Proposed custom CNN architecture.

Convolution Layer: This constitutes the first layer of the neural network, which is the basic unit of
the architecture. The convolutional layer that contains multiple feature detectors is referred to as a kernel
or filters, which are dragged by a stride throughout the image to draw attention to the occurrence of the
particular feature.

The Batch Normalization Layer decorrelates every layer’s inputs, standardizing each mini-batch. This
method averts the learning process and enables deep networks to train using much smaller epochs. [14].
Given a mini-batch B = {x4,x;, ...,x,}, each activation x;is normalized using the batch mean ugzand batch
variance oZas follows:

- Li ~ BB (1)

e -u.fcr;b,z + €

Lastly, linear transformation is used to recover the power of representation:
R 2
yi =& + B @

where y and S They are learnable parameters that scale and shift the normalized value, respectively.
Max Pooling Layer: The main reason the pooling layer is required is that it cuts in half the size of the
output of the previously mentioned convolutional layer, making the computing cost of the following layer
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less expensive. Max pooling is definitely the most popular pooling. It breaks down the picture into sub-
region rectangles delimited by the kernel and will only output the maximum of every stage of the kernel.
The proposed architecture is 2x2 in dimension, and its stride is 2.

SN 6 2
Max pooling
1
4 5 0 l », i3
/3 &8 9 = 9
g 4 7 2

Figure 4.. An example of max-pooling operation.

Activation Function Layer: The second layer is the activation function layer. The neural network is
non-linear due to this layer. A choice in favor of non-linearity, one can either modify or cut off the layer's
output before it. This is applied to restrict the output manufactured. Activation function of the Rectified
Linear Unit (ReLU) has recently been applied in the works of CNN due to the possibility caused by a
mixture of the following reasons:

g(z) = max (0, z) :
@ .. (1, ifz=0
dz glz) = [D. otherwise ?

a) Simplicity in function and derivative of the type in (3) and (4).

b) Reduced the possibility of vanishing gradient.

c) ReLU produces a sparser representation. The reason is that the zero in the gradient yields a
complete zero.

Fully Connected Layer: The fully-connected layer is the same as the structure of neurons in
traditional neural networks. This makes every neuron in the fully connected layer completely connected
to all the neurons in the earlier and later layers. The drawback of the fully connected layer is that it
possesses many parameters, which are very expensive to compute at any point during the training.
Therefore, the proposed model employed a single connected layer to reduce complexity, yet many
discriminative features were learned. In our implementation, the fully connected layer has 6,526,308
trainable parameters, demonstrating its computational intensity. And lastly, the result of this layer is
overlaid with the Softmax activation function that transforms the real-valued outputs to a probability
distribution of the four target classes (Bacterial Blight, Blast, Brown Spot, and Tungro).

Training the proposed custom CNN models: The CNN model was built based on Kaggle’s data on
four types of diseases of rice leaves: Bacterial Blight, Blast, Brown Spot, and Tungro. The data was divided
into training and testing groups in a 70:30 ratio to regulate practical performance evaluation. All images
were resized ( 224x224 pixels), normalized (to range [0,1]), and random rotations, flips, and zooming were
added. These preprocessing steps assisted the model in extrapolating further and reduced the risk of
overfitting.

Adaptive Moment Estimation (Adam): Our loss function was categorical cross-entropy, and model
training was done using the Adam optimizer. To avoid overfitting, 35 epochs of training, a 32-batch size,
and dropout layers (0.3, 0.4, and 0.5) were introduced on the different network levels.

The basic principles of the Adaptive Moment Estimation (Adam) algorithm update the gradient and
squared gradient of the exponentially moving average using the hyperparameters. 1, 2 € [0,1)

my = fyme_y + (1= GV (we) )

The reason is that the moment estimates of the moving average are concentrated around zero, since
they will be vectors of zeros. To overcome these biases, the writer of Adam calculates bias-corrected
estimates m and v.

. g
m=

1-f]
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(6)

b=t )
P =
= e weights are updated with the following update rule in (8)
. 3 (8)
Wier = We = e

Experimental Setup: All experiments were conducted on a Windows 10 operating system computer.
This computer had an Intel(R) Core i7-6600U CPU with a frequency of 2.60 GHz and 8 GB RAM. The
model’s implementation, training, and evaluation were conducted in Jupyter Notebook version with
Python 3.9 and TensorFlow and Keras as a deep learning framework.
All the data processing (resizing and normalization), model training, and evaluation metrics (accuracy, precision,
recall, F1-score, and confusion matrix) were conducted in the same environment.

5. Results

Evaluation of the dataset of four classes of rice plant diseases. The experimental data set consisted of
four types of courses of rice leaf disease: Bacterial Blight, Blast, Brown Spot, and Tungro. The suggested
custom CNN has been trained through the Adam optimizer and validated through training and test data
sets. This model was validated in the first epochs of training, and it demonstrated Adam’s efficiency in
refining the learning process.

An additional examination of the model performance to identify the predictions made on a class-by-
class basis was conducted, assisted by a confusion matrix. The leading performance indicators, accuracy,
precision, recall, and F1-score, were computed to make the model robust. It was determined that the model
can reach a maximum test accuracy of 98 percent, which means it is overly generalized on unexplored data.

. n TN+TE
Accuracy = TN+FP+FN+TP 9)
Precision = (10)
TP+EP
TP
Recall = e an
Fl SEUTE = 2 x Precisionx=Racall (12)

Frecislon+Recall

Where, TN = true negative, TP= true positive, FP= false positive and FN = false negative

Accuracy Over Epochs Loss Over Epochs
1.0
1.8 4 —— Train Loss
Val Loss
0.9 1.6 4
0.8 4 1.4
> 1.2 1
E 0.7 4 @
=] Q
g = 1.0+
0.6 1
0.8 1
0.5 A1
) 0.6
—— Train Accuracy ~—~
0.4 Val Accuracy 0.4 So—X
0 5 10 15 20 0 5 10 15 20
Epoch Epoch

Figure 5. Accuracy and loss graph of Custom CNN
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A Custom CNN was utilized to label rice leaf disease, with a test accuracy of 98%. The model was
found to have a training accuracy of 96.34% and a validation a

ccuracy of 97.75%, with minimal overfitting, as noticed during the training. The training and
validation loss curves gradually decreased during an epoch of steady convergence and learning.

SO0

Bacterialblight

A0

Blast

- 300

True

- 200

Brownspot

- 100

Tungro

3 o
& o &

b -

i &

<& @

Figure 6. Confusion matrix of Custom CNN
The confusion matrix was used further to evaluate the CNN model's classification performance. The
fact that most of the images were correctly classified in all four classes of rice leaf disease indicates that the
model is correct. The diagonal values are high and represent high accuracy of each category, and the
misclassifications are minimal, which testifies to the power and reliability of the model.
Table 4. Evaluation of Rice Leaf Diseases Identification

Disease Class Precision (%) Recall (%) F1-Score (%) Support
Bacterial Blight 0.98 0.98 0.98 564
Blast 0.97 0.97 0.97 433
Brown Spot 0.99 0.97 0.98 480
Tungro 0.97 0.99 0.98 393
Overall Accuracy 0.98 1870
Macro Average 0.98 0.98 0.98 1870
Weighted Average 0.98 0.98 0.98 1870

A detailed classification report was received to further evaluate the proposed CNN model’s
performance. This report's key performance indicators include precision, recall, F1-score, and support of
the four target classes: Bacterial Blight, Blast, Brown Spot, and Tungro. These measures give more insight
into the model’s classification ability by each disease category rather than its general accuracy. The high
scores in these indicators prove the model’s ability to achieve accurate and reliable multi-class classification.

6. Conclusions

This paper expounded on a Custom Convolutional Neural Network (CNN) employed to develop an
automated detection system for four rice leaf diseases: Bacterial Blight, Blast, Brown Spot, and Tungro. The
data set was downloaded from Kaggle and pre-processed with resizing, normalization, and data
augmentation to maximize the model’s generalization. The CNN model comprising convolutional, pooling,
dropout, and fully connected layers was trained on Adam optimization and categorical cross-entropy loss.
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The test accuracy of the proposed model was found to be 98%, the training accuracy of the model was 96.34%
and the validation accuracy was 97.75%. This implies that the model will generalise and possess excellent
robustness. The loss curves of training and validation showed steady convergence without overfitting. Still,
the confusion matrix and the classification report showed that the correct classification was well-founded
in all four disease classes at high precision, recall, and Fl-scores. The proposed model had a high
performance and strength compared to the existing ones, which usually reported between 88 and 96
percent accuracy. This is an enhancement that highlights the study’s input in the development of deep
learning-based rice disease detection. To summarize, the proposed CNN model can be an effective, precise,
and scalable way of diagnosing rice leaf diseases at an early stage. The model facilitates the production of
precision agricultural practices by promoting yield protection, minimizing crop loss, and ensuring
sustainable rice production through effective detection and intervention.

7. Future work

A large dataset with more rice diseases, healthy leaf samples, and actual rice can be considered in
future studies. Images on fields to enhance generalization. The other direction worth pursuing is the
creation of a lightweight CNN that can be deployed on mobile or edge devices, and this will allow
farmers to diagnose diseases on-site in real-time. Lastly, the model can be expanded into a decision support
system, which can not only identify rice leaf diseases but also provide farmers with an adequate
management practice (e.g., using pesticides, adjusting nutrients, or managing the field), thus making the
model more useful in precision agriculture
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