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Abstract: Cardiovascular disease constitutes one of the major leading causes of deaths in the globe. 

Early diagnosis is needed to enhance patient outcomes.Although machine learning models, 

including XGBoost, are highly accurate in predicting heart disease, they are black-box and therefore 

cannot be interpreted clinically.To overcome this shortcoming, we devised a new model that 

integrates: XGBoost and SHAP(SHapley Additive exPlanations), which yields the impact of each 

feature on the prediction. Using the PC (Peter-Clark) algorithm, we determined the causal 

relationship between features and the outcomes of heart diseases and differentiated causation with 

correlation.To have the system useful in real-life healthcare, we created a simple interface allowing 

doctors to input patient information, view predictions, and read about explanations in various levels 

of detail.Our model was tested on the UCI Heart Disease dataset and achieved 91% accuracy, 0.90 

F1-score, and 0.95 AUC-ROC better than other common models (Logistic Regression, Decision Tree, 

and Random Forest). Our tool will assist doctors in making better judgments regarding the risk of 

heart disease by integrating good predictability, explicit explanations, and user-friendly design. 
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1. Introduction 

The world health organization estimates that 17.9 million people die each year due to cardiovascular 

diseases (CVDs), the majority of which is heart disease. CVDs form one of the greatest health issues in the 

world, with a high number of deaths occurring across the world [1]. 

Early and correct diagnosis of diseases is of great importance to minimize the strain on the healthcare 

systems, as well as to improve patient outcomes and provide timely intervention .Machine learning (ML) 

has emerged as a promising approach, with the increasing availability of structured electronic health 

records (EHRs) [2], machine learning (ML) has emerged as a promising approach, with the increasing 

availability of structured electronic health records (EHRs) [2], In clinical practice, to enhance diagnostic 

accuracy and risk prediction 

Many machine learning models have performed well in predicting heart disease using learning 

complex non-linear interaction patterns in clinical data, of which Decision Trees, Support Vector Machines 

(SVM), and ensemble learning methods such as XGBoost demonstrate. [3], [4].Across various classification 

tasks, XGBoost differentiates itself through its efficiency, scalability, and superior performance [5]. 

Even though their predictive capabilities, these models are indicated as "black boxes" with limited 

decision-making clarity. This opacity obstruct clinical acceptance, as healthcare providers require not only 

correct predictions but also understandable and defensible reasoning to make informed decisions [6]. 
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Techniques known as Explainable AI (XAI) have been developed to address this constraint By open-

handed each feature a input value for individual predictions, SHAP (SHapley Additive exPlanations) 

provides mathematically logical descriptions, improving the interpretability of black-box models [7]. 

Current XAI techniques, such as SHAP and LIME, are good at producing explanations, but they 

depend on additional feature correlations than on actual causal linkages. This restriction is especially 

important in clinical decision-making, where medically meaningful causal factors,rather than just 

statistical patterns,should be used to guide treatment decisions. [8]. 

In this research, we proposed a framework that improved the prediction for heart disease that 

used XGBoost prediction power with post-hoc explainability through SHAP and Peter–Clark (PC) 

algorithm used for causal detection. This method is a new idea from correlation-based interpretation and 

controls possible cause and effect relationships between clinical features and the results of heart disease, 

which would be increase trustworthiness of, trust in the system as well as establish associations with 

available medical approaches. To support its application on real-world data we developed a web interface, 

which delivers patient specific predictions with customizable levels of explanation depending on the user's 

capability. The UCI Heart Disease dataset [9] used to test the proposed framework and achieved results, 

high predictive accuracy and generating clinically meaningful and interpretable results. 

 

2. Literature Review  

The most broadly used old models, such as Logistic Regression, Decision Trees, and Random Forests 

and recent ensemble approaches have shown extreme predictive capabilities like XGBoost. For example, 

Wang et al. [10] method based on model XGBoost that utilize UK Biobank data to predict myocardial 

infarction with an accuracy above 95%. SHAP was used to figure out model predictions and clinical 

transparency. 

To achieve better accuracy in predicting heart disease risk compared to traditional XGBoost models 

the Current studies have explored advanced ensemble methods. For example, a 2024 study consuming a 

stacked ensemble of models which includes ExtraTrees, Random Forest, and XGBoost that showed 

AUC-ROC greater than 0.92 while leveraging SHAP for interpretability [11]. Another approach combined 

feature scaling, grid search tuning, and comparisons among CatBoost, LightGBM, and XGBoost, showing 

XGBoost’s consistent top perfor mance at around 90 % accuracy with clear SHAP explanations [12]. 

Explainable ML models are now being used for cardiovascular comorbidity prediction beyond heart 

disease alone. Transparent machine learning models are currently being utilized for predicting 

cardiovascular conditions that occur alongside heart disease. To discover key biochemical predictors in 

models, a recent study applied SHAP detecting heart disease and cancer comorbidity using LightGBMx, 

which highlighting novel biomarkers missed by traditional models [13]. Moreover, the explainable models 

like XGBoost improved with SHAP, which were used to assess the risk of death during hospitalized after 

a heart attack, reaching AUC scores as high as 0.94 in extensive medical databases [14]. 

The correlation-based machine learning constraints in the medical field are addressed by through 

causal frameworks. A 2024 study point up the need assessing explainable AI systems with a focus on 

human needs within medical processes, making sure that explanations cater to various levels of user 

expertise. [15]].Moreover these studies, Elsewhere surveys, the introduction of CausalBGM, which is an 

AI-powered Bayesian reproductive modeling framework developed in 2025, which marks significant 

progress in assessing individual causal effects and manage latent confounders in observational 

datasets[16]. 

Advanced explanation methods like SHAP and LIME that are yet founded support statistical 

associations instead of uncovering true causal relationships. This is the reason that these models make 

them unreliable, especially in sensitive applications like medicine. To improve this short come Hou et al. 

[4] developed a causal discovery framework that utilize graph-based inference to improves SHAP outputs 

and also work on clinical reasoning to that offering explanations. Their work focuses on counting on only 

on correlation-based interpretability can lead to misleading decisions in patient care. The have done a very 

good job but the work have needs combination into heart-specific prediction pipelines and do not have 

any application for clinical use. In Our proposed research framework, we will address this gap. 
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The CODE-XAI a new framework integrates, the causal treatment consequence modeling with 

explainable machine learning techniques. This framework shows how causal and transparent reasoning 

can work together in clinical decision-making [17].  

For now, a theoretic method known as Emergent Explainability lead to causal sequences with the logic 

of neural networks to proposal more precise reasoning processes in forecasts [18]. 

Correspondingly, work across different fields explains the role of counterfactuals in XAI versus old 

causal inference, bridging intangible intervals involving methods [19].  

Although, two explanation methods proved effective for disease prediction and explanation that are 

XGBoost and SHAP but instead of these improvements existing studies still face a lot of short COMESA 

lot of methods depend on correlation instead true causal understanding, which are helpful to reduce 

clinical trust. Others system have deficiency interactive or adaptive interfaces designed to clinicians' needs 

that make them harder to use in practice Furthermore, most models have not been tested across various 

datasets, which makes them unreliable in the real world. These intervals emphasize the need for more 

robust, explainable, and user-friendly systems. The goals of our proposed framework is to address these 

gaps. 

 

3. Materials and Methods 

These are the stages of our proposed framework that is designed to ensure explainability and 

reliability. As shown in figure 1 the proposed framework involves six components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the proposed heart disease prediction framework. 

We first collect heart disease data from a well-known medical dataset. Then, we clean and prepare the 

data by converting text into numbers, scaling values, balancing the classes, and selecting important 

features. Next, we trained a robust machine learning model (XGBoost) to forecast heart disease risk. 

To make the model understandable, we use SHAP to show how each feature affects the prediction. 

We also identify which features actually causing heart disease using a method called the PC algorithm.  

Finally, we developed an intuitive interface enabling clinicians to input patient data, view predictions, 

and explore explanations along with causal relationships. 

A. Data Acquisition 

In our research, we utilized the UCI Heart Disease data set which is a subset of that of the Cleveland 

data. It has 14 clinical attributes, amongst them age, sex, chest pain type (cp), resting blood pressure, serum 

cholesterol, fasting blood sugar, resting ECG results, maximum heart rate, and exertion-induced angina. 

The dataset is relatively small, with only 303 patient records. The target variable is binary, indicating the 
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presence or absence of heart disease. The open-source dataset and we bought this from UCI Machine 

Learning Repository [20] [27]. To ensure data integrity, all missing values were eliminated before 

conducting the analysis 

B. Data Preprocessing 

The dataset was preprocessed in the following way to be used in modeling. 

Encoding: We used one-hot encoding on categorical variables such as chest pain type (cp), thal, and 

slope and transformed into binary columns 

Scaling: Min-Max normalization was applied to all numerical features, scaling them to a range 

between 0 and 1. This normalization kept all the features to equally contribute and achieve better training 

stability. 

• Balancing: There was a modest imbalance in the data set between the occurrence and non-occurrence 

of heart disease. In order to deal with such imbalance in classes, we used Synthetic Minority 

Oversampling Technique (SMOTE) [21] method using the imbalanced-learn Python package. SMOTE 

creates synthetic examples of minority classes to balance the classes. 

• Feature Selection: The minimal complexity of the model was ensured and other relevant clinical features 

were sought by using Recursive Feature Elimination (RFE) with cross-validation computation. RFE 

functions by successively deleting the smallest relevant options based upon the performance of the 

model till the greatest subset is identified. This approach helps remove noisy or redundant variables, 

thereby enhancing generalization and decreasing the risk of overfitting. RFE was selected because of 

its model-driven nature, effective for small datasets, and compatible with the supervised learning 

algorithms used in this study. 

C. Predictive Modeling with XGBoost 

  In this study XGBoost classifier [22] is used because of its high accuracy, computational efficiency, 

and robustness, particularly when handling structured tabular data like clinical records. XGBoost 

constructs an ensemble of decision trees through gradient boosting and integrates advanced techniques 

such as regularization and sparsity-aware learning to reduce overfitting and efficiently manage missing 

values. The model was trained using a stratified 80:20 split between the training and testing datasets. In 

order to enhance performance, we carried out hyper parameter tuning through the GridSearchCV set up, 

based on 5-fold cross-validation. The following parameter ranges were explored: n_estimators: 50 to 150 

(number of trees in the model) 

• max_depth: 3 to 5 (controls tree complexity) 

• learning_rate: 0.05 to 0.2 (adjustment size for each boosting step) 

• subsample and colsample_bytree: 0.8 to 1.0 (introduces randomness to improve generalization) 

Similar to the case of the study conducted by Hou et al. [4], the study in question used the XGBoost 

algorithm to predict cardiovascular events, however, did not tune hyperparameters through a systematic 

method and instead relied on default or minimally adjusted hyperparameters. Conversely, our work was 

able to maximise the most important parameters collectively, which helps a combination that yields a 

greater predictive accuracy and also better usage in unseen data. 

F1-score was the main measure used to determine the model performance since it balances both 

precision and recall, and can be applied even to the class-imbalanced problem. F1-score compute using (1) 

and Precision and Recall is calculated as (2) 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                         (1) 

Where, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,   𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
              (2) 

 

• TP = True Positives (patients correctly predicted with heart disease) 

• FP = False Positives (healthy patients incorrectly predicted as having heart disease) 

• FN = False Negatives (patients with heart disease incorrectly predicted as healthy) 

The F1-score was calculated on the independent test set after training to evaluate the model’s ability 

to identify both positive and negative cases correctly. Also, the ability of XGBoost to integrate with SHAP 
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makes it possible to explain individual predictions in the post-hoc manner, something critical to clinical 

interpretation. 

D. Explainability Using SHAP 

To understand and describe the model predictions, we used the SHAP (SHapley Additive 

exPlanations), post-hoc explainability technique which is grounded in cooperative game theory [23]. SHAP 

assigns a contribution value to each feature for individual predictions. It ensuring local accuracy (the sum 

of feature contributions matches the model output), consistency (features with greater influence receive 

larger values) and model-agnostic explanations (it works with any model). 

SHAP was chosen over other methods like LIME. Because it gives more theoretically sound and 

reliable explanations which is particularly true for the case of clinical applications. The SHAP values were 

calculated using the test set to examine the performance of the model at an unseen data.  

We generated the following three visualizations: 

• To show the global importance and impact of each feature we generated Summary Plot. 

• To provide single prediction explanations and helping clinicians understand specific cases we generate 

Force Plots. 

• To show how a feature’s value affects model output and disclose interactions between features we 

generate Dependence Plots. 

These visualizations reveal both global patterns and individual-level insights, enhancing 

transparency for developers and usability for clinical experts. In the next phase, features identified by 

SHAP were further examined for causal relevance. 

E. Causal Inference via the PC Algorithm 

We used the Peter–Clark (PC) algorithm [24]. It is a recognized constraint-based causal discovery 

method. It is used to evaluate whether SHAP-identified features were causally linked to heart disease or 

only correlated. Causal-Learn Python package is used to implement the PC Algorithm. This algorithm was 

chosen because of its effectiveness in learning causal structures from observational data, specifically in 

small-to-medium medical datasets. 

The following steps involved in causal inference process: 

• Step 1: Selected top SHAP-identified features as candidate causal variables. 

• Step 2: Applied the PC algorithm to the clinical dataset to construct a Directed Acyclic Graph (DAG). 

• Step 3: Performed conditional independence tests to detect direct and indirect relationships. 

• Step 4: Validated whether SHAP-important features (e.g., chest pain type, cholesterol) had true causal 

effects on heart disease. 

• Step 5: Interpreted results to confirm clinically relevant causal factors and reduce correlation-based bias. 

This method assumes causal sufficiency and faithfulness, which are standard in constraint-based 

causal discovery. As shown in Fig 6, strong causal links (solid lines) were found from age, chest pain type 

(cp), and number of major vessels (ca) to target (heart disease), while weaker or absent links (dashed lines) 

appeared for cholesterol (chol) and resting ECG (restecg). The SHAP features which have genuine causal 

influence, are confirmed by these findings and also improve seriousness to SHAP analysis and improve 

the model’s clinical reliability. 

F. Interactive Explanation Interface 

To support clinical usability, we designed an interactive interface utilizing Streamlit [25], a lightweight 

Python framework for web application development. Streamlit was selected for its ease of integration with 

machine learning pipelines and its capabilities to quickly deploy models in an accessible, browser-based 

interface. 

The interface allows users to: 

• Enter patient attributes through user-friendly forms. 

• View real-time predictions of heart disease risk based on input data. 

• Explore visual explanations using SHAP summary plots and individual force plots. 

• Overlay the causal graph to understand direct and indirect feature relationships. 

• Switch between basic and advanced explanation views depending on user expertise (e.g., generalist vs 

specialist). 

This interactive, explainable interface bridges the gap between complex ML outputs and clinician-

friendly decision support, enhancing trust and transparency in AI-assisted diagnosis. 
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4. Results 

The section gives an evaluation process and outcome of the proposed explainable heart disease 

predicting framework. We evaluate how well the model does at predicting outcomes in addition to how 

easy it is to interpret the results using SHAP and causal graph. We verify the system with a prototype user 

interface. 

4.1. Experimental Setup 

The entire experiment was performed under a machine with an Intel core i7 CPU (3.4GHz) and 32 GB 

RAM, and with Ubuntu 22.04. It was implemented in Python 3.10 with standard libraries: Scikit-learn [13], 

XGBoost [22], SHAP [23], and Causal-learn [24]. 

We used the UCI Heart Disease (Cleveland subset) data set [20] of 303 samples and 14 clinical 

characteristics. An 80:20 split for training and testing, was used. All preprocessing steps including 

encoding, scaling, balancing with SMOTE, and feature selection with RFE were completed as described in 

Section B (Data Preprocessing). In order to ensure consistent performance estimates, 5-fold cross-validation 

was used, and averaged. 

4.2. Evaluation Metrics 

 We used one-hot encoding our testing models had a variety of standard measures: 

• Accuracy: Overall correctness. 

• Precision is the ratio of true positive predictions to the total number of positive predictions 

• Recall measures how many actual positive cases were correctly identified by the model 

• F1-score provides a balance between precision and recall by computing their harmonic mean 

• AUC-ROC: Measures classifier's discrimination ability. 

• Brier Score: To assess probability calibration. 

These metrics were chosen in order to make it a fair and robust assessment because the level of class 

imbalance was mild. 

4.3. Model Performance 

We performed comparative study with four machine learning algorithms: Logistic Regression (LR), 

Decision Tree (DT), Random Forest (RF), and our proposed XGBoost classifier. Table 1 and Figure 2, 

indicate XGBoost ranked Best in all relevant metrics of evaluation, including accuracy (91%), F1-score 

(90%), and AUC-ROC (0.95) indicating its greater effectiveness in classifying those with and without heart 

disease This performance is particularly valuable in clinical settings. Where both precision and recall are 

critical to minimize false negatives and ensure early intervention.  

Even though XGBoost required the longest training time (1.02s). The marginal increase is acceptable 

considering the significant boost in predictive accuracy and robustness. By comparison, simpler models 

like Decision Trees had faster training but notably lower predictive performance. Overall, XGBoost offers 

the best trade-off between performance and computational cost for this clinical task. 

4.4. Encoding SHAP-Based Explainability 

Once the XGBoost model was trained, we used SHAP (SHapley Additive exPlanations) to understand 

predictions in a global and local prediction. The SHAP summary plot (Figure 3) ranked the features by 

their average contribution in regards to the model output. Their result found out that the most important 

features were chest pain type (cp), thalassemia (thal), number of major vessels (ca) and ST depression 

(oldpeak). On the plot, each point is a patient case, and color corresponds to the actual feature value (red 

= high, blue = low), and position showing whether it pushed the prediction toward or away from disease. 

As an illustration, increased values of cp and oldpeak normally increase predicted risk. 

Figure 4 below demonstrates the SHAP force plot on one of the patients illustrating how each feature 

increased or decreased the probability of heart disease predicted by the model. The base value (the average 

model prediction), is modified with feature SHAP values: red bars: features that raised the prediction and 

blue bars lowered it. In this case, high values for chest pain type and ST depression (oldpeak) significantly 

increased the predicted risk, resulting in a final model output of 0.79. Such Visualization will provide, local 

interpretability by clearly showing how individual clinical features influenced the specific prediction 

Table 1. Evaluation of performance Machine learning models 

Model Accuracy F1- Score AUC-ROC 
Training 

Time(s) 

Testing 

Time(s) 
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Logistic Regression 0.84 0.82 0.88 0.12 0.01 

Decision Tree 0.79 0.77 0.81 0.05 0.01 

Random Forest 0.88 0.87 0.91 0.68 0.02 

XGBoost (Ours) 0.91 0.90 0.95 1.02 0.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Bar plot of Accuracy, F1-Score, AUC-ROC, and Training Time of all models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SHAP summary plot with important global predictors 
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Figure 4. SHAP force plot showing how ingle features contributed to a patient's prediction 

We have a SHAP dependence plot (Figure 5) which shows the type of chest pain (cp) and slope have 

an interaction. Each dot is a patient, where cp is on the x-axis, the SHAP value is on the y-axis, and color 

means the value of the slope feature. The positive trend indicates that the increase in the level of chest pain 

and the increase in slope along with it trigger a high level of predicted risk of heart illness in the model. 

These results support conventional cardiovascular risk factors described in the medical literature [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. SHAP dependence plot showing the interaction between chest pain type (cp) and slope. 

4.5. Causal Analysis 

To check the validity of SHAP results, we constructed a causal graph using the PC algorithm [24]. The 

graph (shown in Figure 6) shows that age, cp (chest pain type), and ca (number of major vessels) have 

direct effects on the target (heart disease). However, features such as cholesterol (chol) and resting ECG 

(restecg), identified as important by SHAP, demonstrated weak or absent direct causal connections in the 

resulting graph. 

These findings suggest that SHAP may highlight features exhibiting correlation without causation, 

indicating that reliance solely on SHAP-based interpretations may introduce bias in clinical decision-

making. That’s why it’s important to use causal validation to support explainable models [27]. With the 

use of SHAP and causal analysis, we can be certain that both the explanations and consequent discoveries 

made by the model are interpretable as well as medically sensible and reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Causal links to the target from key features based on PC algorithm 

4.6. User Interface Feedback 

In order to make our heart disease prediction system useful to doctors, we have devised an interface 

comprising of Streamlit (Figure 7). The interface contains two aspects namely that of entering the patient 

information and the displaying of the prediction result with the explanations. 
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Doctors can input the following patient information on the left side, including age (e.g., 55 years) and 

sex (male or female), type of chest pain, resting blood pressure and the level of cholesterol. They are entered 

with the help of number boxes, dropdown menus and sliders making insertion of values quick and easy. 

When data are entered, the system provides immediate prediction (e.g. Prediction: 1.00) to indicate 

the risk of heart disease. The result is followed by a SHAP force plot in which red and blue bars are used 

to describe the prediction. Red bars indicate those features which had established the risk (such as 

conventional angina), whereas blue bars indicate those features which decreased the risk (such as age or 

resting blood pressure). 

There are also two toggle buttons. The first one is for Explanation Mode, which lets the doctor switch 

between simple and detailed explanations. The second is for Causal View, which adds extra information 

about cause-and-effect relationships. At the bottom, a message shows that the tool was “Validated by 4 

clinicians”, helping build trust in the system. 

The interface was tested by four medical professionals. Each of them mentioned that it is easy and 

simple. Three mentioned that they preferred causal view to make the explanation easier to understand and 

believe. Three also claimed that they will use this tool to justify their medical choices. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Prediction interface with patient input, SHAP explanation, and causal view toggle 

 

5. Discussion 

This study proposed an explainable and causally grounded heart disease prediction framework 

(Section 3), combining XGBoost with SHAP and the PC algorithm. As shown in our experimental results 

(Table 1 and Figure 2), the XGBoost model outperformed baseline classifiers, achieving 91% accuracy, a 

0.90 F1-score, and a 0.95 AUC-ROC, confirming its strength in handling structured clinical data. 

Explainability analysis (Section 4.4) using SHAP revealed that features like chest pain type, 

thalassemia, and ST depression significantly influenced predictions. While these results aligned with 

clinical intuition, causal analysis (Section 4.5) showed that some features highlighted by SHAP such as 

cholesterol had weak or no direct causal links to the target. This assessment shows that correlation-based 

explanations may be false without causal validation. 

In our study, this gap addressed by integrated the PC algorithm that discover true causal drivers and 

makes better explanation reliability. . This causal overlay holds more than knowledgeable and medically 

grounded decision-making 

Moreover, Figure 7, Based on Streamlit interface that will be used by clinicians to enter patient data, 

view real-time predictions, toggle explanation depth, and explore causal insights. The Four medical 

professionals gives feedback about our tool usability and clarity, intensely the causal view and adjustable 

explanations. 

Instead of these improvements, our study have short comes, we used UCI Cleveland a small dataset 

and causal discovery accepts no hidden confounders. In additional, we collect small quantity feedback 
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about from medical professionals. These limitations shows, in future a large multi-center datasets need to 

be used in research. 

In summary, our unified method efficiently links predictive accuracy, explainability, and causal 

reasoning key elements for utilizing trustworthy AI in clinical practice. 

 

6. Conclusions 

This study developed an explainable machine learning framework that is based on XGBoost for 

predicting heart disease and integrate SHAP explanation and causal validation using PC algorithm. As 

compared to traditional models, this framework not only carries correct predictions also explains which 

features truly contribute to the outcome this makes it more reliable for clinical decision-making. We also 

developed a user-friendly interface that allows clinicians to search predictions and explanations based on 

their expertise level. 

Our research is the extension of Hou et al. [4] research, who applied causal discovery to SHAP outputs. 

Our framework, contrasting Hou et al. [4] work focuses on heart disease prediction and provides a clinical 

interface. The main difference between these two research our research concentrating precisely on 

cardiovascular risk prediction and it offers a real-time interaction and supports explanation customization 

making it more appropriate for real-world medical use. 

On the UCI Heart Disease dataset, the model achieved high predictive accuracy and provided 

clinically meaningful insights. By adding causal analysis, we were able to confirm which features have real 

influence, reducing the risk of relying on misleading correlations. 

Overall, our work advances explainable AI in healthcare by making predictions more interpretable, 

reliable, and accessible to medical professionals. Future work will expand dataset size (time-based clinical 

records), and increased field testing with clinicians in real-world environments. 
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