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Abstract: This research seeks to improve rainfall forecasting, which is essential to agricultural 

operations, water management, and disaster preparedness, especially in floods and droughts. Proper 

forecasting of rainfall is critical in the sustainable development by preventing the effects of extreme 

weather conditions like flooding that may cause loss of life, health problems, and economic 

disturbances. Nevertheless, because of the unpredictable character of rainfall, the traditional forecasting 

models have proven to be a great problem since in most cases they lack the ability to understand the 

complicated set of interactions that determine the formation of meteorological patterns. To solve this, 

the research uses different machine learning (ML) algorithms, such as Random Forest (RF), Logistic 

Regression (LR), Support Vector Machine (SVM), AdaBoost, Gradient Boosting, K-Nearest Neighbors 

(KNN), and Naive Bayes (NB) to offer better predictions in Karachi, Pakistan. The dataset used is the 

one that was provided by Visual Crossing and had 33 weather-related variables, including temperature, 

humidity, the speed of wind, and air pressure, and 4,778 observations between 2011 and 2023. A 

thorough process of data preprocessing such as data cleaning, transformation, and selecting features 

was applied prior to the division of dataset into a training set and a test set. The model was evaluated 

using the 5-fold cross-validation and the performance was assessed as precision, recall, accuracy and 

ROC curves. Random Forest has proved to be the most accurate with 99 percent of them and Naive 

Bayes has reported the overfitting nature of all models. AdaBoost and Gradient Boosting had a similar 

performance whereby both dealt with the problem of overfitting. Moreover, a deep learning network 

(BiLSTM) was used to identify temporal correlations in the sequence of rainfall which also 

demonstrated a test accuracy of 99.8 that confirms the reliability of deep learning models in addition to 

conventional ML models. The results show that machine learning, as well as deep learning algorithms, 

can learn and comprehend complex climate patterns and can considerably improve the accuracy of the 

weather predictions. These models can be utilized to make more informed decisions using the data on 

climate resilience, disaster preparedness, and sustainable environmental management. 
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1. Introduction 

Rain, snow and or sleet are capable of having an impact on activity, as these are forms of precipitation that 

affect many activities that happen outdoors. It is very important that rainfall be predicted to the closest best to 
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enable those in various fields make the right decisions of whether or not to engage in certain activities. Flood 

disasters resulting from heavy rainfall events have significant societal and economic impacts [2]. There have 

been several devastating flash flood disasters in Asia and the Pacific, both in urban and rural areas. A number 

of the countries affected by the recent floods that have attracted public notice are Pakistan, China, India, 

Indonesia, Mongolia, and Nepal. The biggest flooding in Pakistan's history occurred in 2022, when the country 

was completely submerged under water. The (United Nations International Children's Emergency Fund) 

UNICEF reported the floods occurred in 2022 that damaged more than 84 districts. 5 million children. Among 

an estimated 20 million people needing emergency aid now as a consequence of the heavy flood occurrences, 

there are approximately 10 million children. Due to the tremendous levels of flooding, millions of people battle 

for their lives as well as illnesses like cholera, dengue, typhoid, malaria, and acute diarrhea carried on by 

stagnant and unclean water. Besides, human lives are lost, with significant implications on infrastructures in 

terms of property, loss of agricultural infrastructure [7, 32, 44], and political stability. Therefore, in order to 

optimize resource management, increase readiness, and make wise judgments amid severe weather 

conditions, accurate and dependable rainfall forecasting is necessary [3-4]. Effective disaster monitoring and 

management is a worldwide concern. One of the most challenging scientific and technological challenges of 

the past century has been global rainfall prediction [5, 6, and 8]. Among the ML models RF, MLR, and XG 

Boost were also designed and tested by [9] using the same environmental data to calculate rainfall amounts 

that would probably fall during a particular day. A deep neural network in this work [13] which explores the 

opportunities for flooding, it was taken into consideration multiple different factors such as rain volume and 

temperature. The wavelet theory with MTLNN, in this model, are proposed as an efficient prediction method 

for rainfalls [14]. AI-based ensemble technique [26] proved further the accuracy of the forecast than the 

conventional method. Stated experimental results [37] pointed out that the hybrid models were more suited to 

create generalization with less errors and less computation costs in prediction of rainfall; also they converge to 

targeted values faster compared to single model. By implementing Random Forest (RF), Multiple Linear 

Regression (MLR), Support Vector Regression (SVR), and Multivariable Adaptive Regression Splines (MARS), 

the average weekly and daily rainfall at Rachini station [38] was forecasted 

Data mining techniques [40] have proven more effective than traditional statistical models for rainfall 

forecasting, as shown in studies using climatic data from southern Saudi Arabia. A study on the West African 

coast [45] (1981-2015) emphasized the significant role of intense rainfall frequency and inadequate distribution 

in causing severe floods, which affect the ecosystem, agriculture and human settlements. Precise forecasting 

of rainfall is therefore an essential aspect of early warnings of floods as well as disaster preparedness. Artificial 

Intelligence (AI) has become an effective instrument that can enhance the accuracy and effectiveness of rainfall 

prediction. The paper combines several hybrid AI methods, such as the use of neural networks with 

optimization algorithms such as ACO, PSO and MRA to come up with superior models on both short-term 

and long-term rainfall forecasting [55]. More sophisticated systems, like streamlined flood prediction systems 

[63, 64], and predictors, such as the logistic regression and SVM [77], improve predictive accuracy. On the 

whole, the hybrid ML-DL approach will enhance the severity of the initial warning systems, which will aid the 

community and decision-makers in reducing the effects of floods in (Fig. 1).  

Floods are also one of the most devastating natural disasters that lead to loss of lives, destruction of 

infrastructure and short term and long term economic and environmental effects. The rise in water is very high 

and can cause deaths and massive displacement as experienced in China, Mekong Delta Vietnam and other 

flood-prone areas [7883]. Diseases like cholera and dengue, water contamination, and poisonous pollution are 

other diseases that are spread as a result of floodwaters that pose serious threats to the health of the population 

[79, 81]. Floods interfere with industries, agriculture, and transport networks and cause permanent financial 

and ecological losses. Pakistan experiences extreme flooding during the monsoon season, which occurs 

between June and September, and is a consequence of wet winds blowing through the Arabian Sea. Accurate 

rainfall prediction models are thus important in preparing in time against floods, proper resource planning 

and reducing the socio-economic and environmental impacts. 
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Figure 1. Consequences of Flood 

Pakistan is one such place which receives heavy rainfall and floods take the lives of many people in this 

country every monsoon season. Research and efforts in rainfall prediction of Pakistan have continued to be 

done. There has been an active effort by research scientists and organizations dealing with meteorology in 

enhancing the precision of rainfall forecast, particularly during critical monsoon seasons. It is important to note 

that it is not an easy task to predict the amount of rainfall accurately particularly in a country that is diverse 

and geographically diverse such as India. Unpredictability of monsoon patterns, local conditions, and weather 

change place an extra burden of trouble on the process of prediction. This paper compares numerous 

conventional machine learning (ML) methods in order to forecast rainfall. The second step is to identify the 

best models that can be used to predict Pakistan rainfall. Finally, an extended experiment of the suggested 

model is undertaken, and it is well-researched in the present research. 

Nevertheless, the majority of rainfall prediction studies that are currently available in Pakistan either use 

classical statistical models or single-city datasets, and they do not consistently assess several machine learning 

classifiers under the same circumstances. In order to identify the most dependable and practically feasible 

method for localized rainfall prediction, there is still a research vacuum in the evaluation and comparison of 

ensemble-based models across several meteorological variables. 

The final experiments solely concentrate on machine learning (ML) models, even though the original goal of 

this work was to compare both ML and DL architectures for rainfall categorization. In order to guarantee 

computational efficiency and interpretability with a small dataset size, DL models were purposefully left out 

of the results. However, because they guide future model extensions, the literature evaluation incorporates DL 

techniques for context and completeness. 

Research questions of the study are listed below 

RQ1: This study compares and contrasts different Machine Learning Algorithms to identify the best suited 

for recommendation system applications.  

RQ2: Impact of the variable selection method of the different approaches influencing the precision of Rainfall 

forecasting in Pakistan?  

RQ3: The research being conducted will concentrate on the effects and viability of utilizing machine learning 

and data mining specifically for Pakistan in order to predict weather for agricultural and disaster management 

purposes. 

RQ4: To what extent can data-driven machine learning models enhance early-warning systems for rainfall 

and flood preparedness compared to traditional statistical or rule-based forecasting methods in Pakistan? 

RQ5. How does feature selection and preprocessing (including normalization, encoding, and imbalance 

handling) impact the accuracy and generalization performance of rainfall classification models? 

The research aids in resource allocation and proactive disaster management by improving early warning 

systems and rainfall prediction accuracy. The remaining portions of this work are separated into the following 

categories: Section 2 examines the theoretical foundations of early rain prediction using multiple machine 

learning approaches and provides a comprehensive literature assessment of the tools and resources employed. 

The techniques and algorithms are discussed in Section 3. From Section 4-6, study discusses the methodology, 

results and learnings made in order to predict early rains using these predictive machine learning algorithms 

and working with a dataset.  
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2. Background and Significance 

Over the recent years, it has come to the realization that a lot of experimentation has resulted in the creation 

of a highly effective Rainfall prediction system. Various methods and technologies are usually used to develop 

efficient rainfall prediction systems, such as meteorological data analysis, Deep learning, machine learning, 

and numerical weather prediction models. The outlook of the thrilling research in the near future implies that 

researchers are hopeful of the further developments in the field. The future research areas may include the 

optimization of existing models, the inclusion of additional data sources, and the increase in the temporal and 

spatial accuracy of predictions, and the development of understanding of complex atmospheric processes that 

affect precipitation. Working together, meteorologists, climatologists, and data scientists will probably be 

essential to expanding our understanding and creating more accurate prediction systems as the subject of 

rainfall prediction develops. The literature reviews of previous works are included here.  

Data-driven rainfall studies span diverse regions and methods: Australia’s monthly forecasting compares 

ANN, KNN, MLR, and SVR on 24 stations (1970–2014) with five climate factors [1]. A dual framework 

combines sensor-driven ANN/DT rain classification with RNN/ES-LSTM seasonal–hourly prediction to aid 

flood response [2]. For South Africa’s April-2022 COL floods, MaxEnt highlights elevation and land-use/cover 

as key flood drivers and maps province-scale susceptibility [3]. Daily prediction in Vietnam evaluates SVM, 

ANN, and PSO-ANFIS [4], while Kerala’s seasonal forecasts (2011–2016) test KNN/ANN/ELM, with ELM 

yielding lowest MAPE in monsoon periods [5]. LSTM/RNN with six variables model annual/monthly totals 

[6]; a LoRaWAN node with logistic regression is reliable only up to 2-day lead times [7]. A stacking ensemble 

(KNN, XGB, SVR, ANN) improves monthly prediction on average but varies by site in the Taihu Basin [8]. For 

daily totals, RF, MLR, and XGBoost achieve MAE≈4.49/4.97/3.58 and RMSE≈8.82/8.61/7.85, respectively [9]. 

The study [10] may also highlight persistent bugs in the rainfall prediction using a machine learning model, 

that is, a scarcity of data, requirement for real-time alerts, and complexities of atmospheric phenomena. It could 

additionally deliberate over the shortcomings of the current models and possible ways to make them better. 

In this experiment, k-means clustering was implemented [11] for the purpose of data classification of the model 

forecast data. Short-term memory modeling recalled, then passed through several modalities of rainfall 

(LSTM). Initially, the samples were classified into four parts by using the K-means clustering algorithm. After 

that, the LSTM was used to create models for the various types of data. Eight different types of meteorological 

characteristics, including the model-forecast rainfall, were used as inputs, and the output was the difference 

between the actual and model-forecast rainfall. The developed model was then used to modify the rainfall that 

the model anticipated. The extent of how well machine learning models are able to capture the intricacies of 

flood dynamics cannot be determined without an appreciation of the input features [12]. The assessment would 

involve the different types of data involved in the flood prediction literature such as hydrological, 

meteorological, topographical and other pertinent aspects. 

Deep Neural Network (DNN) was used to predict the probability of flooding based on temperature and 

rainfall and its performance was compared with SVM, KNN, and Naive Bayes model [13]. Nevertheless, the 

model was based on the few meteorological variables, and was not hydrologically validated. A Wavelet-

coupled Multi-order Time Lagged Neural Network (WMT-LNN) was also introduced to the field of rainfall 

prediction that advances performance by decomposing time-series with the wavelet algorithm [14], yet it is 

very data-specific and computationally intensive to run in real-time. In the case of Pakistan, 50-year rainfall 

variability was the focus of Bayesian kriging regression to plan and manage [15], although accuracy of spatial 

interpolation is strongly dependent on the density of gauges and uniformity of quality data. The Sliced 

Functional Time Series (SFTS) model uses local time-dependent rain patterns in the short term [16], but does 

not work well in abrupt monsoon transitions or at sparsely covered areas. A smart-city rainfall prediction 

system that was based on SVM, DT, Naïve Bayes, and KNN was also introduced with the view of real-time 

implementation [17]; nevertheless, the reliability of its forecasts remains very low in the situation when the 

sensor data are unavailable or distorted, which impacts the performance of the system. 
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The study [18] investigates how machine learning algorithms could be integrated with remote sensing data 

to improve the accuracy and dependability of rainfall forecasting, however, it is noted that due to a limited 

temporal resolution, and sensor calibration challenges, generalization can be curtailed. The ESN and Deep ESN 

models of neural networks were implemented in rainfall prediction [19], and Deep ESN performed better than 

conventional neural networks and SVR algorithms but is too complex and cannot scale up to large volumes of 

data. A hybrid Multilayer Perceptron-Whale Optimization Algorithm (MLP-WOA) method [20] was proposed, 

which is more accurate in the predictability of annual rainfall, though it needs much tuning and is 

computationally costly. Other hybrid approaches that combine projection pursuit, the particle swarm 

optimization, and support vector regression were proposed in efficient rainfall prediction [21]; but its 

performance is extremely dependent on the choice of the parameter and can overfit very small datasets. Non-

stationarity and high variability of climatic data are a challenge to the process of predicting rainfall occurrence 

using data mining [22] which is feasible.  

The article [23] uses machine learning to select features in order to enhance rainfall prediction, and the ANN 

accuracy increases between 90% and 91%, but the issue of overfitting exists because of the lack of diversity in 

the available data. A more refined deep learning architecture that was optimized through particle swarm 

optimization [24] was not so successful, indicating the sensitivity of the parameters and training instability. An 

example of an MLP in Ghor (Malaysia) that was hybridized with imperialist, gravitational and CAPSO 

algorithms, was shown to achieve better monthly rainfall prediction accuracy [26], but at the cost of expensive 

computation and hyperparameters management. A different AI-based ensemble combining FFNN, LS-SVM, 

and ANFIS across seven sites in Cyprus increased performance on the basis of linear and nonlinear averaging, 

but was region-specific and relied on inter-station data consistency. Comparative studies on ANN-based rain 

forecasting [27 28] also showed good performance in dealing with nonlinearities but poor interpretability and 

cross-climate performance. Finally, an ANN model developed for daily and monthly rainfall forecasting [29] 

achieved stable performance but relied solely on local climatic variables, reducing generalizability across 

diverse environments. 

The outcomes of this study show that the ANN model can accurately predict and measure precipitation on 

a daily and monthly basis utilizing six input parameters: temperature, dew point, humidity, pressure, 

visibility, and wind speed. The results show that the ANN model is a promising technique for daily rainfall 

forecasting. The testing phase values for R, RMSE, and MAE for the daily rainfall are 0.8063, 0.2247, and 0.0932, 

respectively. The performance indicators for R, RMSE, and MAE in the testing part are 0.8012, 0.0731, and 

0.0578 for monthly rainfall, correspondingly. Additionally, the results show that monthly rainfall forecasts are 

more accurate than daily rainfall forecasts. The creation of the finest flood-determining model feasible is the 

aim of this effort [30]. Decision Tree Model is being evolved and improved as a result. This study compares 

three machine learning algorithms: To learn Decision Tree (DT), Random Forest (RF), and Gradient Boost (GB). 

The classification process considers the following characteristics: Place, Era, Month, min_temp, max_temp, 

clouds, rainfall, the number of days it rained, daily temperature, and times when the river was flooded. 

The objective of this study [31] was to evaluate the capability of rainfall forecasting models develop The 

study [31] evaluates rainfall prediction using LSTM-based architectures compared with traditional machine 

learning models, including XGBoost, stacked LSTM, and bidirectional LSTM networks. Results show that the 

Bidirectional-LSTM outperforms the stacked variant with two hidden layers, though it requires more 

computational time and fine-tuning. In Malaysia, a machine learning system designed to predict rainfall in the 

Terengganu area [32] uses NNR, DFR, BDTR, and BLR models to predict rainfall in the region to improve 

agriculture and water management but due to the small regional dataset, cannot be generalized to other areas. 

The Indian experiment [33] forecasts rainfall till 2030 with ANN-MLP in 34 meteorological subdivisions, and 

provides information on water resource planning but with uncertainties related to long-term climate 

variability and with no real time validation. 

 

The research [34] assists the stakeholders including farmers and researchers to comprehend the variability in 

climate by predicting rainfall with various input variables during monsoon seasons and annual seasons. 
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Random Forest model gave the best classification accuracy whereas ARIMA and Neural Networks exhibited 

the top performance with meteorological forecasting but the model has a seasonal emphasis so it is not as 

adaptable to other climatic regimes. An SVM-HHO hybrid model was created in rainfall time series forecasting 

in the Assam region of Cachar which was tested using the CC and the RMSE measures and was found to 

perform well with high sensitivity of the parameters. Subsequent survey [36] summarizes big data analytics 

methods of rainfall prediction, highlighting their potential but reporting issues with data standardization and 

generalization of the model. Comparative analyses of hybrid ML frameworks [37] indicate that such systems 

are more accurate, uncertainty is minimized, and convergence rate is more efficient, but these systems are 

usually computationally expensive and hard to interpre 

A comparison of RF, MARS, SVR, and MLR is done in the study [38] to predict weekly and daily rainfalls at 

Ranichauri (Uttarakhand) where RF is best calibrated and predictive, but over a single-station dataset. MLR, 

RF regression and replicated neural networks were used to model daily rain in Semarang, Indonesia, with RF 

outperforming other models, yet no multi-year testing of model validation was done [39]. A study in Saudi 

Arabia [40] used different forms of ML with historical meteorological data with data mining techniques 

classified higher than traditional statistical models, but the methodology had a limitation in scaling features 

and real-time combination. A hybrid DSP model combining Prophet, SVR, and DWT [41] improved rainfall 

forecasting by decomposing data into frequency components, yet the model’s complexity and dependence on 

parameter tuning limit operational scalability. Radar-based rainfall estimation using RF and SVM [43] 

demonstrated effective short-term forecasting with minimal input variables, but accuracy declines over 

complex terrains due to radar reflectivity uncertainties. 

This study [44] contributes towards measurement of important climatic-associated risks within national 

borders for estimation of impacts in essential sectors of development such as agriculture and water resources. 

Besides, it wants to provide climate- related data more accessible for the national scale authority where 

policymaking is more appropriate. Consequently, in situ rain gauge data from CHIRPS scale monthly dataset, 

which took place from 1998 to 2010, was used whereas the Pearson’ correlation coefficient was applied in 

validation. This paper dealt with the temporal and spatial changes in the key climate parameters in six 

countries in West Africa including Senegal, Niger, Burkina Faso, Côte d’Ivoire and Benin for the period 1981-

2015. The findings further suggest that on balance over the last three decades, precipitation rose significantly 

in each of the five countries. The study [45] seek to compare analyses of extreme rainfall characteristics; 

frequency, intensity, seasonality and trends during the period of 1981 and 2015 in the SCWA. Therefore, 

rainfall estimation products containing in situ observation and satellite rainfall estimation data have been used, 

together with the daily rainfall at 31 stations distributed uniformly in the southern areas of Côte d'Ivoire, 

Ghana, Togo, and Benin. Possible topics to look at might include how the distribution of extreme rainfall events 

over the years would look like, if there are any tendencies apparent in the historical data, and status of potential 

impacts on regional climate. Such a study is valuable in enhance the existing understanding of climate 

variability in the western African context, in order to beneficially impact the related risk assessment, disaster 

response and preparedness, and sustainable development initiatives. Rainfall is an important part of building 

hydrological mathematical models and performs a definite function of stabilizing the flight of water cycle. 

These included M5, RF, SVR-poly, SVR-RBF, MLP, and LSTM were explored in this study [46] to predict 

monthly rainfall at two gauged stations in the Thale Sap Songkhla basin, Thailand. The following study [47] 

examines the temporal and spatial distribution of precipitation concentration in Pakis tan. This needs to know 

the pattern of distribution of precipitation with reference to periods within the country’s regions. Specifically, 

concentration of precipitation is explored in terms of spatial (between sites or at different locations) and 

temporal (at different time points) variations. Aimed at comprehending where within particular intervals of 

time and space the precipitation is distributed or concentrated.  

A comparison of various precipitation databases with ground measurements at 51 Pakistani monitoring 

stations (19982016) [48] shows spatial discrepancies but the lack of time overlap renders less accuracy. One 

model is a hybrid forecasting model [49], which combines swarm intelligence optimization and neural 

networks to make predictions of stable precipitation but is computationally complex in parameter tuning. 
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Hybrid wavelet neural network (HWNN) is a combination of MI, PSO, and MRA [50] to improve the prediction 

of monthly rainfall through the use of the long past series but the performance of the model is greatly reliant 

on proper preprocessing and index selection. ANN models trained by using FFNN and Levenberg Marquardt 

algorithms [51] were trained using historical data of the northern part of India and gave good results in terms 

of short-term prediction, but with limited generalization across different climatic regimes. The SVR-PSO 

hybrid [52] provides a better accuracy in rainfall forecasting in comparison to regression models but its 

sensitivity to kernel and PSO parameters can make it difficult to be robust. ANN-RBF ensemble model with 

gamma test and NMR methods [53] is more efficient in prediction, but requires high-quality input features and 

complicated training. The hybrid model of ACO and neural networks [54] is better than the regular neural 

networks but is computationally expensive. Hybrid systems that unite NB, C4.5, NN, SVM, and RF [55] 

enhance short- and long-term predictions of rainfall yet remain challenged by the imbalance in data between 

rainy and non-rainy days. Pattern recognition is enhanced by Shared Closest Neighbor clustering of Indian 

monsoon zones [57], but suffers due to regional sensitivity. Research about the variability of rainfall in Saudi 

Arabia [58] connects the precipitation to the activity of cyclones, but this has not been validated as a predictive. 

CatBoost, LSTM, PR, and RF are used to analyze urban meteorology data [59], which is highly accurate (R 2 = 

0.76), but model interpretability is poor. Lastly, more recent work in South Asia [77, 99, 100] integrates logistical 

regression, SVM, stacking ensembles, and hybrid ML-statistical techniques to predict rainfall in Pakistan and 

Bangladesh and notes significant improvements but is still limited by the quality of the data and across-

regional generalization. The research[101 compared the effect of various activation functions on rainfall 

forecasting with both ML and DL models, and they discovered that finely tuned activation functions can 

achieve much higher accuracy. They demonstrated that deep learning models such as LSTM and BiLSTM are 

more effective than traditional ones in the prediction of multifaceted rainfall behaviors. 

2.1. Comparative Analysis 

Table 1 includes a critical evaluation of different studies aimed at forecasting rainfall. Every study is 

thoroughly studied in a number of dimensions. The analysis will start with the determination of the study by 

serial number and the year in which it was published. It then elaborates on the exact algorithm applied in the 

process of rainfall prediction and the parameters or features included in the model. These predictions are 

explained by the results or goals they are meant to achieve and the dataset is described, its origin, and 

properties. The country in which the study was conducted is mentioned and the results are measured in 

various metrics to determine the effectiveness of the model. Lastly, an assessment of the limitations of the 

study has been conducted, which provides information on what may have been improved or what limitations 

may have influenced the findings of the study. Such an overall approach enables the comparative perception 

of various means of prediction of rainfall and the effectiveness of their application to various situations. 

Table 1. Comparative Analysis of the previous study 

Year Algorithm(s) 

Used 

Parameters / 

Features 

Target / 

Task 

Dataset / 

Period / 

Country 

Performance 

(Metric) 

Limitations 

2023 ML & DL 

(Polynomial 

Regression, 

RF, LSTM) 

Temp 

(Max/Min), 

Rainfall, 

Humidity, 

Wind Speed, 

Sunshine, 

Lat/Long, 

Altitude 

Rainfall 

(mm) 

Regression 

Bangladesh 

Meteorologica

l Dept. (1948–

2013) 

R²=0.76 (RF 

& PR), LSTM 

Loss=0.09 

Small dataset, 

limited DL 

models; lacks 

transfer 

learning or 

pre-training 

2023 ES-LSTM, 

ANN, DT 

Temp, 

Rainfall, 

Wind Speed 

Regression 

& 

Classificatio

n 

11 features, 

2359 records 

(Australia) 

MAPE=3.17 

(ES-LSTM), 

ANN=96.65%

, DT=84% 

Needs 

improved 

weight 

tuning and 
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DL 

generalizatio

n 

2023 MaxEnt 

(ML) 

Rainfall, 

NDVI, 

Elevation, 

TRI, SPI, 

TWI, Slope, 

Land Cover 

Flood 

Susceptibilit

y Mapping 

1990–2022 

(South Africa) 

AUC=0.899 

(90% 

accuracy) 

Regional 

generalizatio

n limits; 

requires 

monsoon-

region 

adaptation 

2022 MLR, RF, 

XGBoost 

Temp, 

Moisture, 

Humidity, 

Wind, 

Sunshine 

Daily 

Rainfall 

Prediction 

1999–2018 

(Ethiopia) 

XGB: 

RMSE=7.85, 

MAE=3.58; 

RF: 

RMSE=8.82 

Sensor and 

environment

al data 

missing; 

limited 

external 

validation 

2020 ANN Temp, Dew 

Point, 

Pressure, 

Humidity, 

Wind Speed 

Daily & 

Monthly 

Rainfall 

Austin, Texas 

Dataset 

R=0.80; 

RMSE=0.073–

0.248 

Weak for 

daily rainfall; 

no 

deployment 

strategy 

2024 Logistic 

Regression, 

Neural 

Network 

Temp (Min), 

Humidity, 

Precipitation, 

Rain Today 

Binary: 

“Rain 

Tomorrow” 

3525 records 

(Aligarh, 

India) 

Acc≈82.8%, 

ROC≈82.4% 

Few features; 

small dataset 

2023 MLR, SVR, 

MARS, RF 

Temp, 

Humidity, 

Wind, 

Radiation, 

Evaporation 

Daily & 

Weekly 

Rainfall 

2000–2017 

(Uttarakhand, 

India) 

RF: 

RMSE=5.70–

10.54, 

R=0.94–0.96 

Region-

specific 

tuning 

needed; lacks 

long-term 

trend capture 

2023 SVM, RF, 

FFANN 

Evaporation, 

SST, 

Pressure, 

Humidity, 

Cloud 

Cover, Wind 

Classificatio

n 

(Regular/He

avy Rain) 

WMO & IMD 

Database 

(Saudi Arabia) 

FFANN=96.1

%, RF=93.8%, 

SVM=83.7% 

No regional 

language/aler

t system 

integration 

2015 Hybrid 

Wavelet 

Neural 

Network 

(HWNN), 

ANN, MLR 

ENSO, IOD, 

PDO, SAM, 

STR 

Monthly 

Rainfall 

Forecast 

255 stations 

(Australia, 

1959–1998) 

HWNN 

improved 

NSE by 0.17–

1.8 

Needs 

integration of 

multiple 

climate 

indices for 

better results 

2.2. Comparison with past studies 

Before proceeding any further, it is worth restating some of the key findings of the background investigation: 

The majority of conventional rainfall forecasting systems along with classical meteorological activities base on 

human-intensive or even partially-computerized processes of climatic information. The conventional methods 

are satisfactory in simple forecasting operations but not effective in providing appropriate results when the 
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demands are tied to large datasets or extreme weather events. HEC-HMS, SWAT and MIKE SHE models the 

movement of water following the occurrences of rainfall using mathematical applications that involve the 

Manning equations and Navier-Stokes equations respectively. These models require comprehensive data 

inputs that are comprised of land topographical data and soil properties, the land use pattern and rain data to 

accomplish accurate outputs. These intricate modeling techniques demonstrate potential accuracy but have 

computational and data saturation issues limiting their performance at large scales. Multivariate linear 

regression (MLR) has been used as an analysis tool in combination with Mann-Kendall trend and exponential 

smoothing and ARIMA time series analysis, which has been applied greatly in analyzing rainfall [84,86].  

These analytical methods successfully track broad patterns while maintaining poor capabilities to model 

climatic data's complex non-linear multivariate characteristics. The application of machine learning 

approaches for rainfall prediction has experienced growing popularity during recent times. Support Vector 

Machines (SVM) along with Decision Trees (DT) and k-Nearest Neighbors (k-NN) show enhanced predictive 

performance through learning from extensive datasets of varied diversity containing minimal data errors [27–

32]. The application of ML models surpasses or equals traditional hydrological systems when enough data is 

available as shown in multiple cases [87]. However, although effective their predictive power becomes weaker 

for predicting unusual and extreme climate events because of our insufficient understanding of climate 

complexity. 

Beyond the focus covered above, there have been more breakthroughs and advancements in the application 

of machine learning to flood prediction. However, there are several shortcomings and inadequacies in earlier 

research [28] [30] [40] [80]. 

The reliability of projections is impacted by the fact that many research relies on historical rainfall 

information, which may be erroneous, lacking, or obtained from a small number of weather stations. 

While certain machine learning techniques might work well in small areas, they have trouble predicting 

annual rainfall accurately in broader geographic areas or with a variety of climates. Rainfall patterns can be 

greatly impacted by changes in terrain, land use, and climate, and models created for smaller, more focused 

areas might not fully account for these effects. Additionally, many studies that estimate yearly rainfall using 

machine learning (ML) may not properly evaluate how well their models perform in different regions or check 

their results against alternative datasets. This could lead to an overestimation of the model's accuracy, which 

could be problematic in real-world applications where accurate annual rainfall forecasts are crucial for 

decision-making. 

Some models struggle with short-term or near-real-time forecasting due to the limited temporal resolution 

in historical datasets, which are often averaged over days or months. High-resolution, time-stamped data are 

crucial for accurate flood prediction, especially for events that develop rapidly. 

The challenge related to the combination of ML predictions and standard forecasting used by meteorological 

organizations is sometimes not addressed in the existing literature, and this fact might limit their applicability 

and implication in practice. To address these limitations, advances have entailed the utilization of hybrid 

models, ensemble methods. 

The study is unique to the rainfall prediction field especially in reference to Pakistan, owing to several 

original contributions. This analysis concentrates entirely on the local climatic and meteorological information 

of Pakistan which was collected at a few stations within the country, unlike in the general studies that use the 

global or regional information. The projections of the study can be directly translated to Pakistan disaster 

preparedness and resource management strategies due to its personalized strategy that can facilitate it to 

manage the unique rainfall patterns and corresponding flood risks of Pakistan. Moreover, the study employs 

a range of machine learning algorithms as opposed to relying on just one as Random Forest, Support Vector 

Machines, Gradient Boosting, Adaboost, and Naive Bayes. In this case, the study provides in-depth analysis of 

the performances of different models through comparing them, thereby showing the most accurate algorithms 

to use in predicting rainfall. Another issue that the research addresses is the analysis of feature importance, or 

which meteorological variables, including temperature, humidity, wind speed, and air pressure, produce the 

most significant impacts on the forecasting of rainfall. The research is a thorough and practical exploration of 
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machine learning to predict rainfall in Pakistan because it does not only enhance the explainability of the model 

but also offer meaningful information to meteorologists and policymakers. 

 

3. Approaches Used for Research 

Basically there are two methods in weather prediction, empirical and dynamical methods [67]. 

a. Empirical Approach 

This approach uses previous data analysis to estimate future situations and searches for correlations between 

attributes. The most often used techniques in the empirical approach to weather forecasting are classification, 

regression, Decision trees, Artificial neural networks (ANN), fuzzy logic, ARIMA models, swarm intelligence 

for outcome optimization, long short term memory (LSTM), and other information processing techniques [67]. 

b. Dynamical Approach 

Instead of focusing solely on the current state of a system, dynamical approaches emphasize understanding 

how systems evolve and behave dynamically. In a dynamical approach, the aim is indeed to model systems in 

a way that captures their behavior over time, with the goal of making predictions or understanding future 

conditions. However, the degree to which the results will match the actual state depends on several factors 

shown in table 2. 

Table 2. Several Factors for prediction 

Model 

Accuracy: 

Data Quality: Parameter 

Estimation: 

Initial 

Conditions: 

System 

Complexity: 

External 

Factors: 

The models 

own accuracy 

is quite 

important. It is 

important that 

the model 

accurately 

represents the 

fundamental 

dynamics of 

the system 

under study.  

The 

forecasting 

ability of the 

model can be 

greatly 

influenced by 

the type and 

amount of 

data that were 

utilized to 

build it. 

Predictions 

that are more 

accurate and 

thorough can 

be made with 

greater 

confidence. 

Many 

dynamical 

models involve 

parameters that 

need to be 

estimated from 

data or 

theoretical 

considerations. 

The accuracy of 

these parameter 

estimates can 

affect the 

reliability of the 

model 

predictions. 

e.g. such as the 

mean 

precipitation 

rate, variability, 

and seasonality. 

Small initial 

condition 

changes can 

have a big 

long-term 

impact on the 

behavior of 

many 

dynamical 

systems. As a 

result, precise 

determination 

of the initial 

conditions is 

essential for 

forecasting the 

future state 

 

 

The complexity 

of the system 

being modeled 

can also 

influence the 

accuracy of 

predictions. 

Highly 

complex 

systems, such 

as turbulent 

fluid flows or 

ecological 

systems, may 

exhibit 

behaviors that 

are difficult to 

capture 

accurately in a 

model. 

External 

factors, such as 

environmental 

changes or 

external 

interventions, 

may influence 

the system's 

behavior in 

ways that are 

not accounted 

for in the 

model, leading 

to 

discrepancies 

between 

predicted and 

actual 

outcomes. 

One of the most predictable weather patterns is rain. Precipitation falls to the earth as cloud particles become 

too heavy to stay suspended in the atmosphere. There are many different types of precipitation, including 

sleet, snow, freezing rain, and hail. Rain is the term used to describe the precipitation of hydrometeor water 

particles, usually larger than 0.5 mm in diameter, that fall from clouds and land on Earth's surface. This 

precipitation occurs when certain atmospheric conditions align, allowing for the formation and release of water 

droplets from clouds. When a number of factors come together, including humidity, temperature, evaporated 
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water, rising air currents (swirling patterns), ambient air conditions, and the availability of enough moisture, 

rain occurs in the cloud. The planet's everyday activities are governed by precipitation, which is also crucial 

for tracking the climate of the water in the earth's reservoirs. Since precipitation is the main element of the 

hydrological cycle, it is crucial to the study of hydrology. The majority of the variability in terrestrial hydrology 

can be attributed to precipitation, which is undoubtedly the most significant element of the land-atmospheric 

system. Precipitation typically shows rapid temporal fluctuations together with considerable and frequent 

geographical variability. As one of the main objectives of current research efforts in distributed hydrological 

modeling and land data assimilation systems, precipitation is the most crucial input to generate accurate 

simulations and forecasts for a suite of hydrological variables (soil moisture, stream flows, and flood levels) 

[68. This study is empirical, Precipitation observation helps in preparing for and responding to natural 

disasters such as hurricanes, typhoons, and cyclones. By monitoring rainfall rates and distribution, 

meteorological agencies can issue early warnings and evacuation orders to protect lives and property from 

flooding, storm surges, and other hazards associated with heavy rainfall. 

The analogy and subjective approaches [70] are used in very brief weather forecasts using various weather 

models. Table 3 represents the analogical and subjective approach for analyzing and comparing the scenarios 

of rainfall. With the help of these approaches we can identify the possibilities of unstable weather areas that 

have a chance of rain.  

Table 3. Represent the analogy and subjective approach 

Analogy Approach Subjective Approach 

This approach involves comparing current 

weather conditions to past events with similar 

characteristics. Meteorologists use historical data 

to identify patterns or analogs that resemble the 

current atmospheric conditions. By drawing 

parallels between past weather events and the 

present situation, forecasters can make quick 

predictions about potential weather outcomes. For 

example, if a specific atmospheric pressure pattern 

is similar to one observed during a previous storm, 

meteorologists may anticipate similar weather 

patterns and issue relevant warnings or advisories 

[70]. 

The subjective approach relies on meteorologists' 

expertise, intuition, and judgment to interpret 

weather data and make forecasts. This approach 

involves [70] synthesizing various sources of 

information, including satellite imagery, radar 

data, surface observations, and numerical weather 

prediction models, to assess current and evolving 

weather patterns. Subjective forecasts often 

incorporate qualitative assessments of weather 

trends, such as changes in cloud cover, wind 

direction, or atmospheric instability, to provide 

concise and actionable information to the public. 

There are frequent daily stable weather trends during the rainy and dry seasons. Dynamic approaches, which 

forecast future patterns by evaluating past and present meteorological data, can be highly useful during these 

times. The atmospheric conditions tend to be more stable and predictable, allowing forecasters to make 

accurate predictions based on past trends and current observations. On the contrary, Transitional seasons, like 

spring and autumn, are more of a challenge to dynamical methods. These periods are characterized by intense 

changes in weather conditions, which are characterized by changing temperatures, changing wind patterns 

and more convective activity. Local weather phenomena, including mountainous terrain and land-sea 

temperature differences, may be more directly affecting weather patterns, than synoptic-scale mechanisms. 

Consequently, there is a reduction in predictability of weather in transitional seasons hence making it harder 

to use dynamical methods to make reliable predictions. 

During these transitional periods, forecasters may need to supplement dynamical approaches with other 

methods, such as analog forecasting or subjective interpretation of atmospheric conditions, to improve the 

accuracy of short-term weather forecasts. 

Data mining [71] is defined as the activity of uncovering valuable and interesting patterns from vast amounts 

of data. These patterns may include trends, associations, correlations, or anomalies that are not immediately 

apparent through simple observation. In this work, patterns and associations utilized to anticipate future 

rainfall were found by analyzing historical meteorological data using data mining techniques. When it comes 
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to supervised learning, the algorithm is rewarded based on past experience that, in turn, are labeled and have 

input features and target labels that correspond to them. With labeled training data, supervised learning aims 

towards the building of the mapping function from the input variables to output variables, using the dataset. 

Here, the mapping function that has been tested and new data can be generated. Therefore, it will be possible 

to plan things out using this function [60]. Supervised learning tasks may be broadly classified into two 

categories the first one is regression and second is classification, as shown in fig 2. In this study explanation, 

categorization will receive a lot of attention. 

 
Figure 2. Supervised Learning types 

Predicting the categorical class labels of new instances based on input features is the aim of classification 

problems. There is a limited number of classes or categories that the discrete output variable falls into. The 

decision function or boundary that divides the various classes in the feature space is learned by the algorithm. 

Some supervised learning algorithms used in this experimental study e.g. Regression algorithm Support vector 

machines (SVM), Regress or decision trees, logistic regression. Throughout training, the algorithm discovers 

how to transfer the input features to the proper sorts of rainfall based on the specified goal. 

3.1. Random forest 

The Random Forest ensemble learning approach performs their process by creating many of these decision 

trees during training and deciding on the overall average voting for regression tasks or majority vote for 

classification tasks as shown in fig 3. Random Forest works well on a range of datasets and is resistant to over 

fitting. Equation 1 illustrates how it manages missing values and keeps accuracy even when dealing with a 

large number of features. 

Classification: Let 𝐶̂𝑏(x) be the both random-forest tree's class prediction.  

Then 𝐶̂𝑅𝐹(𝑥) =  majority vote {𝐶̂𝑏(𝑥)}
𝑏=1

𝐵
         (1) 

 
Figure 3. Representation of Random Forest 

3.2. Logistic Regressions 

In case of binary classification scenarios, an instance’s probability of belonging to a certain class is predicted 

through a statistical model which is referred to as the logistic regression. The logistic function that would 

transform every real-valued input into a number between 0 and 1. The equation for the logistic function is 

shown in Equation 2: 
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Sigmoid (z) =
1

1+𝑒−𝑧         (2) 

Where: 

● z is a linear combination of the features and their respective coefficients, represented as 

● 𝑧 = 𝛽𝑜 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛, where 𝛽𝑜 is the intercept, 𝛽𝑖 are the coefficients, and 𝑥𝑖 are the feature 

values. 

The logistic regression model calculates the odds of a binary result, such as one of zero or one. The logistic 

function predicts the likelihood that an occurrence is in the positive class (class 1): 

 
Figure 4. Representation of Logistic Regression 

3.3. Naïve Bayes 

The technique of the Naïve Bayes has been considered to be the most powerful and successful of the 

supervised machine learning and the data mining algorithms. Based on its attribute independence property, 

the Naive Bayes [72] method is a probabilistic machine learning model that incorporates the Bayes’ theorem. 

In classification tasks, it performs better and better until it reaches a high level of accuracy with its simplicity. 

The innovative Bayes theorem designates naive to only help one feature for a class, but it has less impact for 

another feature in the class. Although this is a strong and frequently implausible assumption, it streamlines 

the computation and increases the computing efficiency of the training data. Equation 3 illustrates the 

application of Bayes' theorem to determine the likelihood of a class given its attributes, based on this 

assumption.  

𝑃(𝐶𝑘|𝑥1, 𝑥2, … , 𝑥𝑛) =
𝑃(𝐶𝑘)∏ 𝑃(𝑥𝑖|𝐶𝑘)𝑛

𝑖=1

𝑃(𝑥1,𝑥2,…,𝑥𝑛)
       (3) 

Where: 
𝑃(𝐶𝑘|𝑥1, 𝑥2, … , 𝑥𝑛) Posterior probability of class 𝐶𝑘 given the features 𝑥1, 𝑥2, … , 𝑥𝑛 
𝑃(𝐶𝑘) Prior probability of class 𝐶𝑘 
𝑃(𝐶𝑘) Likelihood of feature 𝑥𝑖 occurring within class 𝐶𝑘 
𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) Evidence pr probability of observing the feature vector 𝑥 

3.4. AdaBoost 

Ada Boost is a type of supervised machine learning algorithm called ensemble learning that means deriving 

a set of simpler models/decisions. Based on a training set, AdaBoost generates a strong classifier by using weak 

classifiers, and their combining technique is called decision-stump. Ada Boost or Short for Adaptive Boosting 

is an ensemble learning method that combines a number of weak learners to create a strong learner. When 

compared with the other SVM algorithm AdABoost being a collective machine learning approach has the 

lowest wrong false rate and the highest classification precision for the rainfall prediction ratio. This is done by 

using a weak ensemble; the usual choice being decision trees to create a strong classifier in the process shown 

in fig 5 and equation 4. 

 

𝐹(𝑥) = sign(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑖=1 )          (4) 

Where, 

• T=iterations (no of weak learners) 

• ℎ𝑡  (x)=The tt-th weakest learner's estimate for input x 
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• 𝛼𝑡 =The amount of importance given to the tt-th weak learner in term of weight assign 

• sign (.)=The sign function that connects the category identifiers with the sum of the weighting guesses is 

called sign (.). It anticipates the "positive" class if the total is positive; if not, it predicts the opposite class. 

 
Figure 5. Representation of AdaBoost classifier 

3.5. Gradient Boosting 

Gradient Boosting is a widely used supervised machine learning algorithm. For classification and regression 

tasks, gradient boosting algorithms perform well and provide good results, unlike traditional decision tree 

algorithms like Random Forest, which build multiple trees independently, as shown in Fig. 6. It creates trees 

sequentially and learns the trees from the errors of its predecessors. It can understand the complex relationship 

between the attribute and the target result. It works like initializing the model with a simple model, such as a 

single leaf (constant) value for regression or a constant probability for classification. Then it calculates the 

residuals or pseudo-residuals for each data point, which represent the errors made by the initial model. 

 
Figure 6. Representation of Gradient Boosted Trees 

 Its mathematical representation are shown in (equation 5a, 5b and 5c) 

• 𝐹𝑚((x) as the current ensemble model (sum of first m weak learners), 

• ℎ𝑚((x) as the m-th weak learner (e.g., decision tree), 

• ρ as the learning rate, 

• L as the loss function. 

At each iteration, we update the model as follows: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜌 . ℎ𝑚(𝑥)        (5a) 
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Then, the residuals (or pseudo-residuals) are updated: 

𝑟𝑖𝑚 =
𝜕𝐿(𝑦𝑖,𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
         (5b) 

Finally, the prediction at each iteration is given by: 

 𝑦̂(𝑥) = 𝐹𝑀(𝑥) = ∑ 𝜌. ℎ𝑚(𝑥)𝑀
𝑚=1         (5c) 

3.6. K nearest Neighbors 

It is a very effective machine learning algorithm used in supervised learning and used in regression and 

classification. It categorizes new instances based on the most frequent class or highest counting class among 

the k-Nearest Neighbors in the feature space. KNN is better for small data sets. Derivation for similarity 

measurement It uses Euclidean distance as illustrated below in equation 6. 

𝑦̂ = majority {𝑦𝑖|𝑥𝑖 ∈ 𝑁𝑘(𝑥)}                                            (6) 

Where:  

• 𝑦̂   –  Predicted class label for the input instance 𝑥𝑖 

• 𝑁𝑘(𝑥)  – The set 𝑘 nearest neighbors of 𝑥 in the feature space 

• 𝑦𝑖    –  Class label of neighbor 𝑥𝑖 

• majority(. )  –  Returns the most frequent class among the neighbors 

 
Figure 7. Representation of K nearest neighbors 

3.7. Support Vector Machine 

Support Vector Machine (SVM) is a supervised machine learning algorithm used for both regression and 

classification; it gets harder to imagine in feature space or in N dimensions without simulation. The hyperbolic 

plane in Figure 8 aims at maintaining the greatest possible distance between the closest points pertaining to 

various categories. The SVM approach finds the good hyper plane that segregates data points into various 

feature space categories [37, 35]. The dimension of the hyper plane is found by the total number of attributes. 

It aims to maintain the maximum margin between the closest points of different categories. 

 
Figure 8. Representation of Support vector machine 
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The goal function in the optimization problem's dual form gives rise to the main equation. Equation 7 shows 

the Objective Function (Dual Formulation) in this instance. In its dual form, the objective function of the SVM 

is stated as follows given a dataset with 𝑁 sample (𝑥𝑖, 𝑦𝑖),), where 𝑥𝑖 is the input vector and 𝑦𝑖  is the class label 

𝑦𝑖 ∈ {−1,1}. 

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐞:𝑊(𝛼) = ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝑥𝑖 , 𝑥𝑗〉

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑖=1          (7) 

𝐒𝐮𝐛𝐣𝐞𝐜𝐭: ∑ 𝛼𝑖𝑦𝑖 = 0,   0 ≤ 𝛼𝑖 ≤ 𝐶,   𝑖 = 1,2, … , 𝑁𝑁
𝑖=1       (8) 

● 𝛼𝑖 Are the Lagrange multipliers (also called dual variables)? 

● C represents the balance of increasing and decreasing margin. it treated as a regularization parameter 

● W (α) is the function to be maximized as the target. 

Finding the optimum levels of the multipliers of Lagrange αi for maximizing W (α) is the dual problem of 

the SVM, which is represented by the objective function W (α). Lagrange multipliers are used to identify 

support vectors and the support vectors are the misclassified or marginal data points. 

3.8. Bidirectional Model 

In order to capture both past and future historical context, a bidirectional GRU analyses the sequence in both 

temporal directions. Two GRU cells are stacked as a forward GRU that reads {𝑋1,..., 𝑋𝑇} and a reverse GRU that 

reads {𝑋𝑇 ,..., 𝑋1}.Each side's hidden states are concatenated at each time step in accordance with the usual GRU 

gating in Eqs. (8–11). 

Forward and backward recurrences and their concatenation shown in Eq. (8 and 9): 

ℎ𝑡
⃗⃗  ⃗  𝐺𝑅𝑈𝑓(𝑋𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    )           , ℎ𝑡
⃖⃗ ⃗⃗ 𝐺𝑅𝑈𝑏  (𝑋𝑡 , ℎ𝑡

⃖⃗ ⃗⃗ -1)       

Context fusion by concatenation: 

ℎ𝑡=[ ℎ𝑡
⃗⃗  ⃗ ;  ℎ𝑡

⃖⃗ ⃗⃗ ] ∈ R2𝐻          (9) 

Sequence labelling prediction (one output per time step) as in Eq. (10):  

𝑦𝑡=g( 𝑊𝑜  ℎ𝑡 + 𝑏𝑜)          (10) 

Sequence classification prediction (one output for the entire window) shown in Eq. (11): 

y=g(𝑊𝑜[ ℎ𝑇  
⃗⃗ ⃗⃗⃗⃗ ; ℎ1] +𝑏𝑜)          (11) 

Here, g(⋅) is a task-appropriate activation (e.g., sigmoid for binary classification), HHH is the number of units 

per direction, and [⋅ ; ⋅]denotes vector concatenation. BiGRU has computational efficiency similar to a 

unidirectional. 

 

4. Research Methodology 

The purpose of this proposed study is to investigate whether using machine learning that may lead to a 

reduction in error and an increase in accuracy. 

4.1. Dataset Analysis 

The dataset comprises daily meteorological observations retrieved from the Visual Crossing weather 

platform, including temperature (maximum, minimum, and average), humidity, dew point, wind speed, and 

rainfall-related parameters such as precipitation, precipitation probability, and precipitation coverage. Each 

record represents one day’s data, forming a structured time series suitable for rainfall classification and 

prediction experiments. 

A few missing values were found during the analysis of the dataset. The missing values are shown in Figure 

10. Sea level pressure is the only characteristic without a value. Over a range of time periods, it was discovered 

that the sea-level pressure (SLP) variable frequently and sporadically had missing values. To prevent potential 

noise amplification and maintain data integrity, this feature was excluded from the model training procedure. 

None of the other meteorological variables had any missing values after preprocessing. The missing value for 

other features is 0%. 

The dataset size is provided according to the number of rows, columns, type unit, and characteristics in 

Tables 4 and 5. This comprehension makes it simpler to understand the features of the dataset and the kinds 

of factors that are considered when making rainfall predictions. 
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Figure 9a. Representation of Pakistan Station’s Dataset 

 
Figure 9b. Representation of Pakistan Station’s Dataset 

 
Figure 10. Features Missing values representations 

Table 4. Data table set Description 

Dataset Description 

Year 2011 to 2023 

Size 4778 rows, 33 column 

Features 7 categorical, 24 numeric 

Targets categorical outcome with 2 classes 

Location Karachi, Pakistan 
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Meta’s 1 text 

Table 5. Features for Deep Learning and Machine Learning Model Training 

Sr. 

No 

Feature Feature Description Type Units 

1 name This probably refers to the location's name or 

address where the weather forecast is given (e.g. 

Karachi, Lahore) 

object String 

2 Date time: This is the date and time for which the weather 

conditions are forecasted. It includes information 

about when the forecast was issued and the period 

it covers. 

object Time 

stamp 

3 Temp 

max 

Maximum temperature expected during the forecast 

period. 

float Celsius (°C) 

4 Temp min Minimum temperature expected during the forecast 

period 

float Celsius (°C) 

5 Temp The general temperature during the forecast period, 

likely an average or current temperature. 

float Celsius (°C) 

6 Feels like 

max 

Maximum "feels-like" temperature, which takes into 

account factors like humidity and wind to estimate 

how the temperature might feel to a person. 

float Celsius(°C) 

7 Feels like 

min 

Minimum "feels-like" temperature. float Celsius (°C) 

8 Feels like The general "feels-like" temperature during the 

forecast period. 

float Celsius (°C) 

9 Dew The temperature at which moisture saturation of the 

air occurs and dew formed is known as the dew 

point. 

float Celsius (°C) 

10 Humidity The relative humidity level, indicating the amount 

of moisture in the air. 

float Percentage 

(%) 

11 Precip Precipitation, which could include rain, snow, sleet, 

etc. 

float Millimeters 

(mm) 

12 Precip 

prob 

Probability of precipitation occurring. int Percentage 

(% 

13 Precip 

cover 

The extent or coverage of precipitation in the 

forecast area 

float Percentage 

(%) 

14 Precip 

type 

The type of precipitation (rain, no rain, etc.). object categorical 

15 Snow Amount of snowfall expected. int64 Centimeters 

(cm) 

16 Snow 

depth 

Depth of snow on the ground. int64 Centimeters 

(cm) 

17 Wind 

gust 

The maximum wind gust expected during the 

forecast period. 

float Meters per 

second (m/s) 

18 Wind 

speed: 

The aerage wind speed. float Meters per 

second (m/s) 

19 Wind dir Wind direction characteristic, showing the direction 

of the wind. 

float Degrees (°) 

20 Sea-level 

pressure: 

Atmospheric pressure at sea level. float Hectopascal

s (hPa) 
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21 Cloud 

cover 

The proportion of cloud cover in the sky. When 

humid air rises and cools, water vapor condenses 

into little water droplets or ice crystals, which is 

how clouds are formed. 

float Percentage 

(%) 

22 Visibility The point at which elements are clearly 

apparent.(Visibility is a crucial parameter in 

weather forecasting and is often linked to various 

atmospheric conditions Example fog, rainfall, wind 

gust) 

float Kilometers 

(km) 

23 Solar 

radiation 

The level of sunlight that penetrates the earth. (Solar 

radiation is the primary source of energy that drives 

evaporation from the Earth's surface, particularly 

from oceans, lakes, and moist land areas. As water 

vapor rises into the atmosphere, it can condense to 

form clouds.) 

float Watts per 

square 

meter 

(W/m²). 

24 Solar 

energy 

The solar energy available during the forecast 

period.(solar energy is a fundamental component of 

the Earth's climate system, driving the water cycle 

and influencing the processes that lead to 

precipitation) 

float Watts per 

square 

meter 

(W/m²) 

25 Uv index ultraviolet index, which shows how strong the sun's 

UV radiation is. 

(Ranges Minimal risk=0–2 , Medium risk 6-7, 

Extreme risk,  8–10 = Very high hazard 11 +.) 

int64 Unit less 

26 Severe 

risk 

The risk or severity of severe weather conditions. 

(The specific feature values associated with severe 

weather risk can vary depending on the region, the 

type of severe weather event, and the criteria used 

by meteorological agencies.) String (e.g., Low, 

Moderate, High) 

int64 categorical 

27 Sunrise Time of sunrise. object Date/Time 

28 Sunset Time of sunset. object Date/Time 

29 Moon 

phase 

the moon phase, such as full or half moon. It can be 

written as a continuous variable with a range of 0 to 

1. This 0 to 1 describe half-moon and full moon 

Float categorical 

30 Condition

s 

General weather conditions, such as clear, cloudy, 

etc. 

object string 

31 Descriptio

n 

Additional descriptive information about the 

weather. (E.g. partly cloudy etc.) 

object string 

32. Icon Weather icon, often used for graphical 

representation in weather apps. 

object string 

33. Stations Weather stations providing the forecast data. object string 

One of the ways to predict precipitation; whether it will rain or not in this research is by classifying 

precipitation through machine learning algorithms that determine yes or no based on the amount of available 

weather information. Fig 11 shows the total number of rain and no rain. 
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Figure 11. Representation of precipitation in term of rain and no rain 

A graphical representation of the several factors influencing the intricate process of rainfall is shown in Fig 

12. These variables include a wide range of things, such as temperature gradients, geographical characteristics, 

and atmospheric conditions. This illustration attempts to capture the complex interactions between several 

factors that affect the amount and frequency of rain and the multiple nature of rain creation. 

Together, the mean, median, mode, and distribution analysis in Table 6 help us extract important insights 

from the dataset, which in turn helps us shape our following analytical approaches and improves the precision 

of our conclusions. This table is essential for rainfall prediction in Pakistan as it provides statistical insights 

into key meteorological factors such as temperature, humidity, wind speed, cloud cover, and precipitation 

probability. Analyzing the mean, mode, median, and dispersion helps detect patterns, seasonal trends, and 

extreme weather conditions. The significant variability in humidity, pressure, and wind speed indicates their 

strong impact on rainfall. Additionally, the high occurrence of zero precipitation values suggests an 

imbalanced dataset, requiring proper preprocessing. These insights support the selection of suitable machine 

learning models, enhancing prediction accuracy for better water resource management and disaster 

preparedness. 

For early processing, a data mining approach is employed to convert messy and imprecise input into a 

structure that the model can easily understand without ambiguity. Large number of data that are collected are 

inaccurate, imbalanced, and missing, also a lot of extra information contain that are not valuable for 

experiment.  

Data investigation and estimation indicate that the raw model data with the exception of a single missing 

number of sea level pressure is complete and contains no null, redundant or invalid values. In the 

preprocessing phase of feature selection, it is only possible to select those features that can be relevant in our 

rainfall forecasting model. Consequently, the time used in training reduces and accuracy of the model 

improves. Table 6 and Figure 13 indicate the coefficient of rainfall correlation with various variables. 

Subsequently, there is feature dropping of the work. In order to facilitate modeling further, a correlation with 

the both independent and dependent variables is calculated. The columns that followed were omitted. As 

indicated in table 7, the characteristics related to UV index and solar radiation were the least correlated with 

the rainfall variable. These attributes were removed before the modeling. 
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Figure 12. Illustration of various factors that influence precipitation 

Table 6. Histogram, and central tendency of dataset 

Name Distribution Mean Mode Median Dispersion Min. Max. 

temp 

maxp 
 

89.6 91.4 91.3 0.080 62.6 116.5 

Temp 

min  

71.799 80.5 75.2 0.159 31.9 91.3 

temp 

 

79.990 86.1 83.0 0.102 55.8 100.1 

Feels 

like max  

93.369 78.8 94.8 0.117 62.6 123.8 

Feels 

like min  

74.188 78.7 75.2 0.194 19.0 104.9 

Feels 

like  

83.512 95.6 85.4 0.141 54.6 108.8 

dew 

 

61.364 74.3 67.0 0.242 4.0 80.1 

humidit

y 
 

57.601 67.0 62.9 0.258 10.9 91.7 

precip 

 

0.0297 0.00 0.00 6.8773 0.00 5.899 

Precip 

prob  

13.16 0 0 2.57 0 100 

Precip 

cover  

5.1513 0.00 0.00 3.4806 0.00 100.00 

Wind 

gust 
 

3.544 0.0 0.0 2.307 0.0 51.9 

Wind 

speed  

17.804 13.9 16.1 0.672 5.8 198.0 
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Wind 

dir.  

209.42 243.9 242.6 0.422 0.1 360.0 

Sea 

level 

pressure 

 
1008.8

35 

 1009.1 0.007 993.5 1023.3 

Cloud 

cover  
34.787 0.0 30.450 0.837 0.0 100.0 

visibilit

y 
 

3.453 3.5 3.5 0.153 1.1 5.4 

Solar 

radiatio

n 
 

234.89

6 

283.3 238.9 0.211 18.0 340.2 

solar 

energy 
 

20.288 25.7 20.6 0.212 1.6 29.4 

uvindex 

 

8.04 9 8 0.17 1 10 

severe 

risk  

3.01 0 0 3.31 0 100 

moon 

phase  
0.4828 0.25 0.50 0.5979 0.00 0.98 

sunrise 

 

2017-

07-16 

18:36:4

5.0242

78 

2011-01-

01 

07:16:48 

2017-07-16 

17:52:28 

~13 years 2011-

01-01 

07:16:

48 

2024-

01-31 

07:15:1

6 

sunset 

 

2017-

07-17 

06:45:2

7.8193

80 

2011-01-

01 

17:53:57 

2017-07-17 

07:23:34 

~13 years 2011-

01-01 

17:53:

57 

2024-

01-31 

18:15:4

6 

name 
 

- Karachi - 0 - - 

snow 
 

- 0 - 0 - - 

Snow 

depth  
- 0 - 0 - - 

conditio

ns  

- Partially 

cloudy 

- 1.06 - - 

descript

ion 
 

- Partly 

cloudy 

through

out the 

day. 

- 1.46 - - 

icon 

 

- partly-

cloudy-

day 

- 1.1 - - 

stations 

 

- 4178009

9999,OP

- 1.47  - 
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KC,rem

ote 

Precip 

type  
- no rain - 0.39  - 

 

 
Figure 13. Visual depiction of the relationship between attributes. 

Table 7. Correlation coefficients of precipitation with various features 

mont

h 

yea

r 

moo

n 

phas

e 

sever

e 

risk 

Uv 

inde

x 

Solar 

ener

gy 

Solar 

radiati

on 

visibil

ity 

Clou

d 

cover 

Sea 

level 

pressur

e 

Win

d 

dir. 

Win

d 

spee

d 

Win

d 

gust 

0.037 0.0

5 

0.003 0.003 -0.19 -0.15 -0.1 0.15 0.16 0.015 0.006 0.01

5 

0.00

6 

Preci

p 

cover 

Precip 

probabi

lity 

preci

p 

humidi

ty 

dew feels 

like 

Feels 

like 

min 

Feels 

like 

max 

tem

p 

Temp_

min 

Temp_max 

0.61 0.37 1 0.18 0.13 0.1 0.088 0.1 0.06

9 

0.093 0.015 

4.2. Proposed Methodology 

The study is being conducted of Pakistan weather, and the data used in the analysis came from Visual 

Crossing, a source of historical and forecast meteorological information. Fig 14 depicts the thinking chart that 

served as a guide for doing this investigation.  

This methodology clearly defines the general modeling workflow, but technical detail is needed to ensure 

reproducibility, such as clearly defining the hyperparameters of each model, the ratio of training–test split and 

the validation strategy (K-fold cross-validation), the steps taken for data preprocessing (e.g., handling missing 
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values, feature scaling method, and any approach used for class imbalance), and for hybrid or ensemble 

models, a clear description of how the weights of the component models were defined and how optimization 

was applied to the final predictions. 

 
Figure 14. Proposed methodology of the study 

4.2.1. Data Collection and Preprocessing 

Information gathered from the Visual Crossing website's historical weather data for Pakistan, including 

variables like humidity, wind speed, temperature, atmospheric pressure, cloud cover, and precipitation.  

4.2.2. Feature Selection 

Feature selection is a process in machine learning for identifying the most important attributes for rainfall 

prediction and dropping the unnecessary. 

4.2.3. Feature Encoding 

In machine learning, feature encoding is the process of transforming non-numeric or categorical data into a 

numerical format so that algorithms that need numerical input can use it. Some features in this investigation 

were transformed into numerical 

4.2.4. Feature Scaling 

Normalization is kind of like pulling some features towards the same level as feature scaling is the process 

of scaling features. This sought to ensure that the created dataset for the current models was bias free and that 

the features in the current data set had been standardized utilizing the current feature scaling standards. The 

equation (12) for feature scaling through the z-score scaling standardization approach is as follows, the feature 

scaling is done feature by feature. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑= 
𝑥− 𝜇

𝜎 
         (12) 

Where  

x = original value of the feature, 

μ = mean (average) of the feature in the dataset, 

σ = standard deviation of the feature in the dataset, and 

 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = scaled value of the feature 

4.2.5. Model Selection and Training 
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Some of the methodologies used to forecast rainfall were the Naive Bayes, AdaBoost, Logistic Regression, 

Gradient Boosting Machine (GBM), Decision Tree Classifier (DTC), Random Forest (RF) and Support Vector 

Machine (SVM). The model performance was checked with the help of cross-validation which separated the 

dataset into two parts namely the training and the testing dataset. The data was divided into five folds and all 

the models were trained and validated 5 times- each fold must act as a validation and rest four as a training 

set. The mean cross-validation results were compared to find out the most effective model in predicting the 

rainfall.  

Each model was manually tuned with the help of a Grid Search approach that was run over a five-fold cross-

validation. The number of estimators, learning rate, maximum depth of the tree and the kernel functions 

(where applicable) were individually optimized in each algorithm to avoid overfitting and fairness. This  

4.2.6. Assessment Statistics. 

This experimental study utilized some metrics to evaluate the efficacy of the model assessment measures for 

binary classification tasks, including recall, accuracy, precision, F1-score, and ROC-AUC. 

4.2.7. Model Evaluation and Validation 

Utilize confusion matrices and ROC curves to visualize model performance and assess classification 

thresholds. 

 

5. Novelty of Work 

This paper introduces a locally optimized, data-intensive rainfall prediction system in Pakistan with a special 

interest in Karachi, as a representative urban area. Unlike the previous analyses that utilized the models that 

were generalized or region-agnostic, the research derives and analyses seven state-of-the-art machine learning 

models, including those of Random Forest, Gradient Boosting, AdaBoost, Decision Tree, Logistic Regression, 

KNN and SVM, that were trained and tested on high-resolution meteorological data acquired in the Visual 

Crossing dataset. Multi-parameter tuning of the suggested models minimizes the bias and variance to make 

the models robust and comparable. The biggest innovation in this is the weaving of 33 different meteorological 

variables, such as temperature, humidity, dew point, pressure, wind speed, wind direction, solar radiation, 

and soil moisture, into a single dataset, which allows predicting the occurrence of rainfall with even greater 

accuracy over time.  

Furthermore, incorporation of new variables like solar radiation and soil moisture provide an extension of 

the feature space typically employed in rainfall prediction across Pakistan, providing a more detailed picture 

on the behavior of the atmosphere. The statistical reliability and generalization performance of each of the 

models are validated using rigorous validation measures such as fivefold cross-validation, precision-recall and 

ROC-AUC measures. The findings reveal that ensemble models especially Random Forest and Gradient 

Boosting are more stable and interpretable in the prediction than the conventional classifiers (Logistic 

Regression and Multivariate Linear Regression).  

Also, a Bidirectional Long Short-Term Memory (BiLSTM) deep learning model was included, which included 

sequential temporal dependencies of rainfall data, and the test accuracy was 99.8%. This increases the resilience 

of deep learning solutions to complement machine learning solutions to meteorological predictions. The study 

also theoretically constructs a prototype early-warning system that incorporates predictive models with flood 

preparedness communication systems, which provide a theoretical base on how it can be implemented 

practically. In general, the analysis adds a scalable analytical framework of climate resilience and adaptive 

weather forecasts to apply in Pakistan and other semi-arid urban areas. 

 

6. Results and Analysis 

6.1.  Machine Learning Models Results 

Figure 15 illustrates the general steps like selection of column (feature selection) involved then creating a 

model for prediction. The model predictor utilize in this study are the (RF) Random Forest gives accuracy 

0.997,(GB) Gradient Boosting with accuracy 0.994 , AdaBoost(AB) accuracy rate (0.996) ,(SVM)Support Vector 

Machine with accuracy rate 0.500(50%), (NB)Naïve Bayes provide over fitting in result producing 100% 
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accuracy rate, and (KNN) k-Nearest Neighbor algorithms with accuracy rate 0.907. best result provided for 

rainfall prediction Adaboost and random forest 

 
Figure 15. Data Mining Software's Classification Process (Orange Ver. 3.23.1) 

To determine the model's reliability, the outcome of the model of each approach is verified using a small 

amount of input data. To determine which method is the best, the test results are also compared to obtain the 

highest precision value. In this experiment during the testing phase, the collection of information is divided 

into two distinct groups: testing data and training data. Eighty percent (80%) of the training data is used in a 

mining operation to get likelihood values, and the remaining twenty percent (20%) of test data is used to 

validate the probabilistic values that have been produced. 

6.2. Matrix of Confusion  

When assessing how good binary classification models perform, such as the one that predicts whether it will 

rain or not, the ROC curve and confusion matrix are essential tools. The accuracy, precision, and recall of the 

exam results are assessed using a confusion matrix test. The objective of the test results is to evaluate the 

accuracy and Area under the Curve (AUC) of the 10-fold Cross Validation procedure. For each algorithm, the 

test results are displayed in figures 16 through 22 below. 

’ 

      Figure 16. Confusion Matrix for Logistic Regression 

The findings shown in Fig 16 demonstrate that Logistic regression algorithm yields an accuracy rate of 35%. 

Of the total datasets analyzed (4778 datasets), 3649 datasets have valid predictions. 

The findings shown in Fig 17 demonstrate that Naïve Bayes algorithm yields an accuracy rate of 100%. Of 

the total datasets analyzed (4778 datasets), 4776 datasets have valid predictions. 

The findings shown in Fig 18 demonstrate that the Random algorithm yields an accuracy rate of 99%. Of the 

total datasets analyzed (4778 datasets), 4772 datasets have valid predictions. 
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Figure 17. Confusion Matrix results for Naïve Bayes 

 
Figure 18. Confusion Matrix results for Random forest 

 
Figure 19. Confusion Matrix results for Support Vector machine  

The findings shown in Fig 19 demonstrate that SVM algorithm yields an accuracy rate of 50%. Of the total 

datasets analyzed (4778 datasets), 3682 datasets values have valid predictions 

 
Figure20. Confusion Matrix results for K nearest neighbors 

The findings shown in Fig 20 demonstrate that KNN algorithm yields an accuracy rate of 90%. Of the total 

datasets analyzed (4778 datasets rows), 4215 datasets values have valid predictions 

 
Figure 21. Confusion Matrix results for Gradient Boosting Algorithms 
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The findings shown in Fig 21 demonstrate that Gradient Boosting algorithm yields an accuracy rate of 99%. 

Of the total datasets analyzed (4778 datasets rows), 4774 datasets values have true predictions 

 
Figure 22. Confusion Matrix results for Ada boost 

The findings shown in Fig 22 demonstrate that AdaBoost algorithm yields an accuracy rate of 99%. Of the 

total datasets analyzed (4778 datasets rows), 4773 datasets values have true predictions. 

The classifier accuracy, or classification accuracy, is a key metric for evaluating the performance of a 

classification model. In fact, accuracy is a measure of the degree to which the predicted and actual values are 

close. In a binary classification scenario (such as predicting rain or not), accuracy is simply the number of cases 

in the dataset divided by the number of correctly identified examples (true positives and true negatives). The 

results highlight the precision, recall, accuracy, and AUC values for each test, as shown in Table 8, which shows 

the maximum accuracy results for the naïve Bayes, random forest, and AdaBoost tests at 100%, 0.997%, and 

0.996, respectively, and the lowest precision values of 0.99, 0.998, and 0.998. 

On the validation data, Naïve Bayes attained 100% accuracy, indicating overfitting because of the 

independence assumption. Its probabilistic assumptions restrict generality for coupled meteorological 

characteristics, despite its effective performance on straightforward datasets. 

The comparative findings show that ensemble classifiers like Random Forest, Gradient Boosting, and 

AdaBoost are superior to the conventional classifiers because of their innate capacities to embrace nonlinear 

associations among climatic predictors and to reduce variance by means of aggregation of numerous weak 

learners. Their tree-like design enables them to capture complex interactions between features, e.g. between 

temperature, humidity, and wind direction, which cannot be effectively captured by linear models such as 

Logistic Regression or SVM. This is why the accuracy of ensemble models and their ability to recall and to be 

used as ROC are always greater, which proves that they are capable of meteorological data that are 

heterogeneous. 

Table 8. Table of test results for accuracy values 

S.N Models Name AUC CA F1 Precision Recall 

1 Logistic Regression 0.357 0.859 0.794 0.738 0.859 

2 Random Forest 0.997 0.999 0.999 0.999 0.999 

3 Naive Bayes 1.000 0.999 0.999 0.999 0.999 

4 Support vector machine 0.500 0.141 0.035 0.020 0.141 

5 k Nearest neighbors 0.907 0.909 0.900 0.901 0.909 

6 Gradient boosting 0.994 0.998 0.998 0.998 0.998 

7 Adaboost Classifier 0.996 0.997 0.997 0.997 0.997 

In table 8 Support Vector Machine (SVM) and logistic regression (LR) models performed relatively worse 

than ensemble methods because their linear decision bounds cannot capture nonlinear correlations, which are 

prevalent in climatic variables such as temperature–humidity interactions and wind–pressure coupling. 

Ensemble methods such as Random Forest and AdaBoost, which utilize multiple tree-based learners, can 

model complex feature dependencies and reduce variance. 

The results of this study show that a few models achieved near-perfect levels of accuracy, including Random 

Forest and Naive Bayes, but the near-perfect accuracy of the Naive Bayes model indicates that it may have 

over fit. Naive Bayes will be less flexible to accommodate new rainfall patterns that are not like those in the 

training set, but Random Forest is an ensemble technique that averages predictions over a set of decision trees, 

and is therefore less prone to overfit even with high levels of accuracy. Moreover, Gradient Boosting and 
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Adaboost also have high metrics, are more reliable across various measures, and are suitable for prediction 

jobs where data can be varied a lot, because they do not overfit as much as Naive Bayes does for complex 

patterns. Lower performing models such as Support Vector Machine and Logistic Regression struggled with 

predictive accuracy, which suggests that they may not be as well-equipped as ensemble approaches to deal 

with the complexity and non-linearity of the rainfall data. K Nearest Neighbors performed relatively well 

compared to the more reliable ensemble approaches, but can be influenced by noise and size of dataset. 

6.3. ROC Curve Machine Learning Models 

The ROC curve plots the true positive rate (TPR) on the y-axis versus the false positive rate (FPR) on the x-

axis across different threshold settings to show the trade-off between the true positive rate (sensitivity) and 

false positive rate (1 - specificity) of a binary classification model. The ROC curve is a useful tool to evaluate 

the discriminant power of the machine learning algorithms, and the results are shown in Figures 23 and 24. 

Therefore, the ROC curve is informative about the performance of the model over the range of thresholds, and 

it is a two-dimensional graph with the false positive rate (FPR) as the horizontal axis and the true positive rate 

(TPR) as the vertical axis. 

The Random Forest model outperformed all other algorithms in achieving the most balanced trade-off 

between sensitivity and specificity, suggesting that it is appropriate for rainfall-related decision-support 

systems where both erroneous positives and false negatives have operational significance. 

 
 Figure 23. ROC values of Algorithms for target no rain  

6.4. Deep Learning Models Results 

The Bidirectional Long Short-Term Memory (BiLSTM) was a model that performed exceptionally well in the 

rainfall classification. The model had a test accuracy of 99.89 with a test loss of 0.0250 after 80 epochs with the 

use of data balancing and SMOTE alongside potent regularization approaches, including dropout, batch 

regularization, Gaussian noise, and L2 regularization. The near-perfect accuracy of the classes: rain and no rain 

prove the strength of the model. The fact that the training and validation curves fit perfectly points to the fact 

that the training did not overfit, and the distribution of the confidences shows very credible predictions. These 

results emphasize that the BiLSTM model is quite useful in capturing temporal dependencies and non-linear 

meteorological patterns and it is more accurate and generalized than traditional machine learning models. 
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Figure 24. ROC values of Algorithms for target rain 

Table 9. Deep learning Models result table 

Parameter / Metric Value 

Model Type BiLSTM 

Data Split 80% Train / 20% Test 

Balancing Method SMOTE 

Optimizer Adam (LR = 0.0002) 

Loss Function Categorical Cross-Entropy 

Epochs / Batch Size 80 / 32 

Regularization Dropout (0.5–0.3), L2(0.001), BatchNorm 

Train Accuracy 99.92% 

Validation Accuracy 99.89% 

Test Accuracy 99.89% 

Test Loss 0.0250 

6.5. Criterion for Evaluating Model Confusion Matrix 

The most common metrics in machine learning are performance metrics, or measurements that evaluate how 

well a model is performing some task; this can be as general as clustering and other tasks, or as specific as 

classification and regression. The measures chosen are heavily influenced by task characteristics. One of the 

most commonly used techniques for evaluating classification models is a confusion matrix, a two-by-two table 

that shows the counts of true positives, true negatives, false positives, and false negatives. The situations that 

our model correctly identified as positive, which means good positive identification is True Positives (TP). The 

true negative cases, or correctly identified negative outcomes are the negative predictions. Conversely, Type I 

errors result in False Positives (FP), which is a positive result on a negative event by the model. Finally, Type 

II errors are 

6.5.1. Accuracy 

 All it measures is the frequency with which the classifier makes accurate predictions. The ratio of the number 

of accurate forecasts to the total number of predictions (see equation 13) can be used to determine accuracy. 
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Accuracy=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
        (13) 

 

The "Number of Correctly Classified Instances" indicates the number of data records that the algorithm 

correctly classified. The "Total Number of Instances" parameter indicates the total number of data records in 

the dataset.  

6.5.2. Precision (Positive Predictive Value) 

This can explain why so many situations which were accurately predicted were indeed positive. Precision is 

important in the cases described in equation 14 where false positives are a lot worse than false negatives. 

 Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                      (14) 

6.5.3. Specificity (True Negative Rate): 

  The specificity of a diagnosis test is explained by Equation 15 as accurate negative predictions divided by 

total observed negative cases. 

 Specificity: 
𝑇𝑁

𝑇𝑁+𝐹𝑃
          (15) 

6.5.4. Recall (Sensitivity, True Positive Rate):  

This prescribes how many actual positive cases our model was able to predict with absolute certainty. Recall 

comes is handy measure whenever False Positive is of higher concern than False Negative as shown in equation 

16. 

Sensitivity: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (16) 

6.5.5. Matthews Correlation Coefficient (MCC) 

The MCC provides a fair assessment of classification performance, especially when dealing with datasets 

that are unbalanced and have a large difference in the proportion of positive and negative samples shown in 

equation 17. 

MCC
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
        (17) 

 

7. Limitation of Work 

There are some limitations in this study, despite positive performance results observed in the proposed 

models. The models might not be effective to generalize to other areas in Pakistan because of time and space 

limits in the dataset. Consistency of prediction can also be different with variation in quality of data, resolution 

as well as local climatic variability.  

Moreover, the models do not use dynamical features and they are not connected with real-time sensor data 

and large scale meteorological indices like ENSO or NAO. Whilst the models have been successful in the area 

of training, their applicability in new time patterns and invisible climatic areas is still unclear. 

Real-time rainfall forecasting would require automation of the data ingestion process, retraining of the 

model, and frequent calibration of the model with satellite- and IoT-collected meteorological data streams to 

be practically deployed. The future research to improve the operational reliability of the model should thus 

focus on multi-source dataset construction and the implementation of more sophisticated hybrid optimization 

methods. 

 

8. Conclusion 

The main aim of this research was to create a correct and effective machine learning and deep learning -based 

rain classification model using meteorological data of the Visual Crossing weather portal in relation to 

Pakistan. The sample size of 4,778 observations and 33 climatic variables (data) was used to train and test seven 

different sophisticated machine learning models to predict rainfall. The results show that machine learning 

algorithms could be successfully used to form a meteorological data with clear categorical characteristics that 

are identified in the form of Receiver Operating Characteristic (ROC) curves and Confusion Matrix. Random 

Forest was the most accurate with 0.997 followed by AdaBoost (0.996) and Gradient Boosting (0.994), which 

validated their robust predictor variables of rainfall in the short term. Although it was not as precise, the K-



Journal of Computing & Biomedical Informatics                                                                                             Volume 09  Issue 02                                                                                         

ID : 1113-0902/2025  

Nearest Neighbor (0.907) still exhibited potential practicality in rainfall classification. These findings confirm 

that ensemble learning approaches are better than the classical classifiers, including the Logistic Regression, 

Support Vector Machine, and Naive Bayes, in solving prediction problems related to weather. Random Forest 

model, especially, was very reliable and robust and thus it is an appropriate choice in operational weather 

forecasting. Notably, a deep learning-based Bidirectional LSTM (BiLSTM) model was created and tested as 

well. It had a test accuracy of 99.89% with the least loss meaning that it was learning at an exemplary level of 

stability and prediction. It proves that by combining deep learning architectures with machine learning 

ensembles, the accuracy of rainfall prediction can be further improved, and this approach will become a 

promising way to improve climate analytics and operational weather forecasting systems in the future. The 

next direction in work will be the creation of a completely integrated AI-based early warning system that will 

integrate predictive modeling with real-time communication infrastructure to warn communities in rain-prone 

areas. This system would improve preparedness against disasters, improve the effects of floods, and promote 

climate resilience measures throughout Pakistan. 

 

Abbreviations: 

KNN:  K-Nearest Neighbors 

GBM: Gradient Boosting Machine 

NB: Naïve Bayes 

RF:  Random Forest 

LR:  Logistic Regression 

ROC:  Receiver Operating Characteristic 

FPR:  False Positive Rate 

TPR:  True Positive Rate 

SVM:  Support vector machines 

BiLSTM: Bidirectional Long Short Term memory 
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