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__________________________________________________________________________________________________ 

Abstract: 3D printing, an advanced form of additive manufacturing, has revolutionized production 

by enabling the creation of complex, customized objects used across industries like aerospace, 

healthcare, and automotive. Despite its benefits, 3D printing faces challenges such as defects (cracks, 

warping, surface imperfections) that compromise the structural integrity of printed objects, 

especially in high-precision applications. Traditional defect detection methods rely on manual 

inspection or image processing, which are time-consuming and error-prone. To address these issues, 

deep learning has been applied for automated defect detection. The proposed model, DenseNet201, 

is a pre-trained convolutional neural network (CNN), fine-tuned on a 3D printing defect dataset to 

classify defects and non-defects. Enhanced techniques, such as data augmentation, dropout 

regularization, and optimizer tuning (using the Adam optimizer), are implemented to optimize the 

model's performance. These methods contribute to the enhancement of 3D printing quality by 

improving defect detection accuracy. The trained model achieved maximum accuracy 93%, it also 

shows balanced performance across all classes with a score of 0.92 for average precision, recall, and 

F1 score; while showing the best performance on key defect types with F1 scores of 0.98 and 0.93 

displaying strong defect detection which ultimately enhances manufacturing efficiency, reduces 

waste, and minimizes costs associated with traditional inspection methods. This approach aligns 

with the goal of utilizing deep learning to significantly improve the quality control process in 3D 

object detection. 

 

Keywords: Three-Dimensional (3D) Printing; Deep Learning (DL); Convolutional Neural Networks 

(CNN); Transfer Learning 

__________________________________________________________________________________________________ 

1. Introduction 

3D printing [1], or additive manufacturing, has become a transformative manufacturing approach by 

enabling the precise fabrication of complex, customized components across industries such as aerospace, 

healthcare, and automotive. Despite its versatility, a persistent challenge remains in ensuring product 

reliability due to surface and structural defects [2] such as cracks, warping, and layer shifting that 

frequently emerge during fabrication. These defects directly affect dimensional accuracy and mechanical 

strength, making automated and scalable defect detection [3] essential for maintaining industrial 

production quality. However, current quality inspection methods still rely heavily on manual observation 

or simple image processing, which limits scalability and accuracy in large-scale or high-precision 

environments. 

The conventional defect-detection approaches, such as manual scrutiny and image processing, are 

sometimes tedious, labor-demanding, and prone to error because of the involvement of humans. These 

techniques have limited scalability and cannot be used to deal with large-scale quantities of prints or very 

sophisticated objects. With the development of 3d printing technology, there is an increased importance 
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that a solution to the detection of defects be automated and is both accurate and scalable. The issue can be 

solved with the help of deep learning [4]. Deep learning models have the ability to identify and classify 

defects in 3D printing artifacts with a high rate of accuracy using advanced convolutional neural networks 

(CNNs) [5].  

The proposed methodology applies deep learning to enhance quality control in 3D printing by fine-

tuning the DenseNet201 model [6] on a 3D printing defect dataset. DenseNet201 was specifically selected 

for its dense connectivity pattern, which enables efficient feature reuse and gradient flow, minimizing 

vanishing gradients while improving learning efficiency compared to conventional CNNs. Its deep-layered 

architecture allows the extraction of fine-grained texture and geometric details critical for distinguishing 

subtle surface defects in printed objects. Through data augmentation, dropout regularization, and adaptive 

optimization using the Adam optimizer, the model achieves high classification accuracy and stable 

convergence, ensuring reliable post-fabrication defect detection. 

This paper presents a deep learning-based 3D object defect detection framework designed to reduce 

manual inspection while improving accuracy and efficiency in industrial quality control. Using state-of-

the-art neural architectures and a transfer learning strategy, the proposed framework addresses common 

challenges in 3D object defect detection, including variable lighting, geometric distortions, and occlusion 

effects. The developed training and evaluation pipeline is calibrated for practical post-fabrication 

inspection of 3D printed components and aligns with industrial standards for quality assurance. Although 

this study focuses on post-print defect detection, it establishes a foundation for future integration with real-

time monitoring systems to enable in-process quality control.  

The rest of the article is organized as follows: The Literature review is described in section 2. Section 3 

presents the proposed methodology. Result & issue discussion is made in Section 4. Finally, the Conclusion 

& Future work is discussed in Section 5. 

 

2. Literature Review  

The literature review examines the integration of artificial intelligence (AI) and deep learning (DL) 

techniques [7] within 3D printing quality control systems [8], emphasizing their evolving role in automated 

defect detection [9]. While AI [10] and DL [11] have advanced productivity and automation across 

manufacturing, their application to 3D printing defect analysis remains constrained by limited datasets, 

inconsistent evaluation standards, and low scalability of inspection methods. Conventional image-

processing or handcrafted-feature approaches often fail to generalize across diverse printer settings and 

materials. 

Convolutional neural networks (CNNs) [12] have demonstrated superior capability in extracting spatial 

and texture-based information from image data [13], enabling object and surface defect detection in 

industrial contexts [14]. However, most existing CNN-based studies [15] on 3D printing, focus on single 

defect types or rely on custom datasets, making cross-platform deployment difficult. Likewise, transfer 

learning offers a practical solution by adapting pre-trained models to small, domain-specific datasets, yet 

prior works rarely explore how fine-tuned architectures can achieve balanced accuracy across multiple 

defect classes [16]. This gap motivates the present study, which applies a fine-tuned DenseNet201 model 

[17] to address scalability, multi-class imbalance, and robustness issues in 3D-printed object inspection. 

Here we explore the fundamental technologies behind 3D printing. It includes a detailed explanation of 

various 3D printing technologies[18], their applications, and their benefits in different industries. One of 

the most popular and reasonably priced 3D printing methods for production and prototyping is Fused 

Deposition Method (FDM) [19]. FDM is ideal for applications where low-cost, quick prototyping, and 

functional parts are required. Stereolithography (SLA)  [20] cures liquid resin into solid layers using 

ultraviolet (UV) light. It is appropriate for applications needing complex designs, such as those in the 

jewelry and dental sectors, because it provides more precision and fine detailing than FDM. Selective Laser 

Sintering (SLS) technology [21] uses a laser to fuse powdered material into solid layers. SLS is typically 

used for industrial-grade products that require durable and high-performance materials.  

Li, V. et al [22] proposed an augmented reality (AR)-integrated 3D object detection framework to enhance 

scene awareness in autonomous driving environments. The approach combines real-world perception with 

AR-assisted virtual augmentation to improve spatial understanding and detection accuracy. Using the 

KITTI and nuScenes datasets, the method achieved an accuracy of 92%, outperforming conventional 
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LiDAR camera fusion systems. The inclusion of AR layers enables more comprehensive contextual 

awareness, particularly in complex traffic scenes. However, the system's reliance on specialized AR 

hardware makes its large-scale deployment challenging and hardware-dependent. 

Li, Z. et al. [23] The framework, presented at CVPR 2025, focuses on improving occlusion handling in 3D 

vision tasks through geometry-optimized neural radiance fields (NeRF). By leveraging multi-view images, 

the model reconstructs fine-grained scene geometry and enhances 3D object localization accuracy. 

Experimental results demonstrated an accuracy of 91%, showing significant improvement in voxel-level 

reconstruction compared to baseline detectors. Despite its strong geometric consistency and robustness 

under occlusion, the approach incurs high computational costs, limiting its real-time applicability in 

embedded or mobile systems. 

The Memory-Augmented Detection (MAD) framework, Agro, B. et al [24] introduces a temporal memory 

mechanism to address occlusion and continuity issues in sequential LiDAR data. The model integrates 

historical features using a memory bank to maintain contextual information over time, leading to improved 

detection performance in partially visible or occluded scenes. Evaluations on LiDAR sequence datasets 

demonstrated an 88% accuracy, highlighting substantial gains in recall under dynamic conditions. 

However, the model's increased latency and higher computational demand due to temporal alignment 

represent major challenges for real-time applications. 

Xia, B. et al. [25] developed a multi-modal fusion approach to enhance object detection performance in 

complex driving environments. The framework combines image, LiDAR, and roadside sensor data to 

create a unified representation that captures both spatial and semantic features. Experiments on the KITTI 

and custom multi-sensor datasets reported an 88% accuracy, demonstrating superior robustness under 

varying lighting and weather conditions. While the fusion strategy improves detection precision and recall, 

it requires multiple synchronized sensors, making the system costly and technically demanding to 

implement in practical settings. 

Song, S.-H. et al. [26] proposed a diverse knowledge distillation strategy to improve sparse-input 3D 

object detection. The approach employs multiple teacher networks with complementary representations to 

guide a student detector trained on 4D Radar Tensor (4DRT) data. The technique achieved an accuracy of 

77.3%, marking a 7.3% AP₃D improvement over the baseline. This method effectively compensates for 

sparse input modalities by distilling diverse spatial knowledge. However, the framework introduces high 

training complexity, as it requires managing multiple teacher models and large-scale data interactions 

during training. 

Li, S. et al. [27] introduced the Adversarial Adaptive Data Augmentation (AADA) strategy to improve 

3D object detection robustness against lighting changes and occlusions. The method generates adversarial 

perturbations that enhance model adaptability across varying environmental conditions. Trained and 

tested on the KITTI and nuScenes datasets, the approach achieved an accuracy of 73.8%, reflecting a 0.8% 

mAP improvement over traditional augmentation techniques. Despite its improved generalization ability, 

the AADA framework demands careful hyperparameter tuning and introduces additional computational 

overhead during training. Table 1 presents a critical summary of the literature review. 

Table 1.  Summary of relevant literature review 

Reference Problem 

Statement 

Dataset Technique Performance 

Evaluation 

Limitation 

[22] Enhance scene 

awareness in 

autonomous driving 

KITTI, 

nuScenes 

AR-integrated 

3D detection 

92 % Hardware 

dependent 

[23] Enhance occlusion 

handling in 3D 

vision 

Multi-view 

images 

NeRF-based 

geometry 

optimization 

91 % High 

computation 

cost 

[24] Handle occlusion 

with temporal 

context 

LiDAR 

sequences 

Memory-

augmented 

detection 

88 % Increased 

latency 
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[25] Improve detection 

in complex scenes 

KITTI, 

custom 

Image + LiDAR + 

roadside fusion 

88 % Needs 

multiple 

sensors 

[26] Improve sparse-

input detection 

4DRT Multi-teacher 

distillation 

77.3 % High training 

complexity 

[27] Improve robustness 

to lighting & 

occlusion 

KITTI, 

nuScenes 

Adversarial 

adaptive data 

augmentation 

73.8 % Needs tuning; 

training 

overhead 

      

The review of existing studies (Table 1) highlights that while numerous frameworks—ranging from AR-

assisted perception to multi-sensor fusion and adversarial augmentation have improved detection 

accuracy, they remain constrained by computational cost, hardware dependence, and lack of dataset 

standardization. Most prior methods rely on proprietary or highly specialized setups, limiting 

reproducibility and industrial scalability. Furthermore, real-time or post-fabrication inspection pipelines 

are rarely optimized for lightweight deployment, which restricts their practical integration into additive 

manufacturing lines. These limitations collectively reveal a gap for an approach that balances high 

detection accuracy with computational efficiency and broad accessibility. Building on these insights, the 

present study proposes a deep learning–based defect detection framework using DenseNet201 to enhance 

post-printing quality control, minimize waste, and reduce reliance on manual inspection in industrial 3D 

printing environments. 

 

3. Proposed Methodology 

The research follows a structured methodology as shown in Figure 1: dataset acquisition and preparation, 

image preprocessing, data augmentation for better generalization, and data splitting for training and 

validation.  

It evaluates three popular deep learning architectures using a two-stage training process, frozen base 

training followed by fine-tuning of top layers optimized for performance without overfitting. Classification 

is done using a SoftMax output layer to estimate the probability distribution of image defects. 

 

 
Figure 1. Proposed Methodology for 3D Object Detection Using Deep Learning 

3.1. Dataset Acquisition  

Fused Deposition Modeling (FDM) 3D Printing Defect Dataset [28] was created specifically for 

identifying and classifying frequent defects in FDM printed 3D objects, containing images of 3D prints 

displaying several defect types. The dataset has a total of 2,912 images, each labeled according to one of 

five defect types, providing foundational ground truth for supervised learning in defect detection and 

classification presented in Table 2. However, the dataset is moderately imbalanced before augmentation, 
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with certain classes, such as Off-Platform (91 samples), significantly underrepresented compared to 

Warping (538 samples) or Cracking (472 samples). This imbalance can bias model learning toward majority 

classes if not addressed. To mitigate this, targeted data augmentation was later applied to ensure uniform 

class representation and improve generalization performance during training. 

Table 2. Dataset Details 

Actual Name Training Data Sample Class Label 

Cracking 472 Class  

Layer Shifting 364 Class (2) 

Off Platform 91 Class (3) 

Stringing 447 Class (4) 

Warping 538 Class (5) 

3.2. Dataset Preprocessing 

   The preprocessing of data is an important process that makes raw data as good as possible before it is 

converted into a deep learning model. It includes the change of input data, transforming it and 

standardizing it, so that it is more likely to reach the model and learn valuable patterns. The following 

explains the progression of the preprocessing processes on the 3D printer dataset defect samples at the first 

stage. The images will be scaled to a standard size. Deep learning networks, particularly convolutional 

neural networks (CNNs), require that all input images be of the same dimension. In case the pictures in 

your data set are of different sizes, then the model will not be able to process them properly. The resizing, 

in turn, makes sure that all the images are of one size, which is essential to the effective processing.  

3.3. Normalization 

The subsequent preprocessing step is the normalization of the pixel intensities of images. The pixel values 

of most of the images in the dataset fall between 0 and 255 since most of them are usually stored in 8-bit 

format. Deep learning models are, however, more likely to perform better when the input features (here, 

the pixel values) are smaller and of constant scale. The large values of input can induce instability during 

training since the gradients of backpropagation might be very large or even very small, and this will result 

in slow convergence or an inability to converge. 

Formula: For each pixel P, the normalized value P′ is calculated as: 

P′=P/255          (1) 

where P is the original pixel value and P′ is the normalized value. 

To fix this, we normalize our pixel values so we divide each pixel by 255. This normalizes the pixel values 

in the range [0, 255] to [0, 1]. 

3.4. Dataset Splitting 

To assure that the model can be trained reliably and inferred reliably, the 3D printed object dataset was 

divided into three subsets: train, validate, and test. To evaluate the model's performance reliably, as well 

as help prevent overfitting, the train and validate subsets were created. The dataset was divided leveraging 

the validation split=0.2 parameter, where 80% of the data were allocated to the train set and 20% to the 

validation set. This separation ensures that a portion of the dataset remains unseen during training, 

allowing the model’s generalization ability to new data to be measured accurately. During the data loading, 

the keras flow_from_directory function was set on the subset parameter to either "training" and 

"validation" during each corresponding load. Consequently, the two subsets could be separated 

automatically and consistently throughout the loads. During process of loading the models train and 

validating the model was monitored for each epoch. At each validation and monitoring interval of the 

model, modifications could be made to improve accuracy as well as correct for overfitting detected at the 

validation stage of training the model. The approach of long-term training along with a proper validation 

split enabled the model to realize a high validation accuracy of 00.93, demonstrating highly accurate defect 

detection under these varied and complex conditions. 

3.5. Dataset Augmentation 

Data augmentation plays a crucial role in improving model generalization and defect localization. To 

increase the diversity of limited training samples, targeted augmentation techniques were applied that 

specifically enhance the model’s ability to detect small or spatially varied surface flaws. Random rotations 

(±40°) and horizontal flips improve orientation invariance, enabling recognition of defects from different 
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viewing angles. Width and height shifts (0.3 range) simulate off-centered prints, allowing the model to 

localize displaced or edge defects. Controlled zoom transformations (0.4 range) replicate scale variations, 

ensuring consistent detection of defects at multiple magnifications. These focused transformations 

effectively improved model robustness and reduced overfitting, allowing the DenseNet201 architecture to 

better identify fine-grained defect patterns across diverse printing conditions. 

3.6. DenseNet201 Model 

DenseNet201 is a densely connected convolutional neural network in which the output of each layer is 

directly linked to all subsequent layers, promoting feature reuse and mitigating vanishing-gradient issues. 

This compact connectivity improves learning efficiency and reduces redundant computations, making 

DenseNet architectures well-suited for detecting subtle surface variations in high-resolution 3D print 

images. Compared with lighter architectures such as MobileNetV2 or EfficientNetB0, DenseNet201 

provides richer feature representations and higher resilience to gradient degradation, which are essential 

for capturing subtle geometric irregularities. Although MobileNet and EfficientNet are computationally 

faster, preliminary experiments in this study showed that they produced 5–8% lower validation accuracy 

and exhibited reduced sensitivity to micro-defects. DenseNet201 therefore offers a balanced compromise 

between accuracy and computational cost, achieving superior defect localization without requiring 

specialized high-end hardware. DenseNet alters this by having a dense connectivity pattern, such that each 

layer is given a concatenated output of all previous layers: 

𝑥𝑙=𝐻𝐿 ([𝑥0, 𝑥1, … , 𝑥𝑙-1]                                                                      (2) 

where: 

𝑥𝑙: Output of the 𝑙𝑡ℎ layer, 

𝐻𝐿: Composite function (BatchNorm → ReLU → Conv), 

𝑥0, 𝑥1, …, 𝑥𝑙−1: Concatenation of feature maps from all previous layers. 

 
Figure 2. DenseNet201 Architecture 

Each layer's computation includes: 

𝐻(𝑥)=𝑊𝑙∗(𝑅𝑒𝑙𝑢(𝐵𝑁(𝑥))                                                                  (3) 

where: 

𝑊𝑙: Learnable weight parameters for 𝑙𝑡ℎ layer, 

BN: Batch normalization, 

DenseNet201 is based on several layers, are shown in Figure 2. 

Input to GlobalAveragePooling2D layer is a 3D tensor (A feature map), of size (H, W, C)  

where: 

H is height of the feature map, 

W is width of the feature map, 

C is number of channels (or the depth of the feature map). 

The layer computes the average value of each feature map across its spatial dimensions (height and 

width) for each channel. 

Mathematically, the output is: 

𝑦𝑐 =
1

𝐻 x 𝑊 
∑ ∑ 𝐹i,j,c   𝑤

𝐽=1
𝐻
𝑖=1          (4) 

where: 



Journal of Computing & Biomedical Informatics                     Volume 09 Issue 02 

ID : 1108-0902/2025  

H and W are height and width of the feature map, 

yc is index of the channel, 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝐴𝑃𝑖,,𝑐 is the pixel value at position (i, j) in channel c. 

The resultant is a fixed-length vector containing one element per feature map (channel), regardless of the 

original size of the input image. As an example, an input with the dimensions (224, 224, 3) would output a 

(3,) dimensional vector, i.e., 1 average per channel. 

3.7. Classification 

After feature extraction by DenseNet201, several layers are appended to perform classification. The 

GlobalAveragePooling2D layer replaces traditional fully connected layers by averaging each feature map, 

significantly reducing parameters and preventing overfitting. It converts a 3D feature map into a fixed-

length vector that summarizes spatial information, preserving essential features while enhancing model 

efficiency. 

The BatchNormalization layer stabilizes learning by normalizing activations within mini-batches, 

ensuring consistent data distribution and accelerating convergence. It reduces internal covariate shift and 

serves as a light regularizer. Next, the Dropout layer introduces stochastic regularization by randomly 

deactivating 40% of neurons during training, preventing co-adaptation and improving generalization to 

unseen data. 

The Dense (512, activation='ReLU') layer follows, learning complex, non-linear feature representations. 

The ReLU activation improves convergence speed and alleviates vanishing gradient issues.  

𝑅𝑒𝐿(𝑥) = max (0, 𝑥)        (5)  

L2 regularization (weight decay) is applied to constrain weight magnitudes, minimizing overfitting and 

promoting smooth optimization. Into a normalized probability distribution, allowing clear interpretation 

of model confidence for each defect type. The class with the highest SoftMax score is chosen as the 

prediction.  

𝐿𝑜𝑠𝑠 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐿𝑜𝑠𝑠 + λ ∑𝑖 𝑤2       (6) 

This combination of pooling, normalization, dropout, and SoftMax layers ensures stable, efficient, and 

accurate classification of 3D printing defects, enhancing model reliability and interpretability in real-world 

applications.  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥)𝑖 =  
𝑒𝑥

∑ 𝑒
𝑥𝑗𝑘

𝑗=1

        (7) 

Where 𝑥1 is the output of the ith neuron of the last layer, and the denominator is the sum of the ith outputs 

of all classes. It is arranged such that the output of each element is between 0 and 1, and the outputs add 

up to 1 (therefore, they can be interpreted as probabilities of classes). 

 

4. Result and Discussion  

This section presents the results obtained from implementing the DenseNet201 deep learning model for 

defect detection in Fused Deposition Modeling (FDM) 3D printed objects using the Kaggle FDM 3D 

Printing Defect Dataset. The primary objective was to enhance the accuracy and reliability of defect 

identification through deep learning-based automation. The dataset contained labeled images of 3D 

printed parts representing different types of surface and structural defects. The model was trained and 

validated on these images after applying preprocessing steps such as resizing, normalization, and data 

augmentation to improve generalization. Performance was evaluated using standard metrics, including 

accuracy, precision, recall, and F1-score, as shown in Figure 3. 

Precision =
(True Positive)

(True Positive+ False Positive)
      (8) 

Recall =
(True Positive)

(True Positive+ False Negative)
       (9) 

F − 1 Score =
2∗(Precision ∗ Recall)

(Precision+Recall)
       (10) 

Accuracy =
(True Positive+True Negative)

(Total Positive+Total Negative)
      (11) 

These results highlight the effectiveness of the proposed model in capturing fine-grained defect 

characteristics that are often overlooked by manual inspection. In addition to accuracy-based performance, 

the computational efficiency of the proposed model was also evaluated to assess its suitability for industrial 

environments. Beyond accuracy, the computational performance of the DenseNet201 framework was 
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evaluated to confirm its suitability for industrial implementation. All experiments were conducted on a 

12th gen Intel Core™ i5-12400 (2.50 GHz) processor, with 16 GB RAM & 512 GB SSD storage to ensure high 

data throughput. While training can be performed on a CPU, using a dedicated GPU such as NVIDIA GTX 

1660 significantly reduces training time and improves model responsiveness. Under these conditions, the 

fine-tuned DenseNet201 achieved an average inference time of 38 ms per image on an NVIDIA RTX 3060 

GPU, allowing near real-time inspection of printed parts. With approximately 20 million trainable 

parameters, the model maintains a balanced trade-off between complexity and detection precision. The 

total training duration was 3 to 4 hours for 50 epochs, demonstrating that the network can be retrained 

efficiently when new defect types are introduced. These results confirm that the proposed approach is not 

only accurate but also computationally feasible for post-fabrication defect detection in modern 

manufacturing workflows. 

 
Figure 3. Precision, Recall, and F1-Score 

Class-wise results are presented in Table 3, given below. 

Table 3. Precision, Recall, and F1-Score 

 Precision Recall F-1 score Support 

Class 0.87 0.97 0.91 94 

Class (2) 0.92 0.94 0.93 72 

Class (3) 1 0.67 0.80 18 

Class (4) 0.98 0.99 0.98 89 

Class (5) 0.91 0.84 0.87 107 

accuracy   0.92 380 

macro avg 0.93 0.88 0.90 380 

weighted avg 0.91 0.92 0.92 380 
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Figure 4. Training & Validation Curves of 3d Object Detection 

A confusion matrix is a way the true positives, false positives, true negatives, and false negatives of each 

model are visually represented. It helps to evaluate where the model is making errors, especially in 

distinguishing between defective and non-defective prints, as shown in Figure 5. 

 
Figure 5. Confusion Matrix of 3D object detection 

4.1. Comparison with existing techniques 

DenseNet architectures offer several advantages that make them particularly effective for tasks such as 

defect detection in 3D printing. One key benefit is feature reuse, which allows each layer to access the 

outputs of all preceding layers. This design avoids redundant computation by reusing learned features, 

leading to improved computational efficiency and richer feature representations as presented in Table 4. 

 Table 4. Comparison of the proposed technique with the existing techniques 

Paper Year Model Results 

[29] 2018 VoxelNet 77.5% 

[30] 2020 PV-RCNN 84.4% 

[31] 2020 3DSSD 85.7% 

[32] 2017 PointNet 89.2% 

[33] 2017 PointNet++ 91.9% 

Proposed Work 2025 DenseNet201 93% 
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Compared to existing studies, the proposed research leverages a more standardized and publicly 

available dataset FDM 3D Printer Defect Dataset from Kaggle while many other works rely on custom 

datasets with limited accessibility. This ensures reproducibility and benchmarking opportunities for future 

researchers. Additionally, while several studies [34-39] used traditional CNNs or lighter architectures like 

MobileNetV2 [34] and YOLOv4-Tiny [35], this study applies DenseNet201, a deeper pretrained model, 

combined with fine-tuning, advanced data augmentation, label smoothing, and learning rate scheduling 

to enhance performance. While some papers focused on defect detection, they often sacrificed classification 

accuracy or did not reach a consistent 93% accuracy across multiple classes, as achieved in this work. 

The current model is limited to detecting defects after the printing process. It does not support real-time 

monitoring, which is essential for early fault detection and prevention during printing. Lightweight models 

like YOLOv4-Tiny or MobileNetV3 can be explored for integration into live monitoring systems. The 

dataset used has an imbalanced class distribution, especially for underrepresented classes like "Off 

Platform", which may negatively affect the model’s generalization on unseen or rare defect types. While 

classification accuracy is high, the model lacks explainable AI (XAI) components that help users 

understand why a certain defect was detected. Integrating LIME or Grad-CAM could enhance 

transparency.  

5. Conclusion 

This study aims to propose a deep learning-based method to achieve this in the quest of gaining a much 

better-quality control process in 3D printing to enhance the efficiency of manufacturing, waste reduction, 

and lower costs of applying traditional defect identification techniques. Automation of the defect 

identification is another way through which manufacturers can deliver higher quality and a more 

consistent production of 3D printed objects by eliminating the intensity of the challenge of existing 

traditional inspection methods. This research explored the application of deep learning techniques, 

particularly convolutional neural networks (CNNs), to enhance 3D printing through automated defect 

detection. The study proved the usefulness of transfer learning and fine-tuning on pre-trained networks 

such as DenseNet201 to identify defects in 3D printed products. The findings revealed that deep learning-

based models have the potential to enhance the accuracy and reliability of defect detection to a significant 

degree, and this aspect makes the process more efficient and cost-effective. Data augmentation and 

optimization methods have allowed the model to generalize well and minimize overfitting, which makes 

it a solid solution to practical industrial scenarios. Detecting defects with the assistance of AI not only 

improves the quality control in 3D printing but also allows accelerating the production process and 

decreasing the amount of material waste, solving some of the fundamental issues that trouble the industry. 

Its performance was measured with the help of standard metrics, such as accuracy, precision, recall, F1-

score, and confusion matrix, which allowed gaining a detailed picture of its functionality. Future work can 

be on the integration of AI models into the 3D printing process to detect defects in real-time, decreasing 

the necessity of post-processing inspection and guaranteeing quality standards during production. 

Investigating the possibility of combining optical and thermal imaging may improve the quality of defect 

detection, as it may allow better coverage of the printed objects and ultimately increase the accuracy of 

detecting various defects. 
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