
Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01 

          ISSN: 2710 - 1606                                                                     2022 

ID : 111-0401/2022  

Research Article 

https://doi.org/10.56979/401/2022/111 

 

Correlation Between GitHub Stars and Code Vulnerabilities 

Muhammad Shumail Naveed1*  

1Department of Computer Science & Information Technology, Quetta, 87300, Pakistan. 
*Corresponding Author: Muhammad Shumail Naveed. Email: mshumailn@gmail.com. 

Received: November 01, 2022 Accepted: November 28, 2022 Published: December 29, 2022. 

________________________________________________________________________________________________________ 

Abstract: In the software industry, open-source repositories are widely utilized to speed up software 

development. GitHub is a big source of open-source repositories and offers users to star the code 

repository. Stars are used in GitHub to represent appreciation and popularity. Studies have revealed 

that repositories may be of lower quality and may have vulnerabilities that hackers may exploit. It 

is not known whether the popularity of the GitHub repositories in terms of stars confirms the secu-

rity and invulnerability of the program code. This paper analyzed the correlation between stars of 

GitHub’s code repositories and the vulnerabilities in their code by using static code analyzer. The 

study examined the vulnerabilities in ten popular C++ source repositories on GitHub and discovered 

3487 vulnerabilities in the dataset, which were split into four categories based on severity. There 

was not a single repository in the dataset that was free of flaws. On the detected vulnerabilities, a 

Kruskal-Wallis H test reveals a significant difference between the different code repositories of the 

dataset. The Spearman's rank correlation coefficient test found no correlation between repositories’ 

stars and the frequency of vulnerabilities, implying that the popularity of code repositories on 

GitHub in terms of high star ratings does not imply their security integrity. Overall, the findings 

suggest that code repositories should be thoroughly evaluated before being used in software devel-

opment. The novelty of this paper resides in the development of new knowledge as well as the study 

pattern that may be used to other investigations.  

 

Keywords: GitHub; C++; Vulnerabilities; Static Code Analyzer.   

 

1. Introduction 

In today’s world, computers and communication devices have become commonplace, and thereby 

software plays a vital role in modern civilization. The wide need of software has sped up the development 

of software. The number of job opportunities for development is likely to increase in the future [1]. 

One of the key goals of software development is to develop high-quality software in a cost-effective 

manner. However, programming from scratch is incredibly expensive [2], and programming is itself diffi-

cult to learn [3-5]. As a result, developers frequently reuse code to save time and efforts. Code reuse is a 

well-known and essential way for making development easier.  In software development code reuse is a 

form of knowledge reuse which is critical to innovation in a variety of domains [6]. 

The core concept and paradigm of software development are fast changing; today, software develop-

ment is a collaborative and distributed process in which success is dependent on the ability to systemize 

social and technical resources [7]. Code repositories shared on coding platforms are used by novice and 

even professional developers to reuse code in software development. GitHub is a well-known social coding 

platform and a modern forerunner of software forges. It has evolved into a hub for open-source projects 

[8]. It improves developers' development and collaboration by hosting projects and allowing them to share 

code. In 2022, there are approximately 94 million developers on GitHub and 414 million open-source con-

tributions [9]. Git is a distributed version control system (DVCS) that was created in response to the com-

mercialization of BitKeeper, the version control system that was used to build the Linux kernel. Git is a 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

piece of software that programmers use to keep track of all changes made to a software’s source code. 

Basically. Git is an autonomous software that can be used by other systems like GitLab, Bitbucket, and 

SourceForge, but it is not a core part of GitHub. GitHub may be conceived as a Git cloud platform that 

developers use to manage their open-source projects when used in its most basic form. Version control 

systems aid programmers in managing concurrent changes to a shared code base by synchronizing all code 

contributions. [10]. Each repository on GitHub is linked to a collection of meta data. The open GitHub API 

offers information about the repository such as its size, the people who have starred it, and other statistics. 

The major features of GitHub that allow code reuse are Gist and advanced search. It has a number of 

features for teamwork, collaboration, and sustained project discussion. GitHub has a "fork & pull" frame-

work, where programmers create their own version of a repository and send a request to the maintainer 

when they need the maintainer to merge their changes into the core branch, allowing individuals to easily 

evaluate code surveys [11]. Alternatively, each repository can use GitHub’s issue tracking framework to 

notify and investigate errors and other issues. 

Social coding environments like GitHub not only captivate developers to develop cost-effective soft-

ware, but they also entice attackers to diffuse the malicious code [12]. Other software developers can simply 

fork harmful repositories that are purposefully hosted on GitHub. Given the high level of interaction be-

tween GitHub and other social sites [13], malicious repositories might easily be spread to develop the pro-

duction software. GitHub offers a security bug bounty for reporting code vulnerabilities. The IT infrastruc-

ture of businesses and organizations is at risk due to security vulnerabilities. Attackers exploit a vulnera-

bility, affecting millions of users and compromising enormous amounts of financial data [14,15].  

GitHub users express indebtedness to projects by adding stars to them. Therefore, the number of stars 

of a repository is a direct measure of its popularity [16,17]. Staring on GitHub is similar to “liking” on other 

social media sites. For open-source communities, popularity is advantageous since it encourages new con-

tributors and informs the repository's authors that their product is being used. However, to our knowledge, 

there is no study that examines whether the popularity of GitHub repositories in terms of stars confirms 

the security and invulnerability of program code. The GitHub has some tools for semantic code analysis, 

but they are relatively limited. To promote secure code development and collaboration, a thorough exam-

ination of popular GitHub repositories is required.  

The main objective and motivation of this article is to analyze the correlation between popularity of 

GitHub repositories in terms of stars and code vulnerabilities. This kind of rigorous analysis of code repos-

itories in GitHub can provide esteemed insights into the development and maintenance of high-quality 

software. The article is organized as follows. Section 2 provides background information and a review of 

the literature. Section 3 discusses the design and methodology. Sections 4 contains the results and discus-

sion, while section 5 concludes the article and identifies directions for further study. 

2. Background & Related Work  

 This section is virtually divided into two sections. The first section covers the basics of vulnerabilities, 

while the second section gives a quick rundown of noteworthy studies on examining vulnerabilities in 

various code repositories, including GitHub. 

Weaknesses in software architecture, design, and coding can allow hackers to gain unauthorized ac-

cess to a network or system [18]. Vulnerabilities are caused by flaws in software or hardware. By removing 

the coding flaw, a large number of vulnerabilities can be eliminated. The vulnerability being investigated 

is typically published on a community-developed list known as the common weakness enumeration. The 

common weakness enumeration (CWE) is a list of different types of hardware and software flaws. It serves 

as a standard language, a metric for security tools, and a guideline for identifying, reducing, and avoiding 

vulnerabilities [19]. 

Vulnerabilities are flaws in program code that can be exploited to conduct unaccredited activities [20]. 

The severity of these operations might range from Denial of Service to Arbitrary Code Execution.  In vul-

nerability databases, the CWE is often used to define the security flaw within studied vulnerabilities. This 

association is studied Mell and Gueye [21], in investigating vulnerabilities to find the critical flaws that 

lead to vulnerabilities. During the study, CWE taxonomies are combined with relevant data, and mashup 

views and graphs are created. These graphs are then used to create metrics that identify the most critical 

types of weaknesses. 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

Internally revealed vulnerabilities are seldomly published; nevertheless, publicly disclosed vulnera-

bilities are normally assigned a label number known as the Common Vulnerability and Exposure ID. Com-

mon Flaws and Exposures (CVE) is a set of standard names for publicly disclosed security vulnerabilities 

that has been widely used by organizations in order to provide effective coverage, easy interoperability, 

and enhanced security. The MITRE Corporation maintains CVE data, which are now sponsored by the 

Cybersecurity and Infrastructure Security Agency (CISA) [19]. Chen [22] established a CVE classifier, a 

classification framework for Common Vulnerabilities and Exposures (CVEs) that converts a list of CVEs 

into a classifier and categories them based on systematic criteria. The CVE classifier also assesses the gen-

eral trend in vulnerability progression. The CVE classifier uses supervised learning to create learning mod-

els for taxonomic features based on training data extracted from the vulnerabilities database. The study 

discovered that a small number of services are responsible for the majority of security flaws and gaps. 

Only a few studies have focused into the security flaws in GitHub projects. Fan et al. [23], established 

a C/C++ source code vulnerability dataset. The dataset was created using GitHub projects. The dataset is 

formulated using the Common Vulnerabilities and Exposures database and its associated repositories. Ac-

cording to the analysis, the dataset contains 3,754 code vulnerabilities. 

Zhang et al. [24] developed GitCyber, a tool for detecting malicious GitHub repositories. GitCyber is 

a deep neural network-based system. The GitHub code repositories are used for learning in GitCyber, and 

structural HIN with the concept of Metapath is used to model domain knowledge. The early results of 

working with GitCyber are really promising. 

Rokon et al. [25] presented a machine learning-based method to pin down malicious code repositories 

from GitHub by realizing that public archives have an astounding figure of malware repositories. The 

study used Multivariate Event Model being trained with LD137 and applied on RD137 dataset and identi-

fied 8644 malware repositories.  

Stack overflow is a serious security flaw that is frequently exploited by advanced persistent threats to 

gain unauthorized access to a computer application. Rahman et al. [26] examined three open-source pro-

jects on GitHub and discovered that the selected projects have code segments that can overrun the stack 

and push malicious script that can disrupt normal program execution. 

The use of GitHub makes it easier to collaborate and communicate while developing software. The 

forking feature of GitHub's concept allows users to edit a copy of the base repository. Between users of the 

base repository and those of the forked repositories, communication channels are opened by the forking 

process. Brisson et al. [27] analyzed communications between software repositories and found a statisti-

cally significant correlation between repository stars and fork depth, the number of individuals who have 

contributed to several repositories belonging to the same family, followers from outside the family, familial 

pull requests, and reported issues. The study also shed light on the significance of communication within 

a software family and how it affects individual repository star counts. 

The scientific cyberinfrastructure community primarily uses open internet-based platforms like 

GitHub for resource sharing and teamwork. Monitoring GitHub for disclosed vulnerabilities can reduce 

costs and prevent exploits and attacks on cyber infrastructure. Lazarine et al. [28] used unsupervised graph 

embedding methods to find vulnerable communities within scientific cyberinfrastructure and found that 

the most important of them contain security flaws related to secret leaks and unsafe coding habits for high-

impact genomics research. 

Productivity, work quality, creativity, rapport in the group, and job happiness are all significantly 

impacted by emotions. Guzman et al. [29] used lexical sentiment analysis to examine the emotions ex-

pressed in the commit comments of various open-source projects on GitHub and determined how these 

emotions related to various variables like the programming language used, the time and day of the week 

the commit was made, the team composition, and project approval. The study examined the association 

between the average emotion score of each project and its number of stars but found no correlation. 

3. Materials and Methods 

The study aimed to analyze the vulnerabilities in the top projects of C++ hosted on GitHub. For soft-

ware development there are hundreds of programming languages in which C, C++, Java, and Python being 

among the most prominent. For the current study, C++ was selected because it is straightforward and close 

to the C language. Perhaps, in addition to the notable characteristics of object-oriented programming, C++ 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

supports the essential features of the C language. The syntax and denotational structure of Java and several 

other programming languages were heavily impacted by C++. Apart from its simplicity and object-oriented 

support, C++ has other distinguishing advantages such as a comprehensive library, low-level memory 

management and speed; therefore, thousands of code repositories are hosted on GitHub. The research 

methodology followed in the present study is outlined in Figure 1.  

 

Figure 1. Research Methodology 

On GitHub, a large number of code repositories are hosted, in which the popular C ++ projects (code 

repositories) were selected for study to analyze the possible correlation between the stars of repositories 

and vulnerabilities in code. On March 21, 2022, the relevant data of repositories was collected, and the 

details are shown in Table 1. 

Table 1. Detail of Selected Projects 

Project Code Project Name Stars Commits Total Files Source Files 

1 PowerToys 48245 4695 22408 198 

2 AirSim 11134 2351 1257 118 

3 Spdlog 10616 3493 153 34 

4 Vowpal Wabbit 7393 8993 1645 18 

5 DeepSpeech 16270 3331 2138 7 

6 Json 22700 3948 999 286 

7 Arrow 6857 8291 5116 85 

8 Carla Simulator 5449 4756 1760 440 

9 ImGui 26406 6228 172 36 

10 FoundationDB 10194 13508 1518 309 

C++ projects with more than 5,000 stars were selected for the study. The source programs, as well as 

other supporting files, were included in the actual code repository. As a result, the selected repositories 

were first preprocessed, with the appropriate source files scraped and kept as the actual dataset (program-

ming corpus). The programming corpus was then lexically evaluated to identify lines of code, whitespaces, 

and comments. 

A static code analyzer has been used to investigate the vulnerabilities in the programming corpus. For 

vulnerability scanning, a variety of static analysis techniques are readily available. YASCA is a static anal-

ysis tool [30] that was created to aid in quality assurance and vulnerability scanning. It is widely acknowl-

edged as a reliable and versatile tool. YASCA supports a variety of programming languages and aggregates 

data from a variety of static analysis tools. The vulnerabilities in the dataset were examined using YASCA. 

It discovered the flaws and classified them according to their severity. The results of the vulnerability study 

were statistically examined using SPSS and R, which are popular packages for statistical analysis. The re-

sults of the analysis as well as a comprehensive discussion are presented in section 4. 

4. Results & Discussion 

The primary data of the study includes the source programs as well as supporting files. During pre-

processing, the irrelevant files were eliminated and the metainformation for each project is kept separate 

for study. The study was carried out in two phases. The basic information about the dataset was collected 

in the first phase, wherein the lines of code, whitespaces, and comments were collected, and the results are 

shown in Table 2. 

 

https://github.com/microsoft/PowerToys/stargazers


Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

Table 2. Elementary Statistics of Results 

Project 

Code 

Project Name Lines of 

Code 

Whitespace 

Lines  

Comments 

1 PowerToys 38360 6313 3588 

2 AirSim 31367 4984 2232 

3 Spdlog 2868 584 238 

4 Vowpal Wabbit 2186 552 153 

5 DeepSpeech 1048 166 98 

6 Json 234269 40025 38974 

7 Arrow 42216 6436 11131 

8 Carla Simulator 92414 16045 14957 

9 ImGui 28668 4506 7021 

10 FoundationDB 153399 26051 20206 

A large difference is observed in the size of selected projects. Similarly, there is a significant difference 

in the frequency of whitespaces and comments in the selected C++ projects as shown in Figure 2. 

 

Figure 2. Line Charts of Elementary Information 

The line charts in Figure 2 clearly indicate a wide range of projects, demonstrating the diversity of 

code repositories included in the dataset. The detection performance of present methodologies has to be 

increased due to numerous vulnerabilities in programs [31]. So, in the second phase, the current study used 

a static code analyzer to examine ten notable C++ source repositories hosted on GitHub. 

The possible vulnerabilities in the constructed dataset are examined by analyzing the source code of 

each project. Static analysis is a vital approach to detect vulnerabilities [32], and thereby static code analysis 

tool (YASCA) was used to analyze the vulnerabilities in the dataset. The results obtained after scanning is 

shown in Figure 3. 

 

Figure 3. Detail of Vulnerabilities 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

In total, 1534 source files were scanned and 3487 flaws were identified during the vulnerability anal-

ysis. The flaws were identified in all the code repositories of dataset, however the frequency of observed 

vulnerabilities in each project was fairly different. In order to make the analysis more systematic, the iden-

tified vulnerabilities are further categorized into different categories according to their severity and details 

are shown in Table 3. 

Table 3. Categories of Vulnerabilities in GitHub Projects 

Project 

Code 

Project Name Critical 

(1) 

High 

(2) 

Low 

(3) 

Info 

(4) 

Total Vulnerabilities  

1 PowerToys 0 6 120 56 182  

2 AirSim 0 6 132 101 239  

3 Spdlog 0 0 4 4 8  

4 Vowpal Wabbit 0 0 10 67 77  

5 DeepSpeech 0 0 1 4 5  

6 Json 0 9 70 30 109  

7 Arrow  0 0 392 1302 1694  

8 Carla Simulator 0 22 641 310 973  

9 ImGui 2 0 92 106 200  

10 FoundationDB 1 10 499 215 725  

 In terms of severity, 3.3% of discovered vulnerabilities in the first project (PowerToys) of the program-

ming corpus were high, 65.93% were low, and 30.77% were information. In the second project (AirSim), 

2.51% of vulnerabilities detected were high, 55.23% were low, and the remaining 42.26% were information. 

In the third project (Spdlog), 50% of the vulnerabilities discovered were low in severity, while the remain-

ing 50% were information. In the fourth project (Vowpal Wabbit), 12.99% of vulnerabilities were low and 

87.01% were information; similarly, 20% of vulnerabilities were low and 80% were information in the fifth 

project (DeepSpeech). According to the findings of the study, 8.26% of vulnerabilities in the sixth project 

(Json) of the programming corpus were high, 64.22% were low, and 27.52% were information. In the sev-

enth project (Arrow), 23.14% of vulnerabilities were low and the remaining 76.86% were information.  

Similarly, 2.26% of vulnerabilities were high, 65.88% were low, and the remaining 31.86% were information 

in the eighth project (Carla Simulator). In the ninth project of programming corpus, 1% of vulnerabilities 

was critical, 46% were low and 53% was information. In the tenth project of dataset, there were 0.14% 

critical vulnerabilities, 1.38% high vulnerabilities, 68.83% low vulnerabilities, and 29.65% information vul-

nerabilities. 

For better illustration, the results of vulnerability analysis are represented with donut charts and shown in 

Figure 4. 

 

Figure 4. Donut Charts on Severity of Vulnerabilities in C++ projects 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

 The highest number of vulnerabilities was observed in Arrow, followed by Carla Simulator and Founda-

tionDB. For further analysis on vulnerabilities identified in the data, the normality tests are performed with R 

and SPSS. The Anderson-Darling test conducted on the identified vulnerabilities in code repositories of dataset 

does not confirm the normal distribution, A=1.0171, p=0.0064. Similarly, Shapiro-Wilk normality test con-

ducted on the identified vulnerabilities does not confirm a normal distribution, W(10) = .766, p = .006. Like-

wise, Kolmogorov-Smirnov also identified the non-normal distribution, W(10) = .330, p = .003. 

Due to non-normal distribution in data, the rank-based nonparametric test was conducted on the different 

categorizes of vulnerabilities analyzed in the dataset and results of ranks are shown in Table 4. 

Table 4. Ranks of Projects 

Project Code Project Name Vulnerabilities Mean Rank 

1 PowerToys 182 1643.19 

2 AirSim 239 1889.87 

3 Spdlog 8 2076.00 

4 Vowpal Wabbit 77 2845.13 

5 DeepSpeech 5 2699.40 

6 Json 109 1525.78 

7 Arrow 1694 2634.14 

8 Carla Simulator 973 1676.29 

9 ImGui 200 2127.99 

10 FoundationDB 725 1637.92 

The Kruskal-Wallis H test conducted on the identified vulnerabilities shows a significant difference be-

tween the different code repositories of the dataset, H (9) = 840.71, p < .05. Similarly, Fischer’s exact test 

conducted on frequencies of different categories of vulnerabilities identified in the dataset shows a signif-

icant difference between the code repositories observed at p < 0.05. 

During the analysis, 1534 files were examined, and YASCA was used to scan 626795 lines of code, 

yielding 3487 vulnerabilities. As a result, one vulnerability is estimated to exist in every 180 lines of code 

in a dataset. Table 5 shows the average size of a code section that has a single vulnerability by repository. 

 

Table 5. Segment wise detail of Vulnerabilities in Dataset 

Project 

Code 

Project Name Lines of Code Vulnerabilities Average Size of 

Code 1 PowerToys 38360 182 211 

2 AirSim 31367 239 131 

3 Spdlog 2868 8 359 

4 Vowpal Wabbit 2186 77 28 

5 DeepSpeech 1048 5 210 

6 Json 234269 109 2149 

7 Arrow 42216 1694 25 

8 Carla Simulator 92414 973 95 

9 ImGui 28668 200 143 

10 FoundationDB 153399 725 212 

 

Although all of the code repositories in a dataset include vulnerabilities, the number of vulnerabilities 

in each repository varies significantly. The identified vulnerabilities are categorized in different groups 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

according to their severity. The dataset contains 2 critical vulnerabilities (0.06% vulnerabilities), 43 high 

vulnerabilities (1.23%), 1462 low vulnerabilities (41.93%), and 1980 information vulnerabilities (56.78%). 

It has been noticed that developers take into account the popularity of GitHub repositories in terms 

of stars when choosing a coding project. As a result, this study analyzed the correlation between stars, 

vulnerabilities, lines of code and other code repository attributes. 

Spearman’s rank correlation coefficient was run to determine the relationship between the GitHub 

stars and the identified vulnerabilities. There was no monotonic correlation between stars and vulnerabil-

ities (rs = -.46, n = 10, p = .19). This implies that the popularity of code repositories as measured by the 

number of stars given to GitHub projects does not imply that the code is secure and free of vulnerabilities. 

As a result, the study encourages developers to avoid choosing code repositories based on their GitHub 

star rating. 

In order to identify the association between lines of code and vulnerabilities, Spearman's rank was 

conducted and the result identifies no correlation between lines of code and vulnerabilities (rs = .14, n = 10, 

p = .69). This means that principally the size of code does not affect the frequency of vulnerabilities in 

GitHub repositories.   

The correlation between vulnerabilities and commits was examined and the Spearman’s ranks iden-

tifies no association between these two variables (rs = .44, n = 10, p = .20). According to this, excessive 

revision of code repositories does not ensure the mitigation of vulnerabilities in their code. 

During the study, the relationship between the popularity of repositories and the total number of code 

revisions is investigated. Spearman’s rank determines that there is no correlation between commits and 

stars of GitHub repositories (rs = -.41, n = 10, p = .24). This implies that the number of stars assigned to 

GitHub projects has no relevance on the frequency with which the source files are revised. Similarly, fre-

quency of revision has no impact the stars of GitHub projects 

The source code repositories on GitHub effectively facilitate quick software development; yet, the 

shared code may have security flaws that might lead to various risks. The vulnerabilities found in the 

dataset suggest that, despite their high star ratings, GitHub code repositories are likely to have a variety of 

vulnerabilities. Deep study of code and revealed vulnerabilities indicates that vulnerabilities expressed in 

code repositories are caused by debilitated programming found in the code. For instance, the critical vul-

nerabilities in the dataset are caused by weak credentials like infirm passwords. High vulnerabilities are 

mainly triggered by uninitialized variables, null pointer deference, division by zero and shifting by a neg-

ative value. Unnecessary use of consecutive return, break, continue, GOTO and throw statements caused 

the low vulnerabilities. In the same way, the definition of unused or high scoped variables, a wrong pointer 

casting and duplicate branches of selection structure provoked the low vulnerabilities. Similarly, the use 

of Boolean results of the bitwise operations and zero execution call of defined functions mainly caused the 

info vulnerabilities. 

The correlational study conducted on the attributes of GitHub repositories suggests several points, i) 

selection of code repositories should not be considered on high stars because it does not ensure the absence 

of vulnerabilities, ii) According to the findings, the prevalence of vulnerabilities in repositories is not asso-

ciated to the size of code. As a result, choosing repositories from GitHub should not be based solely on 

code size, as this does not guarantee the presence or lack of vulnerabilities, and iii) the frequency of vul-

nerabilities and the volume of commits are unrelated. So, while selecting repositories from GitHub, it is 

essential to realize that a large number of code revisions does not necessarily imply a high level of security. 

It is worth noting that GitHub’s open repositories reduced the time and cost of software development. 

Excessive and haphazard use of repositories, on the other hand, is unsafe and could lead to significant 

vulnerabilities. The study obliquely recommends the detailed security examination of open code reposito-

ries before being used in real projects. 

The study presented in this article is unique because it deeply analyzed the code in the popular repos-

itories of C++ on GitHub. Similarly, the correlational study conducted in the present work introduce a new 

knowledge that could be useful to researchers and programmers. However, in current form the study has 

several limitations. Single static analyzer has used and only ten projects of C++ were analyzed in the study. 

So, the different pattern of results could be drawn by considering the other class of code repositories and 

static analyzer. 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

The study described in this article is unique in that it examined the code of prominent C++ GitHub 

repositories. Similarly, the correlational study undertaken in this article add to the existing body of 

knowledge that academics and programmers can use. However, the study contains significant limitations 

in its current form. The study only analyzed the ten C++ applications and employed a single static analyzer. 

Considering the other types of code repositories and static analyzers, a distinct pattern of results may be 

established. 

5. Conclusions 

Modern software development is heavily reliant on reusable code, which may be found in online re-

positories such as GitHub. The abundance and accessibility of code repositories on GitHub has piqued the 

interest of researchers. GitHub is a massive source code repository that has played a crucial role in the 

development of advanced social coding platforms. Despite the obvious advantages of hosting code repos-

itories for reuse, the security risk of propagating insecure code has largely been overlooked. In this article, 

the static code analyzer was used to evaluate ten popular C++ source repositories available on GitHub. The 

analysis discovered that high-ranking C++ code repositories contain a variety of vulnerabilities, with no 

code repository being completely devoid of flaws.  According to a correlational study of different attrib-

utes of GitHub repositories, the popularity of code repositories has no effect on their security integrity. 

There was no association found between the size of code and vulnerabilities, and no correlation was ob-

served between the prevalence of vulnerabilities and the frequency of commits. The study certainly sug-

gests that code repositories be investigated thoroughly before use in software development. In the future, 

i) more code repositories will be mined, ii) other static analyzers compliant with CWE and CVE will be 

used for a more detailed and extensive analysis, iii) code repositories for other languages will be examined, 

and iv) other coding platforms such as Google Code, BitBucket, and CodePlex will be used for dataset 

development. 
 

Funding: This research received no external funding. 

Acknowledgments: The author would like to express his gratitude to Muhammad Tahaam for his encouragement and 

valuable suggestions during data analysis. Special thanks to Muhammad Aayaan for his insightful comments on the 

final draft of this article. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

References 

1. Naveed, M.S., & Sarim, M. Pedagogical Significance of Natural Language Programming in Introductory Programming. Journal 

of Basic and Applied Sciences 2018, 14: 62-71. 

2. Gharehyazie, M., Ray, B., Keshani, M., Zavosht, M.S., Heydarnoori, A., & Filkov, V. Cross-project code clones in GitHub. Em-

pirical Software Engineering 2019, 24:1538–1573. 

3. Naveed, M.S., & Sarim, M. Analyzing the Effects of Error Messages Presentation on Debugging and Programming. Sukkur IBA 

Journal of Computing and Mathematical Sciences 2020, 4(2):38-44. 

4. Naveed, M. S., Sarim, M., & Nadeem, A. C in CS1: Snags and Viable Solution. Mehran University Research Journal of Engineer-

ing & Technology 2018, 37(1):1-14. 

5. Naveed, M. S., Sarim, M., & Ahsan, K. Learners Programming Language a Helping System for Introductory Programming 

Courses. Mehran University Research Journal of Engineering & Technology 2016, 35(3): 347-358. 

6. Haefliger, S., Krogh, G.V., & Spaeth, S. Code Reuse in Open Source Software. Management Science 2008, 54(1):180-193. 

7. Joblin, M., Apel, S., & Mauerer, W. Evolutionary trends of developer coordination: a network approach. Empirical Software 

Engineering volume 2017, 22:2050-2094. 

8. Cosentino, V., Izquierdo, J., & Cabot, J. A Systematic Mapping Study of Software Development with GitHub. IEEE Access 2017, 

5:7173-7192. 

9. (https://octoverse.github.com/) (Last Access: January 6th, 2022). 

10. Vale, G., Schmid, A., Santos, A. R., Almeida, E. S., & Apel, S. On the relation between GitHub communication activity and merge 

conflicts. Empirical Software Engineering 2020, 25:402-433. 

11. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D. An in-depth study of the promises and perils 

of mining GitHub. Empirical Software Engineering 2016, 21:2035-2071. 

12. Ye, Y., Hou, S. Chen, L., Li, X., Zhao, L., Xu, S., Wang, J., & Xiong, Q. ICSD: An Automatic System for Insecure Code Snippet 

Detection in Stack Overflow Over Heterogeneous Information Network. In Proceedings of the 34th Annual Computer Security 

Applications Conference 2018, 542-552. 

13. Baltes, S., & Diehl, S. Usage and attribution of Stack Overflow code snippets in GitHub projects. Empirical Software Engineering 

2019, 24:1259-1295. 

14. Zhang, J., Chen, X., Xiang, Y., Zhou, W., & Wu, J. Robust network traffic classification. IEEE/ACM Transactions on Networking 

2014, 23(4): 1257–1270. 

15. Lin, g., Xiao, W., Zhang, L. Y., Gao, S., Tai, Y., & Zhang, J. Deep neural-based vulnerability discovery demystified: data, model 

and performance. Neural Computing and Applications 2021, 33:13287–13300. 

16. Borges, H., Hora, A., & Valente, M. T. Predicting the Popularity of GitHub Repositories. In proceedings of the 12th International 

Conference on Predictive Models and Data Analytics in Software Engineering 2018, 1-10. 

17. Borges, H., Hora, A., & Valente, M. T. Understanding the Factors That Impact the Popularity of GitHub Repositories. In pro-

ceeding of IEEE International Conference on Software Maintenance and Evolution 2016, 334-344. 

18. Park, K. Choi, S., Park, K. & Ki, C. Usability of Software Weakness Discovery based on the Binary File Visualization. In proceed-

ing of the 3rd International Conference on Next Generation Computing 2017, 155-157. 

19. https://cve.mitre.org/cve/ (Last Accessed on 5th January, 2022). 

20. Schiappa, M., & Chantry, G., & Garibay, I. Cyber Security in a Complex Community: A Social Media Analysis on Common 

Vulnerabilities and Exposures. In proceeding of sixth International Conference on Social Networks Analysis, Management and 

Security 2019, 13-20. 

21. Mell, P., & Gueye, A. A Suite of Metrics for Calculating the Most Significant Security Relevant Software. In proceeding of IEEE 

44th Annual Computers, Software, and Applications Conference 2020, 511-516. 

22. Chen, Z., Zhang, Y., & Chen, Z. A Categorization Framework for Common Computer Vulnerabilities and Exposures.  The Com-

puter Journal 2010, 53(5): 551–580. 

23. Fan, J., Li, Y., Wang, S., & Nguyen, T.N. A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries. In pro-

ceedings of the 17th International Conference on Mining Software Repositories 2020, 508-512. 

24. Zhang, Y., Fan, Y., Hou, S., Ye, Y., Xiao, X., Li, P., Shi, C., Zhao, L., & Xu, S. Cyber-guided Deep Neural Network for Malicious 

Repository Detection in GitHub. In proceeding of IEEE International Conference on Knowledge Graph 2020, 458-465. 

25. Rokon, M. D. F., Islam, R., Darki, A., & Papalexakis, E. E. SourceFinder: Finding Malware Source-Code from Publicly Available 

Repositories in GitHub. In 23rd International Symposium on Research in Attacks, Intrusions and Defenses 2020, 149-163. 

26. Rahman, M. M., Satter, A., & Hossain, B. M. M. An Empirical Study on Stack Overflow Security Vulnerability in Well-known 

Open Source Software Systems. International Journal of Computer Applications 2020, 176(39): 11-16. 

27. Brisson, S., Noei, E., & Lyons, K. We are family: analyzing communication in GitHub software repositories and their forks. In 

2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering 2020, 59-69. 

28. Horawalavithana, S., Bhattacharjee, A., Liu, R., Choudhury, N., O. Hall, L., & Iamnitchi, A. Mentions of security vulnerabilities 

on Reddit, Twitter and GitHub. In proceeding of IEEE/WIC/ACM International Conference on Web Intelligence 2019, 200-207. 

29. Guzman, E., Azócar, D., & Li, Y. Sentiment analysis of commit comments in GitHub: an empirical study. In Proceedings of the 

11th working conference on mining software repositories 2014, 352-355. 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 111-0401/2022   

30. Kronjee, J., Hommersom, A., & Vranken, H. Discovering software vulnerabilities using data-flow analysis and machine learning. 

In proceedings of the 13th International Conference on Availability, Reliability and Security 2018, 1-10. 

31. Yuan, X., Lin, G., Tai, Y., & Zhang, J. Deep Neural Embedding for Software Vulnerability Discovery: Comparison and Optimi-

zation. Security and Communication Networks 2022, 2022:5203217. 

32. Zou, D., Zhu, Y., Xu, S., Li, Z., Jin, H., & Ye. H. Interpreting Deep Learning-based Vulnerability Detector Predictions Based on 

Heuristic Searching. ACM Transactions on Software Engineering and Methodology 2018, 37(4):111:2-111:32. 

 


