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Abstract: Software testing is a vital process in the assurance of reliability and accuracy of the 

software systems, but manual testing is a slow, tedious, and error-prone process. The generation of 

test cases is a promising way, and currently, the existing approaches are frequently constrained by 

uncertainties in terms of natural language demands, low adaptability, and the lack of scalability. To 

alleviate such difficulties, this study proposes an end-to-end model based on Natural Language 

Processing (NLP), contextual embedding of BERT, and machine learning for automatic translation 

of unstructured requirements into structured and verifiable test cases. The proposed pipeline then 

involves requirement preprocessing, ambiguity detection, validity assessment, semantic 

representation, and classification, and then any structured test case documentation is done to assure 

traceability and completeness. The framework was tested on the DAMIR dataset and compared with 

the state-of-the-art methods, such as the scatter search, the NLP-based requirements formalization, 

and the generation of acceptance test cases based on NLP. Experimental outcomes demonstrate that 

the proposed model had high performance with an accuracy of between 92% and 97% and a 

maximum accuracy of 96.69, which is much higher than the current methods. Accuracy, recall, and 

F1-scores also confirmed the soundness of the framework in categorizing valid and invalid 

requirements. This paper illustrates how NLP-based test automation can be used to scale agile and 

continuous integration environments, to increase the reliability of the testing process, and to reduce 

human involvement. It provides the framework for future studies in multilingual requirement 

processing, domain-specific applications, and integration with large language models to enable 

greater flexibility. 

 

Keywords: Test Case Automation; Natural Language Processing; Machine Learning; Contextual 

Embedding; BERT 

 

1. Introduction 

Software testing is one of the most crucial stages in the software development life cycle, which 

provides the system being developed to act in the manner it is supposed to work and in accordance with 

the expectations of the users. Traditionally, tests has been done manually whereby testers develop and run 

test cases using written requirements. Although manual testing is able to cover a few functional 

inconsistencies, it is time consuming, prone to error and limited. With the increasing size and complexity 

of modern software systems, manual methods have become less and less effective, which has spurred the 

use of automated testing [1]. In agile and continuous integration system, automated testing is not only 

faster but also more accurate, repeatable and scalable and thus it is very critical in such systems [2]. 

One of the basic requirements to the design of test cases is the requirement specification that is usually 

presented in natural language. These requirements state system requirements, limitations and anticipated 

behaviors, which serve as the basis on which the implemented system is verified against the needs of 

stakeholders. Natural language requirements can however be ambiguous, incomplete or inconsistent, 
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thereby making it difficult to convert them directly into executable test cases. This is where automation 

fueled by NLP comes in [3]. 

More recent development in NLP has allowed automated analysis of natural language requirements 

to derive important information in the form of actors, conditions, preconditions and expected response. 

These methods not only minimize the human effort but also decrease the ambiguity, enhancing the 

scalability, and guaranteeing consistency in the generation of tests [4]. However, the current methods of 

automated generation of test cases have a number of limitations. Search-based methods, like scatter search, 

are not always able to deal with linguistic complexity. Formalization of requirements using rules are 

inflexible and are poor at capturing contextual knowledge. Acceptance test generation frameworks do not 

have a means of detecting ambiguity and are dependent on highly structured input. This results in a 

requirement of smarter and more adaptable methods that have the capacity to use deep contextual 

embedding and machine learning to comprehend the requirements. 

In this study, we present an end-to-end NLP-based test case generation pipeline based on natural 

language requirements. Our analysis integrates the current NLP techniques, deep learning embedding, 

and formal documenting techniques to convert unformatted requirements into executable test cases. The 

work has the following contributions: Suggest a full end-to-end pipeline to generate test cases, where 

requirements are processed, embedded with the help of BERT, and classified, and structured test 

documentation is generated. 

To improve the reliability of test cases, we present ambiguity detecting and validity testing 

mechanisms on the requirement level. We also use BERT-based embedding as they provide better semantic 

representation of requirements and can be much better classified and extract information than in the case 

of conventional feature engineering techniques. 

The rest of this paper is structured as follows: Section 2 is a review of related work in automated test 

case generation and NLP-driven requirement analysis. Section 3 explains in detail the proposed pipeline 

and methodology and the setup of the experiment and datasets to be evaluated in the experiment are 

shown. The results are discussed in Section 4 and compared with the existing methods. Lastly, Section 5 

wraps up the paper and provides future research directions. 

 

2. Literature Review 

Automated generation of test cases based on natural language requirements has been an active field 

of study at the border of software engineering and natural language processing. Initial attempts were 

mostly based on search and rule-based approaches where requirements were specified in structured 

models and converted to test cases. Although these methods did offer a certain degree of automation, they 

tended to be affected by scalability problems and also not to cope with the vagueness of natural language. 

As sophisticated forms of NLP came to light, scientists started to consider how to directly process natural 

language requirements, and how to extract test-relevant entities (actors, conditions, and expected 

outcomes). In recent years, machine learning and deep learning models have been incorporated in this 

field, where in contextual embedding and semantic insight are used to enhance precision and coverage. 

Although this has been made, some major issues are still in the form of requirement ambiguity detection, 

incomplete specifications, and traceability between requirements and test cases which encourages the 

creation of more intelligent and adaptive models [5]. 

Olajubu et al [6] introduced a model-based test case generation model on the basis of high-level, 

domain-specific requirement models. Transforming domain models into testable artifacts and automation 

of some of the test derivation pipeline to minimize manual effort are stressed in the work. It is remarkable 

in that it concentrates on domain specific modeling formalisms thereby enhancing traceability between the 

requirements and tests. The methodology however presupposes the existence of well-defined domain 

models and does not deal with noisy and entirely natural-language requirements and linguistic 

ambiguities. 

Jorgensen et al [7] is a practitioner-oriented guide to the principles and techniques of software testing, 

which includes test design, strategies, and quality characteristics. Although not a research contribution to 

automated generation, the book offers the precursors (test oracles, coverage criteria and test design 

heuristics) on which subsequent automation research is based. The fact that it offers a wide range of 
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coverage provides valuable assessment metrics and benchmark practices to researchers developing 

automated test-case pipelines. 

An introduction to the canonical textbook to software testing by Ammann and Offutt et al  [8] 

formalizes much of the knowledge applied in research on automated test generation (e.g., fault models, 

combinatory testing, mutation testing). Their strict exposition of test adequacy, and formal test criteria, are 

frequently a source of theoretical support on empirical research. The role of the book is not experimental 

but conceptual because it educates metrics of evaluation and why some automated strategies are more 

preferable to follow. 

In their proposal to bridge model-driven engineering and requirements engineering, Aysolmaz et al 

[9] suggested a semi-automated method to use business process models in the creation of natural-language 

requirements. The methodology helps to attain regular and formal requirements creation that may enhance 

downstream testability and traceability. But since it is semi-automatic, and model-dependent, it relies on 

the availability of proper business process models and does not directly address raw and unstructured 

natural-language requirements or ambiguity resolution. 

The USLTG by Hue et al [10] represented the method of changing use cases into test cases generated 

automatically. USLTG concentrates on the acceptance tests on the system level, by deriving test sequences 

that can be executed by interpreting use-case descriptions. The technique enhances traceability and lessens 

manual intervention of use-case-based testing. The drawbacks are that it requires the quality of use-case 

documentation and is not tested across the board of targeted systems. 

Feng et al [11] CodeBERT introduced CodeBERT, a large pre-trained source code/natural language 

model that is trained to learn to learn joint representations across programming languages and natural 

text. Even though CodeBERT is mainly designed to handle code understanding and generation tasks (e.g., 

code search, summarization), the embedding and paradigm of pre-training are very applicable in the 

context of test generation research that needs to reconcile natural-language needs and code-level artifacts. 

The model is highly transferable, but needs to be adapted into requirement-to-test tasks. 

Modonato et al [12] integrated dynamic symbolic execution, machine learning and search-based 

testing to generate test cases of object-oriented classes automatically. The hybrid strategy uses symbolic 

exploration to cover the paths, ML to inform selection and search heuristics to maximize efficiency. It has 

shown encouraging performance in the testing of classes but is restricted to some programming-language 

idioms and not evaluated on large and highly polymorphic code bases. 

Mustafa et al [13] reviewed the existing literature on automated generation of test cases based on 

requirements and synthesized techniques, datasets, and evaluation patterns. Their SLR is a synthesis of the 

landscape with its gaps that include ambiguity, absence of standard benchmarks as well as the minimal 

use of deep contextual models at that time. The review offers a helpful taxonomy and inspires the research 

directions with NLP progress and testing requirements integration. 

Surveying machine-learning methods in software testing automation, Salam et al [14] classify such 

approaches into supervised, unsupervised, and deep learning algorithms used in tasks such as test-case 

prioritization, test-case generation, and fault prediction. The survey highlights the increasing use of ML 

and highlights common difficulties; lack of data, generalizability, and assimilation into software 

engineering processes. It suggests more generous standards and end-to-end testing--just the hole our 

pipeline will focus on. 

Cheema et al [15] suggested a natural language interface to create data-flow diagrams by relying on 

the web-extraction methods that focus on the automated generation of artifacts using the natural language. 

Even though the focus is on drawing diagrams instead of on constructing test-cases, the paper can be useful 

since it shows how to obtain structured models based on narrative descriptions, which can be transformed 

into test-generative actors, conditions, and steps. This approach is based on domain-specific extraction 

rules and therefore is problematic in being transferred to a wider variety of requirements. 

Lim et al [16] suggested an NLP based unified boilerplate model, which combines the Rupp and EARS 

templates to analyze sentences and minimize the ambiguity to extract test case information. Three datasets 

of the PURE repository were tested with the model, where it was moderately successful in dealing with 

positive requirements but failed with negative requirements. One of the major drawbacks is the ignored 

negative requirements and lack of spelling or synonym checkers as they result in challenges in making a 

distinction based on actors and conditions. 
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Kumar et al [17] created an automatic refine-based test case generation method of using student codes 

and compilers and large language models (LLMs). The system is enhanced by compiler feedback and test 

case-student error alignment by Chain-of-Thought refinement, which is improved through iterative 

refinement. Its only major disadvantage though is dealing with low scoring student code, or with buggy 

student code, where generated test cases might not still model realistic execution behavior. 

Prabhu et al [18] proposed an NLP-related method to identify important information in user stories 

and categorize it in three types, Arrange, Act, and Assert (AAA) with the help of machine learning. This 

will enhance prioritization and efficiency of test case classification that is normally a manual one. However, 

its dependence on manual keywords and unigrams can be easily subject to overfitting, poor 

generalizability and restrict validation in the real-life setting. 

Gröpler et al [19] introduced a semi-automated NLP-based system, which then translates the textual 

requirements to UML sequence diagrams to produce test cases. The method offers explainable models but 

does not take into account a prioritization process and ambiguity management. In addition, it has not been 

experimented with large or diverse datasets, which restricts its usage to wider contexts. 

Liu et al [20] offered a scatter search technique of test case generation that included various execution 

paths in NLP programs. The approach decreases the test cases as well as the time taken in the coverage. It 

is however not evaluated on large-scale, real-world NLP systems and modern ML techniques are not 

incorporated, and the questions of scalability and adaptability remain open. 

And Wang et al [21] proposed Use Case Modelling to produce System-Level Acceptance Tests 

Generation (UMTG) to generate test cases based on natural language requirements. Although it enhances 

traceability and saves the user effort, the methodology needs partial manual intervention and domain-

specific models, which restricts complete automation. It has been mostly validated on embedded systems 

and therefore casts doubt on its extrapolation to other software applications. Li et al [22]proposed one such 

approach whereby the natural language test steps can be grouped and aligned with reusable API methods 

to enhance efficiency in automation of the test. Although this clustering strategy has shown the possibility 

of re-use and the minimization of effort, it does not assess flexibility in other areas or other types of tests, 

and the generalizability is thus not addressed. 

A test case management strategy that incorporates requirements-based and risk-based prioritization 

was described by Lawana et al [23]. The approach saves on expense and time by concentrating on the most 

critical functionality and the aspects that are risk prone. Nevertheless, limitations in the scope of the study, 

such as restricted to C-language programs, limits the applicability of the study in general and a unilateral 

focus on risk areas may lead to the neglect of crucial functionalities. 

Alagarsamy et al [24] proposed the A3 Test, a deep learning model which takes into account assertion 

knowledge in generating more accurate, reliable, and executable test cases. It is more efficient and covers 

than in the past. It has weaknesses in the analysis of failures, in sustaining accuracy under real-world 

conditions, and interoperability with modern software systems despite these strengths, as it depends 

intensely on existing data sets. 

Across all studies, several common gaps and limitations emerge. Most notably, there is a lack of 

comprehensive solutions that jointly address the following core issues, as very few systems actively 

incorporate semantic disambiguation or contextual refinement techniques to handle vague or conflicting 

natural language statements. Although some research has focused on prioritization based on risk or 

keyword salience, a universally adaptable, context-aware prioritization framework is still absent. The 

reviewed literature reflects a rich spectrum of approaches and innovations that continue to shape the test 

case generation landscape. The limitations in existing approaches underscore the need for an integrated, 

end-to-end framework that combines the strengths of NLP, deep learning, and prioritization. 

Table 1. Summary of Existing Study with details 

Ref Year Models/Technique Dataset 
Results 

(Accuracy/Performance) 

Research 

Area 

[6] 2015 

Model-driven → 

domain-specific 

model 

transformation 

Domain-

specific 

requirement 

models 

N/A (paper-focused on 

approach & traceability) 

Model-

driven test 

generation 
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[7] 2021 

Comprehensive 

testing techniques 

(book) 

N/A (textbook) 

N/A 

(conceptual/practical 

guidelines) 

Software 

testing 

foundation

s 

[8] 2016 

Formal testing 

criteria; coverage & 

adequacy 

N/A (textbook) 
N/A (theoretical 

foundations) 

Testing 

theory & 

metrics 

[9] 2018 

Semi-automated 

natural-language 

reqs from business 

process models 

Business 

process models 

/ generated NL 

docs 

Improved consistency; 

manual refinement 

required 

Requireme

nts 

engineering 

/ NL 

generation 

[10] 2019 

Use-case → 

automatic test case 

transformation 

Use-case 

descriptions 

Reported improved 

system-level acceptance 

test coverage 

Use-case-

driven test 

generation 

[11] 2020 

Pretrained 

transformer for 

code + NL 

(CodeBERT) 

Code + NL 

corpora 

Strong transfer for 

code/NL tasks 

(benchmarks in original 

paper) 

Pretrained 

models for 

code & NL 

[12] 2020 

Hybrid: Dynamic 

Symbolic 

Execution + ML + 

Search-based 

Testing 

Object-oriented 

programs 

(classes) 

Efficient class-level test 

generation 

(experimental) 

Hybrid 

automated 

test 

generation 

[13] 2021 

Systematic 

literature review 

(techniques 

taxonomy) 

Multiple 

published 

studies 

N/A (synthesis of field; 

gaps identified) 

Survey / 

SLR on 

automated 

test 

generation 

[14] 2022 

Survey of ML 

techniques in 

testing automation 

Literature 

corpus 
N/A (catalog & analysis) 

ML in 

testing 

automation 

[15] 2023 

NL interface + web 

extraction → data-

flow diagrams 

Web-extracted 

corpora/domain 

data 

Demonstrated 

feasibility; domain-

dependence 

NL → 

structured 

artifact 

extraction 

[16] 2024 

NLP-based unified 

boilerplate (Rupp + 

EARS templates) 

PURE 

repository 

datasets 

Moderate success on 

positive requirements, 

weak on negative ones 

NLP-based 

requiremen

t parsing 

[17] 2024 

Iterative 

refinement with 

LLM + compiler 

feedback 

Student codes 
Improved alignment 

with student errors 

Code-based 

test 

generation 

[18] 2024 
NLP + ML for 

AAA classification 
User stories 

Efficient prioritization; 

overfitting issue 

Test case 

prioritizatio

n 

[19] 2021 
NLP → UML 

sequence diagrams 

Requirement 

datasets 

Semi-automated; 

untested scalability 

Requireme

nt 

modeling 

[20] 2019 
Scatter search 

strategy 
NLP programs 

Reduced cases and time; 

lacks scalability 

evaluation 

Search-

based 

testing 
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[21] 2022 
UMTG (Use Case 

Modeling) 

Embedded 

systems 

Improved coverage; 

partial manual effort 

needed 

Acceptance 

test 

generation 

[22] 2020 

Clustering NLP 

test steps → API 

mapping 

Not specified 
Improved efficiency, 

limited generalizability 

Test case 

clustering 

[23] 2024 

Risk-based + 

requirement-based 

prioritization 

C-language 

programs 

Reduced cost/time; 

limited to C programs 

Test case 

manageme

nt 

[24] 2024 

A3 Test (Deep 

Learning + 

assertion 

knowledge) 

Pre-existing 

datasets 

Improved correctness 

and coverage; lacks 

failure analysis 

Deep 

learning for 

test 

generation 

 

3. Methodology 

This study presents a full-fleet NLP- based pipeline in generating automated test cases based on 

natural language specifications. This methodology is a combination of preprocessing, information 

extraction, deep contextual embedding, machine learning classification, and structured test case 

generation. The general outline of the pipeline of the suggested approach is shown in Figure 1. 

 
Figure 1. Methodology 

 

3.1. Dataset 

To test our proposed framework, we make use of the DAMIR dataset that is available publicly 

on its GitHub repository (https://github.com/SNTSVV/Anaphoric-Ambiguity/blob/main/Datasets/DAMI

R.xlsx). The data set has been purposely designed to be able to record ambiguous and anaphoric 

distinguishing reference in natural language requirement statements and is, therefore, very susceptible to 

studies in automated requirement analysis and test case generation. 

The DAMIR data is a collection of requirement sentences that are tagged with various layers of 

linguistic and semantic data. The requirements have been marked as ambiguous, valid, and having 

anaphoric references. This framework enables the researchers to study the interpretation process of 

ambiguous phrases by the NLP systems, and the processing of negations and clearing up of references 

with antecedents. The data contains both positive and negative requirements, and thus models are 

subjected to various linguistic forms occurring in actual specifications in the real world. The other essential 

feature of DAMIR is that it is devoted to the ambiguity detection. Unclear requirements are a significant 

problem of software engineering as they are frequently misinterpreted, resulting in inconsistency of tests 

and increased development expenses. The dataset also gives an effective reference point when considering 

https://github.com/SNTSVV/AnaphoricAmbiguity/blob/main/Datasets/DAMIR.xlsx
https://github.com/SNTSVV/AnaphoricAmbiguity/blob/main/Datasets/DAMIR.xlsx
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ways of detecting and repairing such cases by providing explicit annotations of ambiguous and non-

ambiguous statements ahead of test case generation. 

DAMIR has some limitations even though it is useful. Although it offers a dense stock of annotations, 

the data is of medium size and probably does not reflect the diverse nature of the requirement styles that 

are possible in large industrial projects. Most of the requirements in the dataset are comparatively short as 

well, and this may not represent the complexity of multi-sentence or domain-based specifications. 

However, DAMIR is also among the few publicly accessible datasets directly focused on the issues of 

ambiguity and anaphora in requirements, and it provides a fundamental basis to develop and test NLP-

based methods of automated test case generation. 

3.2. Requirement Input and Preprocessing 

The initial step involves importing a raw text file containing software requirements, and each line 

represents a single functional or non-functional natural language requirement. These are loaded into a 

structured format using the Pandas library. Informally, a requirement sentence is to be represented as a 

sequence of tokens as equation (1). 

𝑆 = {𝑤1, 𝑤2, … , 𝑤𝑛},  𝑤𝑖 ∈ 𝑉                                            (1) 

Where V is the vocabulary of all tokens. Preprocessing transforms S into a cleaned token sequence S 

for further analysis. Two preprocessing operations are performed on natural language requirements: 

Validity labelling: It checks the validity of the requirement and assigns binary labels (1 = valid, 0 = 

invalid) to each requirement, which trains the validity classification model. 

Ambiguity labelling: If any ambiguous term appears in a requirement, it is labelled as ambiguous (1), 

otherwise non-ambiguous (0), and it is used to train the ambiguity classification model. 

The cleaned and labelled data serve as the input for both machine learning classification and test case 

generation [25]. 

3.3. NLP-Based Information Extraction 

After the requirements are preprocessed, the NLP-Based Information Extraction module analyses the 

requirements and extracts all the critical components, such as the actors, test actions (steps), preconditions, 

and post conditions (expected outcomes) that are needed to generate a complete and traceable test case. 

The named entity recognition (NER), syntactic parsing, and rule-based logic are combined in this process 

to transform natural language requirements into structured information to generate test cases. Actors are 

identified by applying spaCy’s Named Entity Recognition (NER). If no actor is found, then dependency 

parsing is used to extract the grammatical subject of the sentence. In the next step, the model extracts the 

test Step Extraction (actions). SpaCy’s sentence segmentation mode divides each requirement into 

individual sentences, which typically reflects either an input (what the user does) or a system response 

(what the system should do) [26]. The need of S can be formally translated into as equation (2). 

𝐼(𝑆′) = {𝐴, 𝐶, 𝑃, 𝑅}                                                 (2) 

Where I represents the extraction function.   

In the next step, Preconditions must be true or completed before the test, and post conditions must be 

fulfilled after the test. By applying dependency parsing and semantic role labelling, the system recognizes 

conditional expressions such as if, before, when, etc., as preconditions and consequence expressions such 

as then, as result, etc., for post conditions. For complex sentence structures, the NLP parser breaks them 

into smaller, manageable parts and uses coordinating conjunctions (e.g., and, or) to identify multiple 

actions or conditions. After extracting all relevant information for generating test cases, it is passed to the 

Test Case Generation model to perform formatting and documentation [27].  

3.4. Embedding Requirements for Using BERT 

Traditional NLP feature extraction methods fail to capture contextual relationships between words. 

For instance, the word "login" may have different meanings depending on whether it is used as a user 

action or part of an authentication condition. Bidirectional Encoder Representations from Transformers 

(BERT), developed by Google, addresses this issue by using deep bidirectional transformers to model both 

the left and right contexts of every word in a sentence simultaneously. These features enable a better 

understanding of context and help to understand the meaning behind the words [28], which is critical for 

tasks such as validity detection, ambiguity prediction, and classification computed as equation (3). 

𝐸(𝑆′) = BERT(𝑆′) ∈ 𝑅𝑑                                             (3) 

Where d is the embedding dimension. 
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3.5. Machine Learning-Based Requirement Classification 

In approach, Machine Learning-Based Requirement Classification plays a key role in organizing the 

requirements into meaningful categories and determining their execution priorities. This ensures that the 

test cases are relevant and more risk-aware, and properly prioritized for testing software efficiently. The 

primary goal is to label requirements based on their content, importance, and relevance to different quality 

attributes of software. The classification focuses on two aspects. One of them is the type of Requirement, 

e.g, Functional, Security, Performance, Optional, or Uncategorized. And the second is Priority Level, e.g, 

High, Medium, or Low, based on the criticality of the action described in the requirement. This can be 

characterized as binary classification problem as equation (4). 

𝑓: 𝐸(𝑆′) → {0,1}                                                         (4) 

Where 0 denotes an invalid requirement and 1 denotes a valid requirement [29].   

This information is integrated into the final test case output and embedded in the generated .docx test 

documentation, helping stakeholders understand both the type and urgency of each test case. 

• Test Planning and Execution: High-priority test cases can be scheduled for earlier testing cycles. 

• Risk-Based Testing: Teams can focus on critical system areas like security and performance. 

• Traceability and Coverage: Tags help ensure that all types of requirements are accounted for in the test 

plan. 

• Improved Reporting: Prioritized and categorized test cases make QA metrics more meaningful and 

actionable. 

This enhances the traceability, scalability, and usefulness of the entire test case generation process 

[30]. 

3.6. Structured Test Case Document Generation 

The final phase involves transforming the enriched and classified requirements into formal test cases, 

saved in .docx format. Each test case contains Requirement Text, Test Case ID, and Traceability Link, 

Predicted Validity and Ambiguity, Test Case Category and Priority, Actors, Preconditions, Test Steps, 

Expected Results, Execution Status (default: "Ready to Execute"), and each component is populated using 

the outputs of earlier stages, ensuring high semantic alignment and readability.  When the requirements 

have been classified and validated, they are converted into formal test cases made up of: 

Test Case ID (TID) 

Preconditions (𝐶) 

Steps (𝑃) 

Expected Results (𝑅) 

Officially, a generated test case TC can be represented as equation (5). 

𝑇𝐶 =  {𝑇𝐼𝐷, 𝐶, 𝑃, 𝑅}                                                  (5) 

3.7. Pipeline Management and Execution 

The entire system is extracted by a main function, which acts as the control center. It loads the dataset 

and trains the classification models. Iterates through each requirement, processes it, makes predictions, 

generates a corresponding test case, and then compiles all test cases into a single .docx file. The approach 

provides a comprehensive, automated pipeline for transforming unstructured natural language software 

requirements into structured, high-quality, and executable software test cases. It leverages modern NLP 

and machine learning techniques and ensures semantic understanding, error detection, and traceability 

and minimizes manual effort in test case automation and work to enhance the software testing efficiency 

and reliability [31]. 

3.8. Evaluation Measures 

Machine learning metrics, software engineering metrics, and requirement-specific metrics are needed 

to evaluate automated tests case generation. These research measures are evaluated using the following 

measures [32]: 

3.8.1. Accuracy 

Accuracy is the percentage of the requirements that are correctly categorized (valid or invalid) (of all 

requirements) computed as equation (6). 

Accuracy = 
True Positives(𝑇𝑃)+True Negatives(𝑇𝑁)

True Positives(𝑇𝑃)+False Positives(𝐹𝑃)+True Negatives(𝑇𝑁)+False Negatives(𝐹𝑁)
       (6) 
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Where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives. High 

accuracy also means that most of the requirements are validated by the classification module. 

3.8.2. Precision 

Precision is used to measure the accuracy of the positive predictions (requirements that are classified 

to be valid) computed as equation (7). 

Precision =   
True Positives (TP)

True Positives (TP)+False Positives(FP)
                         (7)                         

This is a very important measure to minimize the incorrect requirements utilized in generating the 

test cases. 

3.8.3. Recall 

Recall (or sensitivity) indicates the percentage of real valid requirements that were successfully 

recognized computed as equation (8). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
True Positives(𝑇𝑃)

True Positives(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
                          (8)                        

The increased recall will guarantee that there are fewer valid requirements that are missed when 

generating test cases. 

3.8.4. F1-Score 

The harmonic mean between Precision and Recall is referred to as the F1-Score. It offers a weighted 

value when a false positive and a false negative are equally essential. To calculate the F1 Score, the formula 

as equation (9). 

F1-Score= 2
(Precision.  Recall)

(Precision+ Recall)
                                          (9) 

 

4. Results 

The results of the experiment performed in the framework of the suggested methodology offer 

important clues regarding the efficiency of applying NLP tools to automatically create use case diagrams 

based on text requirements. The assessment of the system performance was carried out with the help of 

the DAMIR dataset, which has various and multifaceted requirements statements. To confirm the results, 

several evaluation measures such as accuracy, precision, recall and F1-score were used. The results have 

shown that the combination of tokenization, part-of-speech tagging, and semantic role labeling is effective 

in the detection of actors and use cases resulting in more accurate diagram generation. In addition, 

compared to current methods in the literature, the offered framework shows a competitive level of 

performance, which emphasizes its possibilities of being adopted practically in software requirement 

engineering. 

These bar graphs represent the rate at which each of the pronouns occurred in the data set. These and 

they are the most common pronouns followed by he, it’s and so on. The prevalence of the use of 

collective/possessive pronouns suggests that the focus of this dataset is on the mention of the organizations 

or groups, which are known to be vaguer. This kind of knowledge is effective in pointing out those 

pronouns that cause more problems in solving co-reference resolution problems that is shown as figure 2. 

This chart shows that all the pronoun resolutions can be said to either be correct, incorrect or 

inconclusive. The skew of the data is so to the inconclusive and this is indicative of the fact that there are 

so many pronouns that can actually be answered to a definite antecedent. This asymmetry is relevant in 

model training that suggests that systems must learn to deal with, not only with simple cases, but with 

ambiguity and uncertainty. It also implies that the information is supposed to generate stress-tests to 

pronoun resolution systems that is shown as figure 3. 

This graphical view is a comparison between the Ack (acknowledged) and Unack (unacknowledged) 

occurrences. The dominating prevalence of Unack highlights the fact that such explicit recognition is not 

that widespread in such circumstances. This skew means that there are a great number of candidate 

antecedents that were not specifically mentioned in the text and this complicates the problem of getting 

the pronouns right. The imbalance is also noteworthy in case the research must balance classes before 

applying machine learning models that is shown as figure 4. 

This histogram shows the location of the pronoun in the sentence, where it is most likely to be located, 

by index of words. The pronouns usually occur in the middle of the sentence and not in the beginning of 

the sentence or the end of the sentence. It is a sign of regular patterns in natural language where pronouns 
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usually follow an already established antecedent in the sentence. With model design, that substantiates the 

importance of context window size: models must look at both the preceding and the following pronoun to 

identify references in an appropriate way that is shown as figure 5. 

 
Figure 2. Pronoun Distribution 

 
Figure 3. Resolved As Distribution 

 
Figure 4. AckUnack Distribution 
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Figure 5. Pronoun Position Histogram 

The bar graph provides an assessment of the pronoun resolution outcome in terms of the 

acknowledgment status. The majority of the inconclusive resolutions are linked to Unack labels suggesting 

the existence of correlation between the unresolved pronouns and the inability to recognize it. This 

observation can be applied when analyzing mistakes, in that negligence is likely to be linked with 

unresolved citations. Models that include provisions of interactions of acknowledgment pointers might be 

in a position to improve the level of accuracy in distinguishing between conclusive and inconclusive cases 

that is shown as figure 6. 

 

 
Figure 6. AckUnack vs ResolvedAs (Grouped Bar Chart) 

The most frequent words in the Context column are shown as the word cloud having a sunset gradient 

to provide the visual hierarchy. The larger words are better represented in the data set, and they offer a 

momentary reflection on the repetitive elements and words. Organizational names, technical names, and 

references, are also words that show that it is domain-specific text. The visualization provides rather 

abstract picture of the vocabulary landscape that enables the identification of the dominant themes and 

potential biases of the data that is shown as figure 7. 

4.1. Comparison of the Performance Analysis of various approaches 

Table 2 summarizes the comparison between the suggested approach and the current methods. The 

NLP-based requirements formalization proved to be rather unproductive with the poor accuracy scores 

(e.g. 33% on Dataset 7, 34% on Dataset 1). This implies the individual application of heuristic-based 

optimization is not sufficient to reflect the semantic richness of natural language requirements. On the 

same note, NLP-based requirements formalization techniques had moderate accuracy (72-79%), which 

showed their capacity to break down requirements but, their inability to deal with ambiguity and 

contextual differences. 
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Figure 7. The most frequent words as words cloud 

Across all datasets, the proposed approach consistently outperformed existing methods, maintaining 

the results from 92% to almost 97%. Scatter search approach’s performance was inconsistent and shows 

poor generalizability across datasets, and ranges the accuracy from only 73% to 79%. NLP-based 

requirements formalization also shows limited effectiveness in handling diverse requirement structures, 

and accuracy remains low “38% to 48%”. Results were comparatively better for the acceptance test case 

using the NLP approach, ranging 53% to 73%. 

 

Table 2. Comparative performance analysis of different approaches across multiple datasets 

Dataset Scatter 

Search 

Approach 

(%) 

NLP-Based 

Requirements 

Formalisation 

(%) 

Acceptance 

Test Cases 

using NLP  

(%) 

Our Proposed 

Approach 

Accuracy  

(%) 

Dataset 1 79 34.63 73.20 95.67 

Dataset 2 73 48.50 69.30 96.00 

Dataset 3 74 35.39 64.98 96.69 

Dataset 4 74 38.40 63.19 94.77 

Dataset 5 78 38.28 55.21 94.12 

Dataset 6 72 36.66 55.60 92.67 

Dataset 7 75 33.98 53.60 95.67 

 
Figure 8. Accuracy comparison chart across different approaches 
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The NLP method of Acceptance Test Case generation was found to be marginally better with 

accuracies of between 53-73% in datasets. Although these techniques have potential, they are limited in 

generalizability to different datasets because they are based on surface-level NLP features. 

Our solution was better than all the baseline solutions with accuracy of 92-97% on all datasets. It is 

especially improved in the dataset where the baseline methods failed (e.g., Dataset 2, in which the accuracy 

increased to 96.0, compared to 69.3% with NLP acceptance test cases). Such results demonstrate the power 

of combining BERT embedding and ambiguity-detecting algorithms in deriving strong requirements. 

4.2. Performance Metric Analysis on a Dataset-Wise Basis 

The individual performance indicators of Table 3 (precision, recall, F1-score, and accuracy) indicate 

significant data-specific information: 

4.2.1. Good Quality Data (Datasets 1, 2, 3, 7) 

Such datasets yielded more accurate and recall values (67-76%), which resulted in high F1-scores 

(greater than 70). As an example, Dataset 3 had F1-score of 75.0% and an overall accuracy of 96.69, which 

showed excellent results when the input requirements were properly-organized and less ambiguous. 

4.2.2. The Data sets 4, 5, and 6 are ambiguous (Ambiguity-Prone Data sets) 

The performance in the areas of precision and recall decreased a bit, and Dataset 5 demonstrated the 

worst F1-score (49.83%). This reduction can be explained by the fact that there were ambiguous 

requirement statements, which had implicit or absent actors. Nevertheless, classification accuracy (= 92% 

or higher) was also high, which means that the system was able to identify valid and invalid requirements 

despite ambiguity. 

4.2.3. Balanced Dataset (Dataset 7) 

A balanced situation in Dataset 7 was observed, with a recall (74.29) and a precision (72.73) that 

yielded a good F1-score (73.45) and accuracy (95.67). This is exhibited by the flexibility of the model to 

mixed-quality requirements. 

Table 3. Performance Metrics (Precision, Recall, F1 Score, and Accuracy) for Each Dataset Using our 

Proposed Approach 

Dataset Precision Recall F1 Score Accuracy 

Dataset 1 72.92% 73.74% 73.32% 95.67% 

Dataset 2 66.49% 67.65% 67.06% 96.00% 

Dataset 3 76.32% 73.81% 75.00% 96.69% 

Dataset 4 57.55% 55.16% 56.07% 94.77% 

Dataset 5 50.00% 49.65% 49.83% 94.12% 

Dataset 6 54.17% 54.17% 54.17% 92.67% 

Dataset 7 72.73% 74.29% 73.45% 95.67% 

4.3. Reliability Analysis by means of Confusion Matrix 

Table 4 of the confusion matrix gives more information on the reliability of classification: 

4.3.1. Minimal False Positives (FP) 

In most datasets, the false positives were smaller, usually 0 or 1. As an illustration, Dataset 1 contained 

no false positives, i.e. no invalid requirement was assigned as valid. This is to make sure that only 

actionable requirements are handled to generate use case diagrams. 

4.3.2. Minimal False Negatives (FN) 

False negatives were also quite sparse, with some datasets (Datasets 2, 3 and 6) having 0 FN scores, 

meaning that all valid requirements were properly identified. This eliminates the chances of overlooking 

critical system behaviors. 

4.3.3. Dataset Variations  

Table 4 contained a bit more misclassifications (5 false positives and 1 false negative) and reduced 

reliability compared to other tables. This is attributable to the fact that the rate of ambiguity is higher in 

this dataset. However, the true positives (TP) were also high (139), which meant that most of the system 

behaviors have been identified correctly. There are no ideal cases of classification that are perfect: 
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Dataset 3 and Dataset 6 demonstrate the classification of the valid requirements (0 FP, 0 FN) which 

proves that the proposed method may be considered robust with the clear and structured requirement 

datasets. 

Table 4. Summaries results for Confusion Matrix Components (TN, FP, FN, TP) for Each Dataset 

Representing the Classification Results of Valid and Invalid Requirements 

Dataset 
TN (Actual No, Pred 

No) 

FP (Actual 

No, Pred 

Yes) 

FN (Actual 

Yes, Pred 

No) 

TP (Actual 

Yes, Pred Yes) 

Dataset 1 301 0 1 143 

Dataset 2 301 1 0 143 

Dataset 3 302 0 0 143 

Dataset 4 296 5 1 139 

Dataset 5 302 0 1 142 

Dataset 6 302 0 0 143 

Dataset 7 298 4 1 140 

The stacked bar chart of metrics by Dataset results is shown in figure 9. 

 
Figure 9. Stacked bar chart of metrics by Dataset Results 

4.4. Comparison with existing study  

4.4.1. Comparison to Traditional Heuristic and Search-Based Methods 

Previous research like Liu et al (scatter search strategy) and Modonato (combining search-based 

testing with dynamic symbolic execution) focused mainly on algorithmic methods of test case generation. 

Being successful in the number of test cases reduction, their accuracy was low, and in various datasets, the 

performance was frequently less than 40 percent. These techniques did not have the flexibility to the 

natural language variability and were unsuitable to ambiguous or unorganized requirements. As opposed, 

our system combines semantic embedding (BERT), which allows one to understand linguistic patterns 

subtly. This led to a steady accuracy of over 92%, which was apparent improvement over search based 

methods. 

4.4.2. Compared with NLP-Based Requirement Formalization 

Such works as Lim et al. and Gröpler et al. were devoted to requirement formalization by means of 

NLP and UML transformation. These methods were moderately successful (with accuracy in the range of 

30 to 40 percent, on average) but did not work well with negative requirements, synonyms, and ambiguous 

language. These limitations have been met by our approach, which presents an ambiguity detection 

mechanism prior to classification, which greatly increases reliability. As an example, in situations whereby 

the previous systems falsely categorized ambiguous needs, our system had high F1-scores (as high as 75) 

and low false negativities. 

4.4.3. Compared to Machine Learning and Hybrid Approaches 
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Hybrid methods (e.g. the iterative refinement with LLMs and compiler feedback proposed by Kumar 

et al., the classification of test steps proposed by Prabhu et al.) were more advanced in automation, but had 

overfitting problems, relied on unigrams/keywords, or were not scalable. In addition, they tended to need 

a lot of manual refinement. In comparison, our pipeline of NLP-based end-to-end removes the intensive 

use of human intervention by heavily relying on pre-trained embedding and structured classification. This 

lowers the chances of overfitting and works well in generalizing across dataset. 

4.4.4. Comparison with Acceptance Case Test Generation 

The strategies like Wang et al. (UMTG) and Hue et al. (USLTG) enhanced the system-level acceptance 

test with the help of NLP and use-case transformations. They still had a performance rate of no more than 

5573 percent accuracy, which was largely because of the partial automation and domain dependence. 

These are much lower than ours with accuracy improvements of 20-40 percent, and domain adaptability. 

 

4.4.5. Evaluation of Model Performance Across Diverse Requirement Datasets 

To ensure the stability and generalization strength of our proposed model, we extended our 

evaluation beyond the DAMIR dataset. After obtaining promising results on the DAMIR dataset, the model 

was tested on multiple additional datasets collected from diverse software requirement sources. To ensure 

a comprehensive evaluation of the effectiveness and generalization strength of the proposed model, the 

model was further evaluated on three additional datasets to validate its robustness and generalization 

capability. The first dataset, the NFR dataset [33], the second, the Software Requirement dataset by Vaibhav 

[34], and the third, the Software Requirements Dataset by Souvik[35]. The NFR dataset was divided into 

three dwell-defined datasets, each representing different portions of the data distribution. The model was 

trained and evaluated on these datasets independently to examine its consistency and adaptability. The 

performance metrics, including accuracy, precision, recall, and F1-score, obtained from these experiments 

are summarized in Table 5. 

Table 5. Performance Comparison Of Proposed Model Across Multiple Datasets 

Dataset Accuracy 

(%) 

Precision 

(%) 

Recall 

 (%) 

F1-Score (%) 

NFR – Part 1 95.94 67.75 80.00 72.43 

NFR – Part 2 94.69 71.11 78.41 74.17 

NFR – Part 3 95.99 74.07 75.73 74.87 

Software Requirement 

dataset by Vaibhav 

95.67 85.96 86.91 86.41 

Software Requirement 

Dataset by Souvik 

97.01 81.42 81.42 81.42 

The extended evaluation confirms that the model retains strong accuracy and resilience across 

different datasets. This comparative evaluation helps demonstrate that the proposed approach is not over 

fit to a single dataset but maintains high accuracy and stability across various datasets. The proposed 

model shows superior performance in terms of precision, recall, and F1-measure for extracting test cases 

from natural language requirements across multiple datasets.  

4.4.6. Comparative Insights 

To conclude, there are many limitations to current methods in that they tend to have low adaptability, 

lack generalizability and ability to deal with ambiguity. Our proposed pipeline combines contemporary 

deep learning embedding with validation and classification layers and reaches state of the art accuracy 

with overcoming important insufficiencies in scalability, ambiguity resolution, and automation. Table 6 

displays Comparative Analysis of Our Proposed Approach against Existing Studies. 

 

 



Journal of Computing & Biomedical Informatics                                           Volume 09  Issue 02 

ID : 1093-0902/2025  

Table 6. Comparative Analysis of Our Proposed Approach Against Existing Studies 

Ref Year Models/Technique Dataset 
Results 

(Accuracy) 
Comparative Insight 

[12] 2020 
ML + Search-Based 

Testing + DSE 

Object-

oriented 

programs 

75% 

Language-limited; 

our approach applies 

across multiple 

requirement datasets. 

[22] 2021 
Scatter Search 

Strategy 

NLP 

programs 
~39% 

Limited scalability; 

our approach 

achieves >92%. 

[21] 2022 
Use Case Modeling 

(UMTG) 

Embedded 

systems 
63–73% 

Domain-limited; ours 

achieves +20–30% 

higher accuracy. 

[16] 2024 
NLP-based 

Boilerplate Parsing 

PURE 

repository 
34–36% 

Struggled with 

ambiguity; our 

ambiguity detection 

improves 

performance. 

[17] 2024 

Iterative 

Refinement with 

LLM + Compiler 

Student 

code 

Not 

accuracy-

based 

Requires manual 

iterations; ours is fully 

automated and 

generalizable. 

Proposed 

Approach 
2025 

NLP + BERT 

Embeddings + 

Ambiguity 

Detection 

DAMIR + 

others 
92–97% 

State-of-the-art 

performance with 

scalability and 

robustness. 

 

5. Conclusions 

This study presented a new end-to-end, NLP-based, automated test case generation system based on 

natural language requirements. With requirement preprocessing, ambiguity identification, semantic 

embedding with BERT and machine learning-based classification, the framework successfully converted 

unstructured requirement texts to structured, testable test cases. In contrast to manual testing, which is 

slow, inconsistent and resource-intensive, the suggested solution would provide a more intelligent, 

scalable, and highly automated alternative that lessens human involvement and reduces test design error. 

The comparison with various datasets revealed the overall superiority of our method over current 

techniques like scatter search, NLP-based requirement formalization, acceptance test-case generation. 

Specifically, our model demonstrated an accuracy of between 92 per cent and 97 per cent, the highest being 

on Dataset 3 (96.69 per cent). Precision, recall, and F1-scores also confirmed the strength of the framework, 

and F1-scores were as high as 75%. The findings validate the role of embedding contextual information 

and ambiguity detection in improving the trustworthiness of generated test cases over previous methods 

that frequently had difficulty with ambiguity or negative requirement. 

In addition to the improvement over the previous studies, the study brings necessary improvements 

to the field of automated software testing. Requirement-level validity checks and ambiguity detection at 

the introduction of the requirement enhance the quality of the requirement before test case derivation and 

deep contextual embedding permit a more precise understanding of requirement actors, conditions, and 

system response. The resulting structured test case documentation does not only improve the traceability 

but also fits perfectly well in the current agile and continuous integration environment. 

To sum up, the presented solution provides a consistent, scalable, and smart solution to the problem 

of the generation of automated test cases, which has been under development a long time. It has practical 

relevance, as well as research relevance because it attained the state of the art performance and the reported 

highest accuracy of 96.69. In the future, by expanding the framework to multi-lingual sets of requirements, 
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domain-specific software, and connection with large language models, it might extend its scope to become 

the backbone of the next generation of smart test automation systems. 

In the future research, there are some directions that can be followed. It would be better to extend the 

framework to multi-lingual requirement sets to make it globally applicable. This might be enhanced by 

integration with large language models (LLMs), which would make requirement understanding more 

precise and enhance test case coverage. Further, the use of the method on domain-specific needs (e.g., 

healthcare, finance or safety-critical systems) would confirm its flexibility to the non-declarative industrial 

environment. 
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