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Abstract: This research seeks to improve rainfall forecasting, which is essential to agricultural
operations, water management, and disaster preparedness, especially in floods and droughts. Proper
forecasting of rainfall is critical in the sustainable development by preventing the effects of extreme
weather conditions like flooding that may cause loss of life, health problems, and economic
disturbances. Nevertheless, because of the unpredictable character of rainfall, the traditional forecasting
models have proven to be a great problem since in most cases they lack the ability to understand the
complicated set of interactions that determine the formation of meteorological patterns. To solve this,
the research uses different machine learning (ML) algorithms, such as Random Forest (RF), Logistic
Regression (LR), Support Vector Machine (SVM), AdaBoost, Gradient Boosting, K-Nearest Neighbors
(KNN), and Naive Bayes (NB) to offer better predictions in Karachi, Pakistan. The dataset used is the
one that was provided by Visual Crossing and had 33 weather-related variables, including temperature,
humidity, the speed of wind, and air pressure, and 4,778 observations between 2011 and 2023. A
thorough process of data preprocessing such as data cleaning, transformation, and selecting features
was applied prior to the division of dataset into a training set and a test set. The model was evaluated
using the 5-fold cross-validation and the performance was assessed as precision, recall, accuracy and
ROC curves. Random Forest has proved to be the most accurate with 99 percent of them and Naive
Bayes has reported the overfitting nature of all models. AdaBoost and Gradient Boosting had a similar
performance whereby both dealt with the problem of overfitting. Moreover, a deep learning network
(BiLSTM) was used to identify temporal correlations in the sequence of rainfall which also
demonstrated a test accuracy of 99.8 that confirms the reliability of deep learning models in addition to
conventional ML models. The results show that machine learning, as well as deep learning algorithms,
can learn and comprehend complex climate patterns and can considerably improve the accuracy of the
weather predictions. These models can be utilized to make more informed decisions using the data on
climate resilience, disaster preparedness, and sustainable environmental management.
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1. Introduction
Rain, snow and or sleet are capable of having an impact on activity, as these are forms of precipitation that
affect many activities that happen outdoors. It is very important that rainfall be predicted to the closest best to
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enable those in various fields make the right decisions of whether or not to engage in certain activities. Flood
disasters resulting from heavy rainfall events have significant societal and economic impacts [2]. There have
been several devastating flash flood disasters in Asia and the Pacific, both in urban and rural areas. A number
of the countries affected by the recent floods that have attracted public notice are Pakistan, China, India,
Indonesia, Mongolia, and Nepal. The biggest flooding in Pakistan's history occurred in 2022, when the country
was completely submerged under water. The (United Nations International Children's Emergency Fund)
UNICEF reported the floods occurred in 2022 that damaged more than 84 districts. 5 million children. Among
an estimated 20 million people needing emergency aid now as a consequence of the heavy flood occurrences,
there are approximately 10 million children. Due to the tremendous levels of flooding, millions of people battle
for their lives as well as illnesses like cholera, dengue, typhoid, malaria, and acute diarrhea carried on by
stagnant and unclean water. Besides, human lives are lost, with significant implications on infrastructures in
terms of property, loss of agricultural infrastructure [7, 32, 44], and political stability. Therefore, in order to
optimize resource management, increase readiness, and make wise judgments amid severe weather
conditions, accurate and dependable rainfall forecasting is necessary [3-4]. Effective disaster monitoring and
management is a worldwide concern. One of the most challenging scientific and technological challenges of
the past century has been global rainfall prediction [5, 6, and 8]. Among the ML models RF, MLR, and XG
Boost were also designed and tested by [9] using the same environmental data to calculate rainfall amounts
that would probably fall during a particular day. A deep neural network in this work [13] which explores the
opportunities for flooding, it was taken into consideration multiple different factors such as rain volume and
temperature. The wavelet theory with MTLNN, in this model, are proposed as an efficient prediction method
for rainfalls [14]. Al-based ensemble technique [26] proved further the accuracy of the forecast than the
conventional method. Stated experimental results [37] pointed out that the hybrid models were more suited to
create generalization with less errors and less computation costs in prediction of rainfall; also they converge to
targeted values faster compared to single model. By implementing Random Forest (RF), Multiple Linear
Regression (MLR), Support Vector Regression (SVR), and Multivariable Adaptive Regression Splines (MARS),
the average weekly and daily rainfall at Rachini station [38] was forecasted

Data mining techniques [40] have proven more effective than traditional statistical models for rainfall
forecasting, as shown in studies using climatic data from southern Saudi Arabia. A study on the West African
coast [45] (1981-2015) emphasized the significant role of intense rainfall frequency and inadequate distribution
in causing severe floods, which affect the ecosystem, agriculture and human settlements. Precise forecasting
of rainfall is therefore an essential aspect of early warnings of floods as well as disaster preparedness. Artificial
Intelligence (AI) has become an effective instrument that can enhance the accuracy and effectiveness of rainfall
prediction. The paper combines several hybrid AI methods, such as the use of neural networks with
optimization algorithms such as ACO, PSO and MRA to come up with superior models on both short-term
and long-term rainfall forecasting [55]. More sophisticated systems, like streamlined flood prediction systems
[63, 64], and predictors, such as the logistic regression and SVM [77], improve predictive accuracy. On the
whole, the hybrid ML-DL approach will enhance the severity of the initial warning systems, which will aid the
community and decision-makers in reducing the effects of floods in (Fig. 1).

Floods are also one of the most devastating natural disasters that lead to loss of lives, destruction of
infrastructure and short term and long term economic and environmental effects. The rise in water is very high
and can cause deaths and massive displacement as experienced in China, Mekong Delta Vietnam and other
flood-prone areas [7883]. Diseases like cholera and dengue, water contamination, and poisonous pollution are
other diseases that are spread as a result of floodwaters that pose serious threats to the health of the population
[79, 81]. Floods interfere with industries, agriculture, and transport networks and cause permanent financial
and ecological losses. Pakistan experiences extreme flooding during the monsoon season, which occurs
between June and September, and is a consequence of wet winds blowing through the Arabian Sea. Accurate
rainfall prediction models are thus important in preparing in time against floods, proper resource planning
and reducing the socio-economic and environmental impacts.
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Figure 1. Consequences of Flood

Pakistan is one such place which receives heavy rainfall and floods take the lives of many people in this
country every monsoon season. Research and efforts in rainfall prediction of Pakistan have continued to be
done. There has been an active effort by research scientists and organizations dealing with meteorology in
enhancing the precision of rainfall forecast, particularly during critical monsoon seasons. It is important to note
that it is not an easy task to predict the amount of rainfall accurately particularly in a country that is diverse
and geographically diverse such as India. Unpredictability of monsoon patterns, local conditions, and weather
change place an extra burden of trouble on the process of prediction. This paper compares numerous
conventional machine learning (ML) methods in order to forecast rainfall. The second step is to identify the
best models that can be used to predict Pakistan rainfall. Finally, an extended experiment of the suggested
model is undertaken, and it is well-researched in the present research.

Nevertheless, the majority of rainfall prediction studies that are currently available in Pakistan either use
classical statistical models or single-city datasets, and they do not consistently assess several machine learning
classifiers under the same circumstances. In order to identify the most dependable and practically feasible
method for localized rainfall prediction, there is still a research vacuum in the evaluation and comparison of
ensemble-based models across several meteorological variables.

The final experiments solely concentrate on machine learning (ML) models, even though the original goal of
this work was to compare both ML and DL architectures for rainfall categorization. In order to guarantee
computational efficiency and interpretability with a small dataset size, DL models were purposefully left out
of the results. However, because they guide future model extensions, the literature evaluation incorporates DL
techniques for context and completeness.

Research questions of the study are listed below

RQ1: This study compares and contrasts different Machine Learning Algorithms to identify the best suited
for recommendation system applications.

RQ2: Impact of the variable selection method of the different approaches influencing the precision of Rainfall
forecasting in Pakistan?

RQ3: The research being conducted will concentrate on the effects and viability of utilizing machine learning
and data mining specifically for Pakistan in order to predict weather for agricultural and disaster management
purposes.

RQ4: To what extent can data-driven machine learning models enhance early-warning systems for rainfall
and flood preparedness compared to traditional statistical or rule-based forecasting methods in Pakistan?

RQ5. How does feature selection and preprocessing (including normalization, encoding, and imbalance
handling) impact the accuracy and generalization performance of rainfall classification models?

The research aids in resource allocation and proactive disaster management by improving early warning
systems and rainfall prediction accuracy. The remaining portions of this work are separated into the following
categories: Section 2 examines the theoretical foundations of early rain prediction using multiple machine
learning approaches and provides a comprehensive literature assessment of the tools and resources employed.
The techniques and algorithms are discussed in Section 3. From Section 4-6, study discusses the methodology,
results and learnings made in order to predict early rains using these predictive machine learning algorithms
and working with a dataset.
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2. Background and Significance

Over the recent years, it has come to the realization that a lot of experimentation has resulted in the creation
of a highly effective Rainfall prediction system. Various methods and technologies are usually used to develop
efficient rainfall prediction systems, such as meteorological data analysis, Deep learning, machine learning,
and numerical weather prediction models. The outlook of the thrilling research in the near future implies that
researchers are hopeful of the further developments in the field. The future research areas may include the
optimization of existing models, the inclusion of additional data sources, and the increase in the temporal and
spatial accuracy of predictions, and the development of understanding of complex atmospheric processes that
affect precipitation. Working together, meteorologists, climatologists, and data scientists will probably be
essential to expanding our understanding and creating more accurate prediction systems as the subject of
rainfall prediction develops. The literature reviews of previous works are included here.

Data-driven rainfall studies span diverse regions and methods: Australia’s monthly forecasting compares
ANN, KNN, MLR, and SVR on 24 stations (1970-2014) with five climate factors [1]. A dual framework
combines sensor-driven ANN/DT rain classification with RNN/ES-LSTM seasonal-hourly prediction to aid
flood response [2]. For South Africa’s April-2022 COL floods, MaxEnt highlights elevation and land-use/cover
as key flood drivers and maps province-scale susceptibility [3]. Daily prediction in Vietnam evaluates SVM,
ANN, and PSO-ANFIS [4], while Kerala’s seasonal forecasts (2011-2016) test KNN/ANN/ELM, with ELM
yielding lowest MAPE in monsoon periods [5]. LSTM/RNN with six variables model annual/monthly totals
[6]; a LoRaWAN node with logistic regression is reliable only up to 2-day lead times [7]. A stacking ensemble
(KNN, XGB, SVR, ANN) improves monthly prediction on average but varies by site in the Taihu Basin [8]. For
daily totals, RF, MLR, and XGBoost achieve MAE~4.49/4.97/3.58 and RMSE=8.82/8.61/7.85, respectively [9].

The study [10] may also highlight persistent bugs in the rainfall prediction using a machine learning model,
that is, a scarcity of data, requirement for real-time alerts, and complexities of atmospheric phenomena. It could
additionally deliberate over the shortcomings of the current models and possible ways to make them better.
In this experiment, k-means clustering was implemented [11] for the purpose of data classification of the model
forecast data. Short-term memory modeling recalled, then passed through several modalities of rainfall
(LSTM). Initially, the samples were classified into four parts by using the K-means clustering algorithm. After
that, the LSTM was used to create models for the various types of data. Eight different types of meteorological
characteristics, including the model-forecast rainfall, were used as inputs, and the output was the difference
between the actual and model-forecast rainfall. The developed model was then used to modify the rainfall that
the model anticipated. The extent of how well machine learning models are able to capture the intricacies of
flood dynamics cannot be determined without an appreciation of the input features [12]. The assessment would
involve the different types of data involved in the flood prediction literature such as hydrological,
meteorological, topographical and other pertinent aspects.

Deep Neural Network (DNN) was used to predict the probability of flooding based on temperature and
rainfall and its performance was compared with SVM, KNN, and Naive Bayes model [13]. Nevertheless, the
model was based on the few meteorological variables, and was not hydrologically validated. A Wavelet-
coupled Multi-order Time Lagged Neural Network (WMT-LNN) was also introduced to the field of rainfall
prediction that advances performance by decomposing time-series with the wavelet algorithm [14], yet it is
very data-specific and computationally intensive to run in real-time. In the case of Pakistan, 50-year rainfall
variability was the focus of Bayesian kriging regression to plan and manage [15], although accuracy of spatial
interpolation is strongly dependent on the density of gauges and uniformity of quality data. The Sliced
Functional Time Series (SFTS) model uses local time-dependent rain patterns in the short term [16], but does
not work well in abrupt monsoon transitions or at sparsely covered areas. A smart-city rainfall prediction
system that was based on SVM, DT, Naive Bayes, and KNN was also introduced with the view of real-time
implementation [17]; nevertheless, the reliability of its forecasts remains very low in the situation when the
sensor data are unavailable or distorted, which impacts the performance of the system.
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The study [18] investigates how machine learning algorithms could be integrated with remote sensing data
to improve the accuracy and dependability of rainfall forecasting, however, it is noted that due to a limited
temporal resolution, and sensor calibration challenges, generalization can be curtailed. The ESN and Deep ESN
models of neural networks were implemented in rainfall prediction [19], and Deep ESN performed better than
conventional neural networks and SVR algorithms but is too complex and cannot scale up to large volumes of
data. A hybrid Multilayer Perceptron-Whale Optimization Algorithm (MLP-WOA) method [20] was proposed,
which is more accurate in the predictability of annual rainfall, though it needs much tuning and is
computationally costly. Other hybrid approaches that combine projection pursuit, the particle swarm
optimization, and support vector regression were proposed in efficient rainfall prediction [21]; but its
performance is extremely dependent on the choice of the parameter and can overfit very small datasets. Non-
stationarity and high variability of climatic data are a challenge to the process of predicting rainfall occurrence
using data mining [22] which is feasible.

The article [23] uses machine learning to select features in order to enhance rainfall prediction, and the ANN
accuracy increases between 90% and 91%, but the issue of overfitting exists because of the lack of diversity in
the available data. A more refined deep learning architecture that was optimized through particle swarm
optimization [24] was not so successful, indicating the sensitivity of the parameters and training instability. An
example of an MLP in Ghor (Malaysia) that was hybridized with imperialist, gravitational and CAPSO
algorithms, was shown to achieve better monthly rainfall prediction accuracy [26], but at the cost of expensive
computation and hyperparameters management. A different Al-based ensemble combining FFNN, LS-5VM,
and ANFIS across seven sites in Cyprus increased performance on the basis of linear and nonlinear averaging,
but was region-specific and relied on inter-station data consistency. Comparative studies on ANN-based rain
forecasting [27 28] also showed good performance in dealing with nonlinearities but poor interpretability and
cross-climate performance. Finally, an ANN model developed for daily and monthly rainfall forecasting [29]
achieved stable performance but relied solely on local climatic variables, reducing generalizability across
diverse environments.

The outcomes of this study show that the ANN model can accurately predict and measure precipitation on
a daily and monthly basis utilizing six input parameters: temperature, dew point, humidity, pressure,
visibility, and wind speed. The results show that the ANN model is a promising technique for daily rainfall
forecasting. The testing phase values for R, RMSE, and MAE for the daily rainfall are 0.8063, 0.2247, and 0.0932,
respectively. The performance indicators for R, RMSE, and MAE in the testing part are 0.8012, 0.0731, and
0.0578 for monthly rainfall, correspondingly. Additionally, the results show that monthly rainfall forecasts are
more accurate than daily rainfall forecasts. The creation of the finest flood-determining model feasible is the
aim of this effort [30]. Decision Tree Model is being evolved and improved as a result. This study compares
three machine learning algorithms: To learn Decision Tree (DT), Random Forest (RF), and Gradient Boost (GB).
The classification process considers the following characteristics: Place, Era, Month, min_temp, max_temp,
clouds, rainfall, the number of days it rained, daily temperature, and times when the river was flooded.

The objective of this study [31] was to evaluate the capability of rainfall forecasting models develop The
study [31] evaluates rainfall prediction using LSTM-based architectures compared with traditional machine
learning models, including XGBoost, stacked LSTM, and bidirectional LSTM networks. Results show that the
Bidirectional-LSTM outperforms the stacked variant with two hidden layers, though it requires more
computational time and fine-tuning. In Malaysia, a machine learning system designed to predict rainfall in the
Terengganu area [32] uses NNR, DFR, BDTR, and BLR models to predict rainfall in the region to improve
agriculture and water management but due to the small regional dataset, cannot be generalized to other areas.
The Indian experiment [33] forecasts rainfall till 2030 with ANN-MLP in 34 meteorological subdivisions, and
provides information on water resource planning but with uncertainties related to long-term climate
variability and with no real time validation.

The research [34] assists the stakeholders including farmers and researchers to comprehend the variability in
climate by predicting rainfall with various input variables during monsoon seasons and annual seasons.
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Random Forest model gave the best classification accuracy whereas ARIMA and Neural Networks exhibited
the top performance with meteorological forecasting but the model has a seasonal emphasis so it is not as
adaptable to other climatic regimes. An SVM-HHO hybrid model was created in rainfall time series forecasting
in the Assam region of Cachar which was tested using the CC and the RMSE measures and was found to
perform well with high sensitivity of the parameters. Subsequent survey [36] summarizes big data analytics
methods of rainfall prediction, highlighting their potential but reporting issues with data standardization and
generalization of the model. Comparative analyses of hybrid ML frameworks [37] indicate that such systems
are more accurate, uncertainty is minimized, and convergence rate is more efficient, but these systems are
usually computationally expensive and hard to interpre

A comparison of RF, MARS, SVR, and MLR is done in the study [38] to predict weekly and daily rainfalls at
Ranichauri (Uttarakhand) where RF is best calibrated and predictive, but over a single-station dataset. MLR,
RF regression and replicated neural networks were used to model daily rain in Semarang, Indonesia, with RF
outperforming other models, yet no multi-year testing of model validation was done [39]. A study in Saudi
Arabia [40] used different forms of ML with historical meteorological data with data mining techniques
classified higher than traditional statistical models, but the methodology had a limitation in scaling features
and real-time combination. A hybrid DSP model combining Prophet, SVR, and DWT [41] improved rainfall
forecasting by decomposing data into frequency components, yet the model’s complexity and dependence on
parameter tuning limit operational scalability. Radar-based rainfall estimation using RF and SVM [43]
demonstrated effective short-term forecasting with minimal input variables, but accuracy declines over
complex terrains due to radar reflectivity uncertainties.

This study [44] contributes towards measurement of important climatic-associated risks within national
borders for estimation of impacts in essential sectors of development such as agriculture and water resources.
Besides, it wants to provide climate- related data more accessible for the national scale authority where
policymaking is more appropriate. Consequently, in situ rain gauge data from CHIRPS scale monthly dataset,
which took place from 1998 to 2010, was used whereas the Pearson’ correlation coefficient was applied in
validation. This paper dealt with the temporal and spatial changes in the key climate parameters in six
countries in West Africa including Senegal, Niger, Burkina Faso, Cote d'Ivoire and Benin for the period 1981-
2015. The findings further suggest that on balance over the last three decades, precipitation rose significantly
in each of the five countries. The study [45] seek to compare analyses of extreme rainfall characteristics;
frequency, intensity, seasonality and trends during the period of 1981 and 2015 in the SCWA. Therefore,
rainfall estimation products containing in situ observation and satellite rainfall estimation data have been used,
together with the daily rainfall at 31 stations distributed uniformly in the southern areas of Cote d'Ivoire,
Ghana, Togo, and Benin. Possible topics to look at might include how the distribution of extreme rainfall events
over the years would look like, if there are any tendencies apparent in the historical data, and status of potential
impacts on regional climate. Such a study is valuable in enhance the existing understanding of climate
variability in the western African context, in order to beneficially impact the related risk assessment, disaster
response and preparedness, and sustainable development initiatives. Rainfall is an important part of building
hydrological mathematical models and performs a definite function of stabilizing the flight of water cycle.
These included M5, RF, SVR-poly, SVR-RBF, MLP, and LSTM were explored in this study [46] to predict
monthly rainfall at two gauged stations in the Thale Sap Songkhla basin, Thailand. The following study [47]
examines the temporal and spatial distribution of precipitation concentration in Pakis tan. This needs to know
the pattern of distribution of precipitation with reference to periods within the country’s regions. Specifically,
concentration of precipitation is explored in terms of spatial (between sites or at different locations) and
temporal (at different time points) variations. Aimed at comprehending where within particular intervals of
time and space the precipitation is distributed or concentrated.

A comparison of various precipitation databases with ground measurements at 51 Pakistani monitoring
stations (19982016) [48] shows spatial discrepancies but the lack of time overlap renders less accuracy. One
model is a hybrid forecasting model [49], which combines swarm intelligence optimization and neural
networks to make predictions of stable precipitation but is computationally complex in parameter tuning.
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Hybrid wavelet neural network (HWNN) is a combination of MI, PSO, and MRA [50] to improve the prediction
of monthly rainfall through the use of the long past series but the performance of the model is greatly reliant
on proper preprocessing and index selection. ANN models trained by using FFNN and Levenberg Marquardt

algorithms [51] were trained using historical data of the northern part of India and gave good results in terms
of short-term prediction, but with limited generalization across different climatic regimes. The SVR-PSO
hybrid [52] provides a better accuracy in rainfall forecasting in comparison to regression models but its
sensitivity to kernel and PSO parameters can make it difficult to be robust. ANN-RBF ensemble model with
gamma test and NMR methods [53] is more efficient in prediction, but requires high-quality input features and
complicated training. The hybrid model of ACO and neural networks [54] is better than the regular neural
networks but is computationally expensive. Hybrid systems that unite NB, C4.5, NN, SVM, and RF [55]
enhance short- and long-term predictions of rainfall yet remain challenged by the imbalance in data between
rainy and non-rainy days. Pattern recognition is enhanced by Shared Closest Neighbor clustering of Indian

monsoon zones [57], but suffers due to regional sensitivity. Research about the variability of rainfall in Saudi

Arabia [58] connects the precipitation to the activity of cyclones, but this has not been validated as a predictive.
CatBoost, LSTM, PR, and RF are used to analyze urban meteorology data [59], which is highly accurate (R 2 =
0.76), but model interpretability is poor. Lastly, more recent work in South Asia [77, 99, 100] integrates logistical
regression, SVM, stacking ensembles, and hybrid ML-statistical techniques to predict rainfall in Pakistan and

Bangladesh and notes significant improvements but is still limited by the quality of the data and across-
regional generalization. The research[101 compared the effect of various activation functions on rainfall
forecasting with both ML and DL models, and they discovered that finely tuned activation functions can
achieve much higher accuracy. They demonstrated that deep learning models such as LSTM and BiLSTM are
more effective than traditional ones in the prediction of multifaceted rainfall behaviors.
2.1. Comparative Analysis

Table 1 includes a critical evaluation of different studies aimed at forecasting rainfall. Every study is
thoroughly studied in a number of dimensions. The analysis will start with the determination of the study by
serial number and the year in which it was published. It then elaborates on the exact algorithm applied in the

process of rainfall prediction and the parameters or features included in the model. These predictions are

explained by the results or goals they are meant to achieve and the dataset is described, its origin, and
properties. The country in which the study was conducted is mentioned and the results are measured in
various metrics to determine the effectiveness of the model. Lastly, an assessment of the limitations of the
study has been conducted, which provides information on what may have been improved or what limitations

may have influenced the findings of the study. Such an overall approach enables the comparative perception
of various means of prediction of rainfall and the effectiveness of their application to various situations.
Table 1. Comparative Analysis of the previous study

Year Algorithm(s) Parameters/ Target / Dataset / Performance  Limitations
Used Features Task Period / (Metric)
Country
2023 ML & DL Temp Rainfall Bangladesh R?=0.76 (RF ~ Small dataset,
(Polynomial  (Max/Min), (mm) Meteorologica & PR), LSTM limited DL
Regression, Rainfall, Regression 1 Dept. (1948- Loss=0.09 models; lacks
RF, LSTM) Humidity, 2013) transfer
Wind Speed, learning or
Sunshine, pre-training
Lat/Long,
Altitude
2023 ES-LSTM, Temp, Regression 11 features, MAPE=3.17 Needs
ANN, DT Rainfall, & 2359 records (ES-LSTM), improved
Wind Speed  Classificatio (Australia) ANN=96.65% weight
n , DT=84% tuning and
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DL
generalizatio
n
2023 MaxEnt Rainfall, Flood 1990-2022 AUC=0.899 Regional
(ML) NDVI, Susceptibilit  (South Africa) (90% generalizatio
Elevation, y Mapping accuracy) n limits;
TRI, SPI, requires
TWI, Slope, monsoon-
Land Cover region
adaptation
2022 MLR, REF, Temp, Daily 1999-2018 XGB: Sensor and
XGBoost Moisture, Rainfall (Ethiopia) RMSE=7.85, environment
Humidity, Prediction MAE=3.58; al data
Wind, REF: missing;
Sunshine RMSE=8.82 limited
external
validation
2020 ANN Temp, Dew Daily & Austin, Texas R=0.80; Weak for
Point, Monthly Dataset RMSE=0.073—- daily rainfall;
Pressure, Rainfall 0.248 no
Humidity, deployment
Wind Speed strategy
2024 Logistic Temp (Min), Binary: 3525 records Acc=82.8%,  Few features;
Regression, Humidity, “Rain (Aligarh, ROC=82.4%  small dataset
Neural Precipitation, Tomorrow” India)
Network Rain Today
2023 MLR, SVR, Temp, Daily & 2000-2017 RE: Region-
MARS, RF Humidity, Weekly (Uttarakhand, = RMSE=5.70- specific
Wind, Rainfall India) 10.54, tuning
Radiation, R=0.94-0.96 needed; lacks
Evaporation long-term
trend capture
2023 SVM, REF, Evaporation, Classificatio WMO & IMD  FFANN=96.1 No regional
FFANN SST, n Database %, RF=93.8%, language/aler
Pressure, (Regular/He (Saudi Arabia) SVM=83.7% t system
Humidity, avy Rain) integration
Cloud
Cover, Wind
2015 Hybrid ENSO, IOD, Monthly 255 stations HWNN Needs
Wavelet PDO, SAM, Rainfall (Australia, improved integration of
Neural STR Forecast 1959-1998) NSE by 0.17- multiple
Network 1.8 climate
(HWNN), indices for
ANN, MLR better results

2.2. Comparison with past studies

Before proceeding any further, it is worth restating some of the key findings of the background investigation:
The majority of conventional rainfall forecasting systems along with classical meteorological activities base on
human-intensive or even partially-computerized processes of climatic information. The conventional methods
are satisfactory in simple forecasting operations but not effective in providing appropriate results when the
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demands are tied to large datasets or extreme weather events. HEC-HMS, SWAT and MIKE SHE models the
movement of water following the occurrences of rainfall using mathematical applications that involve the
Manning equations and Navier-Stokes equations respectively. These models require comprehensive data
inputs that are comprised of land topographical data and soil properties, the land use pattern and rain data to
accomplish accurate outputs. These intricate modeling techniques demonstrate potential accuracy but have
computational and data saturation issues limiting their performance at large scales. Multivariate linear
regression (MLR) has been used as an analysis tool in combination with Mann-Kendall trend and exponential
smoothing and ARIMA time series analysis, which has been applied greatly in analyzing rainfall [84,86].

These analytical methods successfully track broad patterns while maintaining poor capabilities to model
climatic data's complex non-linear multivariate characteristics. The application of machine learning
approaches for rainfall prediction has experienced growing popularity during recent times. Support Vector
Machines (SVM) along with Decision Trees (DT) and k-Nearest Neighbors (k-NN) show enhanced predictive
performance through learning from extensive datasets of varied diversity containing minimal data errors [27-
32]. The application of ML models surpasses or equals traditional hydrological systems when enough data is
available as shown in multiple cases [87]. However, although effective their predictive power becomes weaker
for predicting unusual and extreme climate events because of our insufficient understanding of climate
complexity.

Beyond the focus covered above, there have been more breakthroughs and advancements in the application
of machine learning to flood prediction. However, there are several shortcomings and inadequacies in earlier
research [28] [30] [40] [80].

The reliability of projections is impacted by the fact that many research relies on historical rainfall
information, which may be erroneous, lacking, or obtained from a small number of weather stations.

While certain machine learning techniques might work well in small areas, they have trouble predicting
annual rainfall accurately in broader geographic areas or with a variety of climates. Rainfall patterns can be
greatly impacted by changes in terrain, land use, and climate, and models created for smaller, more focused
areas might not fully account for these effects. Additionally, many studies that estimate yearly rainfall using
machine learning (ML) may not properly evaluate how well their models perform in different regions or check
their results against alternative datasets. This could lead to an overestimation of the model's accuracy, which
could be problematic in real-world applications where accurate annual rainfall forecasts are crucial for
decision-making.

Some models struggle with short-term or near-real-time forecasting due to the limited temporal resolution
in historical datasets, which are often averaged over days or months. High-resolution, time-stamped data are
crucial for accurate flood prediction, especially for events that develop rapidly.

The challenge related to the combination of ML predictions and standard forecasting used by meteorological
organizations is sometimes not addressed in the existing literature, and this fact might limit their applicability
and implication in practice. To address these limitations, advances have entailed the utilization of hybrid
models, ensemble methods.

The study is unique to the rainfall prediction field especially in reference to Pakistan, owing to several
original contributions. This analysis concentrates entirely on the local climatic and meteorological information
of Pakistan which was collected at a few stations within the country, unlike in the general studies that use the
global or regional information. The projections of the study can be directly translated to Pakistan disaster
preparedness and resource management strategies due to its personalized strategy that can facilitate it to
manage the unique rainfall patterns and corresponding flood risks of Pakistan. Moreover, the study employs
a range of machine learning algorithms as opposed to relying on just one as Random Forest, Support Vector
Machines, Gradient Boosting, Adaboost, and Naive Bayes. In this case, the study provides in-depth analysis of
the performances of different models through comparing them, thereby showing the most accurate algorithms
to use in predicting rainfall. Another issue that the research addresses is the analysis of feature importance, or
which meteorological variables, including temperature, humidity, wind speed, and air pressure, produce the
most significant impacts on the forecasting of rainfall. The research is a thorough and practical exploration of
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machine learning to predict rainfall in Pakistan because it does not only enhance the explainability of the model
but also offer meaningful information to meteorologists and policymakers.

3. Approaches Used for Research

Basically there are two methods in weather prediction, empirical and dynamical methods [67].
a. Empirical Approach

This approach uses previous data analysis to estimate future situations and searches for correlations between
attributes. The most often used techniques in the empirical approach to weather forecasting are classification,
regression, Decision trees, Artificial neural networks (ANN), fuzzy logic, ARIMA models, swarm intelligence
for outcome optimization, long short term memory (LSTM), and other information processing techniques [67].
b. Dynamical Approach

Instead of focusing solely on the current state of a system, dynamical approaches emphasize understanding
how systems evolve and behave dynamically. In a dynamical approach, the aim is indeed to model systems in
a way that captures their behavior over time, with the goal of making predictions or understanding future
conditions. However, the degree to which the results will match the actual state depends on several factors
shown in table 2.

Table 2. Several Factors for prediction

Model Data Quality: Parameter Initial System External
Accuracy: Estimation: Conditions: Complexity: Factors:
The  models The Many Small  initial Thecomplexity External
own accuracy forecasting dynamical condition of the system factors, such as
is quite ability of the models involve changes can being modeled environmental
important. It is model can be parameters that have a big can also changes or
important that greatly need to be long-term influence the external
the model influenced by estimated from impact on the accuracy of interventions,
accurately the type and data or behavior of predictions. may influence
represents the amount of theoretical many Highly the  system's
fundamental data that were considerations. dynamical complex behavior in
dynamics  of utilized to The accuracy of systems. As a systems, such ways that are
the system build it. these parameter result, precise as  turbulent not accounted
under study. Predictions estimates can determination fluid flows or for in the
that are more affect the of the initial ecological model, leading
accurate and reliability of the conditions is systems, may to
thorough can model essential  for exhibit discrepancies
be made with predictions. forecasting the behaviors that between
greater future state are difficult to predicted and
confidence. e.g. such as the capture actual
mean accurately in a outcomes.

precipitation
rate, variability,
and seasonality.

model.

One of the most predictable weather patterns is rain. Precipitation falls to the earth as cloud particles become
too heavy to stay suspended in the atmosphere. There are many different types of precipitation, including
sleet, snow, freezing rain, and hail. Rain is the term used to describe the precipitation of hydrometeor water
particles, usually larger than 0.5 mm in diameter, that fall from clouds and land on Earth's surface. This
precipitation occurs when certain atmospheric conditions align, allowing for the formation and release of water
droplets from clouds. When a number of factors come together, including humidity, temperature, evaporated
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water, rising air currents (swirling patterns), ambient air conditions, and the availability of enough moisture,
rain occurs in the cloud. The planet's everyday activities are governed by precipitation, which is also crucial
for tracking the climate of the water in the earth's reservoirs. Since precipitation is the main element of the
hydrological cycle, it is crucial to the study of hydrology. The majority of the variability in terrestrial hydrology
can be attributed to precipitation, which is undoubtedly the most significant element of the land-atmospheric
system. Precipitation typically shows rapid temporal fluctuations together with considerable and frequent
geographical variability. As one of the main objectives of current research efforts in distributed hydrological
modeling and land data assimilation systems, precipitation is the most crucial input to generate accurate
simulations and forecasts for a suite of hydrological variables (soil moisture, stream flows, and flood levels)
[68. This study is empirical, Precipitation observation helps in preparing for and responding to natural
disasters such as hurricanes, typhoons, and cyclones. By monitoring rainfall rates and distribution,
meteorological agencies can issue early warnings and evacuation orders to protect lives and property from
flooding, storm surges, and other hazards associated with heavy rainfall.

The analogy and subjective approaches [70] are used in very brief weather forecasts using various weather
models. Table 3 represents the analogical and subjective approach for analyzing and comparing the scenarios
of rainfall. With the help of these approaches we can identify the possibilities of unstable weather areas that
have a chance of rain.

Table 3. Represent the analogy and subjective approach

Analogy Approach

Subjective Approach

This approach involves current

weather conditions to past events with similar

comparing

characteristics. Meteorologists use historical data
to identify patterns or analogs that resemble the
current atmospheric conditions. By drawing
parallels between past weather events and the
present situation, forecasters can make quick
predictions about potential weather outcomes. For
example, if a specific atmospheric pressure pattern
is similar to one observed during a previous storm,
meteorologists may anticipate similar weather
patterns and issue relevant warnings or advisories

The subjective approach relies on meteorologists'
expertise, intuition, and judgment to interpret
weather data and make forecasts. This approach
involves [70] synthesizing various sources of
information, including satellite imagery, radar
data, surface observations, and numerical weather
prediction models, to assess current and evolving
weather patterns. Subjective forecasts often
incorporate qualitative assessments of weather
trends, such as changes in cloud cover, wind
direction, or atmospheric instability, to provide

concise and actionable information to the public.

[70].

There are frequent daily stable weather trends during the rainy and dry seasons. Dynamic approaches, which
forecast future patterns by evaluating past and present meteorological data, can be highly useful during these
times. The atmospheric conditions tend to be more stable and predictable, allowing forecasters to make
accurate predictions based on past trends and current observations. On the contrary, Transitional seasons, like
spring and autumn, are more of a challenge to dynamical methods. These periods are characterized by intense
changes in weather conditions, which are characterized by changing temperatures, changing wind patterns
and more convective activity. Local weather phenomena, including mountainous terrain and land-sea
temperature differences, may be more directly affecting weather patterns, than synoptic-scale mechanisms.
Consequently, there is a reduction in predictability of weather in transitional seasons hence making it harder
to use dynamical methods to make reliable predictions.

During these transitional periods, forecasters may need to supplement dynamical approaches with other
methods, such as analog forecasting or subjective interpretation of atmospheric conditions, to improve the
accuracy of short-term weather forecasts.

Data mining [71] is defined as the activity of uncovering valuable and interesting patterns from vast amounts
of data. These patterns may include trends, associations, correlations, or anomalies that are not immediately
apparent through simple observation. In this work, patterns and associations utilized to anticipate future
rainfall were found by analyzing historical meteorological data using data mining techniques. When it comes
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to supervised learning, the algorithm is rewarded based on past experience that, in turn, are labeled and have
input features and target labels that correspond to them. With labeled training data, supervised learning aims
towards the building of the mapping function from the input variables to output variables, using the dataset.
Here, the mapping function that has been tested and new data can be generated. Therefore, it will be possible
to plan things out using this function [60]. Supervised learning tasks may be broadly classified into two
categories the first one is regression and second is classification, as shown in fig 2. In this study explanation,
categorization will receive a lot of attention.

supervised
Learning

(uses labeled
training data)

v v

classification I‘(egressio_n
(classify the distinct (predict a continuous
values) value)

Figure 2. Supervised Learning types

Predicting the categorical class labels of new instances based on input features is the aim of classification
problems. There is a limited number of classes or categories that the discrete output variable falls into. The
decision function or boundary that divides the various classes in the feature space is learned by the algorithm.
Some supervised learning algorithms used in this experimental study e.g. Regression algorithm Support vector
machines (SVM), Regress or decision trees, logistic regression. Throughout training, the algorithm discovers
how to transfer the input features to the proper sorts of rainfall based on the specified goal.
3.1. Random forest

The Random Forest ensemble learning approach performs their process by creating many of these decision
trees during training and deciding on the overall average voting for regression tasks or majority vote for
classification tasks as shown in fig 3. Random Forest works well on a range of datasets and is resistant to over
fitting. Equation 1 illustrates how it manages missing values and keeps accuracy even when dealing with a
large number of features.

Classification: Let C,(x) be the both random-forest tree's class prediction.

Then Crr(x) = majority vote {fb (x)}i=1 (1)

Figure 3. Representation of Random Forest
3.2. Logistic Regressions
In case of binary classification scenarios, an instance’s probability of belonging to a certain class is predicted
through a statistical model which is referred to as the logistic regression. The logistic function that would
transform every real-valued input into a number between 0 and 1. The equation for the logistic function is
shown in Equation 2:
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Sigmoid (z) =1+l-z 2)

Where:
e zisalinear combination of the features and their respective coefficients, represented as
o z=2L,+P1x; + Paxy + -+ + fnx,, where f5, is the intercept, f5; are the coefficients, and x; are the feature
values.

The logistic regression model calculates the odds of a binary result, such as one of zero or one. The logistic
function predicts the likelihood that an occurrence is in the positive class (class 1):

I
ERROR
J LOGISTIC

V4 FUNCTION OUTPUT

INPUT

Xn

Figure 4. Representation of Logistic Regression

3.3. Naive Bayes

The technique of the Naive Bayes has been considered to be the most powerful and successful of the
supervised machine learning and the data mining algorithms. Based on its attribute independence property,
the Naive Bayes [72] method is a probabilistic machine learning model that incorporates the Bayes’ theorem.

In classification tasks, it performs better and better until it reaches a high level of accuracy with its simplicity.
The innovative Bayes theorem designates naive to only help one feature for a class, but it has less impact for
another feature in the class. Although this is a strong and frequently implausible assumption, it streamlines
the computation and increases the computing efficiency of the training data. Equation 3 illustrates the
application of Bayes' theorem to determine the likelihood of a class given its attributes, based on this
assumption.
P(Ci) 71 P(xilC) 3)

P(Ci|x1, X, ooy Xp) = P ot

Where:
P(Cylxy, %3, -, X5) Posterior probability of class C, given the features x;, x5, ..., X,
P(Cy) Prior probability of class Cj,
P(Cy) Likelihood of feature x; occurring within class Cj,
P(xq, %5, oy Xp) Evidence pr probability of observing the feature vector x

3.4. AdaBoost

Ada Boost is a type of supervised machine learning algorithm called ensemble learning that means deriving
a set of simpler models/decisions. Based on a training set, AdaBoost generates a strong classifier by using weak
classifiers, and their combining technique is called decision-stump. Ada Boost or Short for Adaptive Boosting
is an ensemble learning method that combines a number of weak learners to create a strong learner. When
compared with the other SVM algorithm AdABoost being a collective machine learning approach has the
lowest wrong false rate and the highest classification precision for the rainfall prediction ratio. This is done by
using a weak ensemble; the usual choice being decision trees to create a strong classifier in the process shown
in fig 5 and equation 4.

F(x) = sign(Ti_; ache (x)) (4)
Where,
e T=iterations (no of weak learners)
e  h; (x)=The tt-th weakest learner's estimate for input x
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¢ a,=The amount of importance given to the tt-th weak learner in term of weight assign

e sign (.)=The sign function that connects the category identifiers with the sum of the weighting guesses is
called sign (.). It anticipates the "positive" class if the total is positive; if not, it predicts the opposite class.

Model(Individual models) 1,2,3....n

Model 1 Model 2 Model 3 Model n

A ‘l ¢ ¥ ¥
Wik weakness weakness weakness

weather Data train test y v

Weight 1 Weight 2 Weight ...

Ensemble with all its predecessors

Final prediction

Figure 5. Representation of AdaBoost classifier
3.5. Gradient Boosting

Weight N

Gradient Boosting is a widely used supervised machine learning algorithm. For classification and regression
tasks, gradient boosting algorithms perform well and provide good results, unlike traditional decision tree
algorithms like Random Forest, which build multiple trees independently, as shown in Fig. 6. It creates trees
sequentially and learns the trees from the errors of its predecessors. It can understand the complex relationship
between the attribute and the target result. It works like initializing the model with a simple model, such as a
single leaf (constant) value for regression or a constant probability for classification. Then it calculates the
residuals or pseudo-residuals for each data point, which represent the errors made by the initial model.

R\
Weather 3

Training

Dataset ‘ ‘
' v

Decision Decision P | Decision
tree 1 L tree2 /| /’ L, treeN /|
| P
o ,.c“
Predicted Predicted | |/~ Predicted
result1 result 2 eee result N

B, |

boosted Final
prediction

Classification result
Rainfall yes or no

Figure 6. Representation of Gradient Boosted Trees
Its mathematical representation are shown in (equation 5a, 5b and 5c)
E,((x) as the current ensemble model (sum of first m weak learners),
hm((x) as the m-th weak learner (e.g., decision tree),

0 as the learning rate,
L as the loss function.
At each iteration, we update the model as follows:

Ep(x) = Fp_q(x) + p . hp (%)

(52)
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Then, the residuals (or pseudo-residuals) are updated:
_ AL(yiFm-1(x))

im (5b)
0Fm—1(xy)
Finally, the prediction at each iteration is given by:
Y(x) = Fy(x) = Xon=r p- hin () (5¢)

3.6. K nearest Neighbors

It is a very effective machine learning algorithm used in supervised learning and used in regression and
classification. It categorizes new instances based on the most frequent class or highest counting class among
the k-Nearest Neighbors in the feature space. KNN is better for small data sets. Derivation for similarity
measurement It uses Euclidean distance as illustrated below in equation 6.

¥ = majority {y;|x; € Nyc(x)} (6)
Where:
LI % - Predicted class label for the input instance x;
o Ni(x) - The set k nearest neighbors of x in the feature space
e - Class label of neighbor x;
e majority(.) - Returns the most frequent class among the neighbors
CATEGORY B CATEGORY B
rs . . s
L
x ¥ a, -
L J ~ \ o | N
m, = ~
CATEGORY A - CATEGORY A .

Figure 7. Representation of K nearest neighbors

3.7. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm used for both regression and
classification; it gets harder to imagine in feature space or in N dimensions without simulation. The hyperbolic
plane in Figure 8 aims at maintaining the greatest possible distance between the closest points pertaining to
various categories. The SVM approach finds the good hyper plane that segregates data points into various
feature space categories [37, 35]. The dimension of the hyper plane is found by the total number of attributes.
It aims to maintain the maximum margin between the closest points of different categories.

Margin line [Gap b/w decision boundary and
hyperplanes)
Support vectors

X2 4/ ¢ = 4
Decision Boundary \\ - £
N A B
. ~:‘\ XX @
: ° o W m / Hyperplane for no
Hyperplane for RS _ category
yes category @ oo ‘\\ ......

Figure 8. Representation of Support vector machine
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The goal function in the optimization problem's dual form gives rise to the main equation. Equation 7 shows
the Objective Function (Dual Formulation) in this instance. In its dual form, the objective function of the SVM
is stated as follows given a dataset with N sample (x;, y;),), where x; is the input vector and y; is the class label

Vi € {—1,1}
. . 1
Maximize: W (&) = Xil; a; — 5 Xils Xy aioyyiy{a, x;) 7)
Subject: ¥V, a;y; =0, 0<a; <C, i=12,..,N 8)

e «; Are the Lagrange multipliers (also called dual variables)?
e Crepresents the balance of increasing and decreasing margin. it treated as a regularization parameter
e W (a) is the function to be maximized as the target.

Finding the optimum levels of the multipliers of Lagrange ai for maximizing W (a) is the dual problem of
the SVM, which is represented by the objective function W (a). Lagrange multipliers are used to identify
support vectors and the support vectors are the misclassified or marginal data points.

3.8. Bidirectional Model

In order to capture both past and future historical context, a bidirectional GRU analyses the sequence in both
temporal directions. Two GRU cells are stacked as a forward GRU that reads {Xj,..., X} and a reverse GRU that
reads {Xr,..., X;}.Each side's hidden states are concatenated at each time step in accordance with the usual GRU
gating in Egs. (8-11).

Forward and backward recurrences and their concatenation shown in Eq. (8 and 9):

he GRU;(Xe heey ), heGRU, (Xe, he)

Context fusion by concatenation:

he={ he; ] € R ©)

Sequence labelling prediction (one output per time step) as in Eq. (10):

ye=g(Wo he + by) (10)

Sequence classification prediction (one output for the entire window) shown in Eq. (11):

y=8Wol hr ; b +b) (11)

Here, g(-) is a task-appropriate activation (e.g., sigmoid for binary classification), HHH is the number of units
per direction, and [-;-]denotes vector concatenation. BIGRU has computational efficiency similar to a
unidirectional.

4. Research Methodology

The purpose of this proposed study is to investigate whether using machine learning that may lead to a
reduction in error and an increase in accuracy.
4.1. Dataset Analysis

The dataset comprises daily meteorological observations retrieved from the Visual Crossing weather
platform, including temperature (maximum, minimum, and average), humidity, dew point, wind speed, and
rainfall-related parameters such as precipitation, precipitation probability, and precipitation coverage. Each
record represents one day’s data, forming a structured time series suitable for rainfall classification and
prediction experiments.

A few missing values were found during the analysis of the dataset. The missing values are shown in Figure
10. Sea level pressure is the only characteristic without a value. Over a range of time periods, it was discovered
that the sea-level pressure (SLP) variable frequently and sporadically had missing values. To prevent potential
noise amplification and maintain data integrity, this feature was excluded from the model training procedure.
None of the other meteorological variables had any missing values after preprocessing. The missing value for
other features is 0%.

The dataset size is provided according to the number of rows, columns, type unit, and characteristics in
Tables 4 and 5. This comprehension makes it simpler to understand the features of the dataset and the kinds
of factors that are considered when making rainfall predictions.
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datetime  tempmax tempmin temp feelslikemax feelslikemin feelslike dew humidity precip precipprob precipcover preciptype snow snowdepth windgust windspeed winddir

0831201 845 589 ns 89 589 nr 48 44 0 0 0 0 0 163 161 503
031202 831 625 ng # £25 3 40 48 0 0 0 00 174 161 378
0312403 842 66.1 28 818 6.1 VES N 0 0 0 0 0 172 139 403
0231204 849 571 nooBs 571 03 46 18 0 0 0 00 125 103 555
031205 842 511 ni 8 511 nr 40 362 0 0 0 0 0 152 114 536
031206 824 553 8 802 563 B85 3 %7 0 0 0 | 159 114 589
81207 813 589 85 795 589 883 308 36 0 0 0 0 0 141 15 407

Figure 9a. Representation of Pakistan Station’s Dataset
pressure cloudcover visibility solarradiation solarenergy uvindex severerisk sunrise sunset moonphase conditions

1009.4 345 54 239 20,6 8 ) 06:25:01 18:16:27 0.66 Partially cloudy
1008.9 513 5 2373 20.5 8 5 06:25:25 181526 0.69 Partially cloudy
1007.7 69.9 | 2315 20 8 o) 06:2550 18:14:25 075 Partially cloudy
1008.4 859 49 1042 9 4 15 06:26:15 18:13:24 0.76 Rain, Partially cloudy
1009.8 62.8 52 155.8 135 6 15 06:26:41 18:1224 079 Partially cloudy
1010.7 50.5 56 225 19.5 8 15 06:27:07 18:11:24 0.82 Partially cloudy
10104 76 54 1888 16.1 8 15 06:27:33 18:10:25 085 Partially cloudy

Figure 9b. Representation of Pakistan Station’s Dataset
Heatmap of Missing Values
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solarradiation
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conditions
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sealevelpressure

Figure 10. Features Missing values representations
Table 4. Data table set Description
Dataset Description

Year 2011 to 2023

Size 4778 rows, 33 column
Features 7 categorical, 24 numeric
Targets categorical outcome with 2 classes
Location Karachi, Pakistan
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Meta’s 1 text
Table 5. Features for Deep Learning and Machine Learning Model Training
Sr. Feature Feature Description Type Units
No
1 name This probably refers to the location's name or object String
address where the weather forecast is given (e.g.
Karachi, Lahore)
2 Date time: This is the date and time for which the weather object Time
conditions are forecasted. It includes information stamp
about when the forecast was issued and the period
it covers.
3 Temp Maximum temperature expected during the forecast float Celsius (°C)
max period.
4 Temp min  Minimum temperature expected during the forecast float Celsius (°C)
period
5 Temp The general temperature during the forecast period, float Celsius (°C)
likely an average or current temperature.
6 Feels like Maximum "feels-like" temperature, which takes into float Celsius(°C)
max account factors like humidity and wind to estimate
how the temperature might feel to a person.
7 Feels like Minimum "feels-like" temperature. float Celsius (°C)
min
8 Feels like The general "feels-like" temperature during the float Celsius (°C)
forecast period.
9 Dew The temperature at which moisture saturation of the float Celsius (°C)
air occurs and dew formed is known as the dew
point.
10 Humidity = The relative humidity level, indicating the amount float Percentage
of moisture in the air. (%)
11 Precip Precipitation, which could include rain, snow, sleet, float Millimeters
etc. (mm)
12 Precip Probability of precipitation occurring. int Percentage
prob (%
13 Precip The extent or coverage of precipitation in the float Percentage
cover forecast area (%)
14 Precip The type of precipitation (rain, no rain, etc.). object categorical
type
15 Snow Amount of snowfall expected. int64 Centimeters
(cm)
16 Snow Depth of snow on the ground. int64 Centimeters
depth (cm)
17 Wind The maximum wind gust expected during the float Meters per
gust forecast period. second (m/s)
18 Wind The aerage wind speed. float Meters per
speed: second (m/s)
19 Wind dir =~ Wind direction characteristic, showing the direction float Degrees (°)
of the wind.
20 Sea-level Atmospheric pressure at sea level. float Hectopascal
pressure: s (hPa)

ID : 1113-0902/2025



Journal of Computing & Biomedical Informatics

Volume 09 Issue 02

21 Cloud The proportion of cloud cover in the sky. When float Percentage
cover humid air rises and cools, water vapor condenses (%)
into little water droplets or ice crystals, which is
how clouds are formed.
22 Visibility The point at which elements are clearly float Kilometers
apparent.(Visibility is a crucial parameter in (km)
weather forecasting and is often linked to various
atmospheric conditions Example fog, rainfall, wind
gust)
23 Solar The level of sunlight that penetrates the earth. (Solar float Watts per
radiation radiation is the primary source of energy that drives square
evaporation from the Earth's surface, particularly meter
from oceans, lakes, and moist land areas. As water (W/m?2).
vapor rises into the atmosphere, it can condense to
form clouds.)
24 Solar The solar energy available during the forecast float Watts per
energy period.(solar energy is a fundamental component of square
the Earth's climate system, driving the water cycle meter
and influencing the processes that lead to (W/m?)
precipitation)
25 Uvindex ultraviolet index, which shows how strong the sun's int64 Unit less
UV radiation is.
(Ranges Minimal risk=0-2 , Medium risk 6-7,
Extreme risk, 8-10 = Very high hazard 11 +.)
26 Severe The risk or severity of severe weather conditions. int64 categorical
risk (The specific feature values associated with severe
weather risk can vary depending on the region, the
type of severe weather event, and the criteria used
by meteorological agencies.) String (e.g., Low,
Moderate, High)
27 Sunrise Time of sunrise. object Date/Time
28 Sunset Time of sunset. object Date/Time
29 Moon the moon phase, such as full or half moon. It can be Float categorical
phase written as a continuous variable with a range of 0 to
1. This 0 to 1 describe half-moon and full moon
30 Condition General weather conditions, such as clear, cloudy, object string
S etc.
31  Descriptio Additional descriptive information about the object string
n weather. (E.g. partly cloudy etc.)
32. Icon Weather icon, often used for graphical object string
representation in weather apps.
33. Stations Weather stations providing the forecast data. object string

One of the ways to predict precipitation; whether it will rain or not in this research is by classifying
precipitation through machine learning algorithms that determine yes or no based on the amount of available

weather information. Fig 11 shows the total number of rain and no rain.
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Figure 11. Representation of precipitation in term of rain and no rain

A graphical representation of the several factors influencing the intricate process of rainfall is shown in Fig
12. These variables include a wide range of things, such as temperature gradients, geographical characteristics,
and atmospheric conditions. This illustration attempts to capture the complex interactions between several
factors that affect the amount and frequency of rain and the multiple nature of rain creation.

Together, the mean, median, mode, and distribution analysis in Table 6 help us extract important insights
from the dataset, which in turn helps us shape our following analytical approaches and improves the precision
of our conclusions. This table is essential for rainfall prediction in Pakistan as it provides statistical insights
into key meteorological factors such as temperature, humidity, wind speed, cloud cover, and precipitation
probability. Analyzing the mean, mode, median, and dispersion helps detect patterns, seasonal trends, and
extreme weather conditions. The significant variability in humidity, pressure, and wind speed indicates their
strong impact on rainfall. Additionally, the high occurrence of zero precipitation values suggests an
imbalanced dataset, requiring proper preprocessing. These insights support the selection of suitable machine
learning models, enhancing prediction accuracy for better water resource management and disaster
preparedness.

For early processing, a data mining approach is employed to convert messy and imprecise input into a
structure that the model can easily understand without ambiguity. Large number of data that are collected are
inaccurate, imbalanced, and missing, also a lot of extra information contain that are not valuable for
experiment.

Data investigation and estimation indicate that the raw model data with the exception of a single missing
number of sea level pressure is complete and contains no null, redundant or invalid values. In the
preprocessing phase of feature selection, it is only possible to select those features that can be relevant in our
rainfall forecasting model. Consequently, the time used in training reduces and accuracy of the model
improves. Table 6 and Figure 13 indicate the coefficient of rainfall correlation with various variables.
Subsequently, there is feature dropping of the work. In order to facilitate modeling further, a correlation with
the both independent and dependent variables is calculated. The columns that followed were omitted. As
indicated in table 7, the characteristics related to UV index and solar radiation were the least correlated with
the rainfall variable. These attributes were removed before the modeling.
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Figure 12. [llustration of various factors that influence precipitation
Table 6. Histogram, and central tendency of dataset

Name Distribution = Mean Mode Median Dispersion  Min. Max.
temp II 89.6 91.4 91.3 0.080 62.6 116.5
maxp _glila
Temp I 71.799 80.5 75.2 0.159 319 91.3
min il
temp II 79.990 86.1 83.0 0.102 55.8 100.1
_alllL.
Feels I 93369  78.8 94.8 0.117 626 1238
like max IIII I-_
Feels 74.188 78.7 75.2 0.194 19.0 104.9
like min -lIIII.
Feels I 83.512 95.6 85.4 0.141 54.6 108.8
like -I|||I L
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Figure 13. Visual depiction of the relationship between attributes.
Table 7. Correlation coefficients of precipitation with various features
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4.2. Proposed Methodology

The study is being conducted of Pakistan weather, and the data used in the analysis came from Visual
Crossing, a source of historical and forecast meteorological information. Fig 14 depicts the thinking chart that
served as a guide for doing this investigation.

This methodology clearly defines the general modeling workflow, but technical detail is needed to ensure
reproducibility, such as clearly defining the hyperparameters of each model, the ratio of training—test split and
the validation strategy (K-fold cross-validation), the steps taken for data preprocessing (e.g., handling missing
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values, feature scaling method, and any approach used for class imbalance), and for hybrid or ensemble
models, a clear description of how the weights of the component models were defined and how optimization
was applied to the final predictions.

Dataset

Pre processing

Data Data analysis . Data Data
collection s Sing Data cleaning selection Transformation
values
y
[ Dataset Pakistan ]
Data splitting
Data training Data Testting
(ALGORITHMS ML & DL)
Random Forest, Logistic validation
Regression,SVM,Adaboost,Gradient (5 fold corss)
Boosting,KNN, ANN,Naive Bayes

'

Evaluation Confusion
matrix(Precision ,
Accuracy,Recall),Roc Curve

Figure 14. Proposed methodology of the study

4.2.1.  Data Collection and Preprocessing

Information gathered from the Visual Crossing website's historical weather data for Pakistan, including
variables like humidity, wind speed, temperature, atmospheric pressure, cloud cover, and precipitation.
4.2.2.  Feature Selection

Feature selection is a process in machine learning for identifying the most important attributes for rainfall
prediction and dropping the unnecessary.
4.2.3.  Feature Encoding

In machine learning, feature encoding is the process of transforming non-numeric or categorical data into a
numerical format so that algorithms that need numerical input can use it. Some features in this investigation
were transformed into numerical
4.2.4.  Feature Scaling

Normalization is kind of like pulling some features towards the same level as feature scaling is the process
of scaling features. This sought to ensure that the created dataset for the current models was bias free and that
the features in the current data set had been standardized utilizing the current feature scaling standards. The
equation (12) for feature scaling through the z-score scaling standardization approach is as follows, the feature
scaling is done feature by feature.

Xscaled™ x;_u 12)
Where
x = original value of the feature,
1 =mean (average) of the feature in the dataset,
o = standard deviation of the feature in the dataset, and
Xscatea = Scaled value of the feature

4.2.5.  Model Selection and Training

ID : 1113-0902/2025



Journal of Computing & Biomedical Informatics Volume 09 Issue 02

Some of the methodologies used to forecast rainfall were the Naive Bayes, AdaBoost, Logistic Regression,
Gradient Boosting Machine (GBM), Decision Tree Classifier (DTC), Random Forest (RF) and Support Vector
Machine (SVM). The model performance was checked with the help of cross-validation which separated the
dataset into two parts namely the training and the testing dataset. The data was divided into five folds and all
the models were trained and validated 5 times- each fold must act as a validation and rest four as a training
set. The mean cross-validation results were compared to find out the most effective model in predicting the
rainfall.

Each model was manually tuned with the help of a Grid Search approach that was run over a five-fold cross-
validation. The number of estimators, learning rate, maximum depth of the tree and the kernel functions
(where applicable) were individually optimized in each algorithm to avoid overfitting and fairness. This
4.2.6.  Assessment Statistics.

This experimental study utilized some metrics to evaluate the efficacy of the model assessment measures for
binary classification tasks, including recall, accuracy, precision, F1-score, and ROC-AUC.

4.2.7.  Model Evaluation and Validation

Utilize confusion matrices and ROC curves to visualize model performance and assess classification

thresholds.

5. Novelty of Work

This paper introduces a locally optimized, data-intensive rainfall prediction system in Pakistan with a special
interest in Karachi, as a representative urban area. Unlike the previous analyses that utilized the models that
were generalized or region-agnostic, the research derives and analyses seven state-of-the-art machine learning
models, including those of Random Forest, Gradient Boosting, AdaBoost, Decision Tree, Logistic Regression,
KNN and SVM, that were trained and tested on high-resolution meteorological data acquired in the Visual
Crossing dataset. Multi-parameter tuning of the suggested models minimizes the bias and variance to make
the models robust and comparable. The biggest innovation in this is the weaving of 33 different meteorological
variables, such as temperature, humidity, dew point, pressure, wind speed, wind direction, solar radiation,
and soil moisture, into a single dataset, which allows predicting the occurrence of rainfall with even greater
accuracy over time.

Furthermore, incorporation of new variables like solar radiation and soil moisture provide an extension of
the feature space typically employed in rainfall prediction across Pakistan, providing a more detailed picture
on the behavior of the atmosphere. The statistical reliability and generalization performance of each of the
models are validated using rigorous validation measures such as fivefold cross-validation, precision-recall and
ROC-AUC measures. The findings reveal that ensemble models especially Random Forest and Gradient
Boosting are more stable and interpretable in the prediction than the conventional classifiers (Logistic
Regression and Multivariate Linear Regression).

Also, a Bidirectional Long Short-Term Memory (BiLSTM) deep learning model was included, which included
sequential temporal dependencies of rainfall data, and the test accuracy was 99.8%. This increases the resilience
of deep learning solutions to complement machine learning solutions to meteorological predictions. The study
also theoretically constructs a prototype early-warning system that incorporates predictive models with flood
preparedness communication systems, which provide a theoretical base on how it can be implemented
practically. In general, the analysis adds a scalable analytical framework of climate resilience and adaptive
weather forecasts to apply in Pakistan and other semi-arid urban areas.

6. Results and Analysis
6.1. Machine Learning Models Results

Figure 15 illustrates the general steps like selection of column (feature selection) involved then creating a
model for prediction. The model predictor utilize in this study are the (RF) Random Forest gives accuracy
0.997,(GB) Gradient Boosting with accuracy 0.994 , AdaBoost(AB) accuracy rate (0.996) ,(SVM)Support Vector
Machine with accuracy rate 0.500(50%), (NB)Naive Bayes provide over fitting in result producing 100%
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accuracy rate, and (KNN) k-Nearest Neighbor algorithms with accuracy rate 0.907. best result provided for

rainfall prediction Adaboost and random forest
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Figure 15. Data Mining Software's Classification Process (Orange Ver. 3.23.1)

To determine the model's reliability, the outcome of the model of each approach is verified using a small
amount of input data. To determine which method is the best, the test results are also compared to obtain the
highest precision value. In this experiment during the testing phase, the collection of information is divided
into two distinct groups: testing data and training data. Eighty percent (80%) of the training data is used in a
mining operation to get likelihood values, and the remaining twenty percent (20%) of test data is used to

validate the probabilistic values that have been produced.

6.2. Matrix of Confusion
When assessing how good binary classification models perform, such as the one that predicts whether it will

rain or not, the ROC curve and confusion matrix are essential tools. The accuracy, precision, and recall of the
exam results are assessed using a confusion matrix test. The objective of the test results is to evaluate the
accuracy and Area under the Curve (AUC) of the 10-fold Cross Validation procedure. For each algorithm, the

test results are displayed in figures 16 through 22 below.

Predicted
no rain rain ¥
no rain 3567.6 579.4 4147
£ rain 548.7 82.3 631
L=
¥ 4116 662 ATTS ,

Figure 16. Confusion Matrix for Logistic Regression
The findings shown in Fig 16 demonstrate that Logistic regression algorithm yields an accuracy rate of 35%.

Of the total datasets analyzed (4778 datasets), 3649 datasets have valid predictions.
The findings shown in Fig 17 demonstrate that Naive Bayes algorithm yields an accuracy rate of 100%. Of

the total datasets analyzed (4778 datasets), 4776 datasets have valid predictions.
The findings shown in Fig 18 demonstrate that the Random algorithm yields an accuracy rate of 99%. Of the

total datasets analyzed (4778 datasets), 4772 datasets have valid predictions.
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Predicted
no rain rain ¥
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Actual
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Figure 17. Confusion Matrix results for Naive Bayes

Predicted
no rain rain ¥
no rain 4144.3 27 4147
£ rain 25 628.5 631
L=
¥ 4147 631 4778
Figure 18. Confusion Matrix results for Random forest
Predicted
no rain rain ¥

no rain 3599.3 547.7 147

rain 5477 433 631

Actual

¥ 4147 631 AT78
Figure 19. Confusion Matrix results for Support Vector machine

The findings shown in Fig 19 demonstrate that SVM algorithm yields an accuracy rate of 50%. Of the total
datasets analyzed (4778 datasets), 3682 datasets values have valid predictions

Predicted
o rain rain ¥

no rain 3865.2 281.2 41147

Actual

rain 281.0 350.0 631

¥ 4146 632 4778

Figure20. Confusion Matrix results for K nearest neighbors

The findings shown in Fig 20 demonstrate that KNN algorithm yields an accuracy rate of 90%. Of the total
datasets analyzed (4778 datasets rows), 4215 datasets values have valid predictions

Predicted
no rain rain ¥
no rain 41454 1.6 4147
£ rain 2.0 629.0 631
<
¥ 4147 631 AT78

Figure 21. Confusion Matrix results for Gradient Boosting Algorithms
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The findings shown in Fig 21 demonstrate that Gradient Boosting algorithm yields an accuracy rate of 99%.
Of the total datasets analyzed (4778 datasets rows), 4774 datasets values have true predictions

Predicted
no rain rain ¥
no rain 4144.0 3.0 4147
z rain 2.0 629.0 631
<
b3 4146 632 ATT8

Figure 22. Confusion Matrix results for Ada boost

The findings shown in Fig 22 demonstrate that AdaBoost algorithm yields an accuracy rate of 99%. Of the
total datasets analyzed (4778 datasets rows), 4773 datasets values have true predictions.

The classifier accuracy, or classification accuracy, is a key metric for evaluating the performance of a
classification model. In fact, accuracy is a measure of the degree to which the predicted and actual values are
close. In a binary classification scenario (such as predicting rain or not), accuracy is simply the number of cases
in the dataset divided by the number of correctly identified examples (true positives and true negatives). The
results highlight the precision, recall, accuracy, and AUC values for each test, as shown in Table 8, which shows
the maximum accuracy results for the naive Bayes, random forest, and AdaBoost tests at 100%, 0.997%, and
0.996, respectively, and the lowest precision values of 0.99, 0.998, and 0.998.

On the validation data, Naive Bayes attained 100% accuracy, indicating overfitting because of the
independence assumption. Its probabilistic assumptions restrict generality for coupled meteorological
characteristics, despite its effective performance on straightforward datasets.

The comparative findings show that ensemble classifiers like Random Forest, Gradient Boosting, and
AdaBoost are superior to the conventional classifiers because of their innate capacities to embrace nonlinear
associations among climatic predictors and to reduce variance by means of aggregation of numerous weak
learners. Their tree-like design enables them to capture complex interactions between features, e.g. between
temperature, humidity, and wind direction, which cannot be effectively captured by linear models such as
Logistic Regression or SVM. This is why the accuracy of ensemble models and their ability to recall and to be
used as ROC are always greater, which proves that they are capable of meteorological data that are

heterogeneous.
Table 8. Table of test results for accuracy values
S.N Models Name AUC CA F1 Precision Recall
1 Logistic Regression 0.357 0.859 0.794 0.738 0.859
2 Random Forest 0.997 0.999 0.999 0.999 0.999
3 Naive Bayes 1.000 0.999 0.999 0.999 0.999
4 Support vector machine 0.500 0.141 0.035 0.020 0.141
5 k Nearest neighbors 0.907 0.909 0.900 0.901 0.909
6 Gradient boosting 0.994 0.998 0.998 0.998 0.998
7 Adaboost Classifier 0.996 0.997 0.997 0.997 0.997

In table 8 Support Vector Machine (SVM) and logistic regression (LR) models performed relatively worse
than ensemble methods because their linear decision bounds cannot capture nonlinear correlations, which are
prevalent in climatic variables such as temperature-humidity interactions and wind-pressure coupling.
Ensemble methods such as Random Forest and AdaBoost, which utilize multiple tree-based learners, can
model complex feature dependencies and reduce variance.

The results of this study show that a few models achieved near-perfect levels of accuracy, including Random
Forest and Naive Bayes, but the near-perfect accuracy of the Naive Bayes model indicates that it may have
over fit. Naive Bayes will be less flexible to accommodate new rainfall patterns that are not like those in the
training set, but Random Forest is an ensemble technique that averages predictions over a set of decision trees,
and is therefore less prone to overfit even with high levels of accuracy. Moreover, Gradient Boosting and
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Adaboost also have high metrics, are more reliable across various measures, and are suitable for prediction
jobs where data can be varied a lot, because they do not overfit as much as Naive Bayes does for complex
patterns. Lower performing models such as Support Vector Machine and Logistic Regression struggled with
predictive accuracy, which suggests that they may not be as well-equipped as ensemble approaches to deal
with the complexity and non-linearity of the rainfall data. K Nearest Neighbors performed relatively well
compared to the more reliable ensemble approaches, but can be influenced by noise and size of dataset.
6.3. ROC Curve Machine Learning Models

The ROC curve plots the true positive rate (TPR) on the y-axis versus the false positive rate (FPR) on the x-
axis across different threshold settings to show the trade-off between the true positive rate (sensitivity) and
false positive rate (1 - specificity) of a binary classification model. The ROC curve is a useful tool to evaluate
the discriminant power of the machine learning algorithms, and the results are shown in Figures 23 and 24.
Therefore, the ROC curve is informative about the performance of the model over the range of thresholds, and
it is a two-dimensional graph with the false positive rate (FPR) as the horizontal axis and the true positive rate
(TPR) as the vertical axis.

The Random Forest model outperformed all other algorithms in achieving the most balanced trade-off
between sensitivity and specificity, suggesting that it is appropriate for rainfall-related decision-support
systems where both erroneous positives and false negatives have operational significance.
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Figure 23. ROC values of Algorithms for target no rain

6.4. Deep Learning Models Results

The Bidirectional Long Short-Term Memory (BiLSTM) was a model that performed exceptionally well in the
rainfall classification. The model had a test accuracy of 99.89 with a test loss of 0.0250 after 80 epochs with the
use of data balancing and SMOTE alongside potent regularization approaches, including dropout, batch
regularization, Gaussian noise, and L2 regularization. The near-perfect accuracy of the classes: rain and no rain
prove the strength of the model. The fact that the training and validation curves fit perfectly points to the fact
that the training did not overfit, and the distribution of the confidences shows very credible predictions. These
results emphasize that the BILSTM model is quite useful in capturing temporal dependencies and non-linear
meteorological patterns and it is more accurate and generalized than traditional machine learning models.
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Figure 24. ROC values of Algorithms for target rain
Table 9. Deep learning Models result table

Volume 09 Issue 02

Parameter / Metric Value
Model Type BiLSTM
Data Split 80% Train / 20% Test
Balancing Method SMOTE
Optimizer Adam (LR =0.0002)
Loss Function Categorical Cross-Entropy
Epochs / Batch Size 80/32
Regularization Dropout (0.5-0.3), L2(0.001), BatchNorm
Train Accuracy 99.92%
Validation Accuracy 99.89%
Test Accuracy 99.89%

Test Loss 0.0250
6.5. Criterion for Evaluating Model Confusion Matrix
The most common metrics in machine learning are performance metrics, or measurements that evaluate how

well a model is performing some task; this can be as general as clustering and other tasks, or as specific as
classification and regression. The measures chosen are heavily influenced by task characteristics. One of the
most commonly used techniques for evaluating classification models is a confusion matrix, a two-by-two table
that shows the counts of true positives, true negatives, false positives, and false negatives. The situations that
our model correctly identified as positive, which means good positive identification is True Positives (TP). The
true negative cases, or correctly identified negative outcomes are the negative predictions. Conversely, Type I
errors result in False Positives (FP), which is a positive result on a negative event by the model. Finally, Type
Il errors are
6.5.1.  Accuracy

All it measures is the frequency with which the classifier makes accurate predictions. The ratio of the number
of accurate forecasts to the total number of predictions (see equation 13) can be used to determine accuracy.
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number of correct prediction
(13)

Accuracy=
Y total number of predictions

The "Number of Correctly Classified Instances" indicates the number of data records that the algorithm
correctly classified. The "Total Number of Instances" parameter indicates the total number of data records in
the dataset.

6.5.2.  Precision (Positive Predictive Value)
This can explain why so many situations which were accurately predicted were indeed positive. Precision is
important in the cases described in equation 14 where false positives are a lot worse than false negatives.
(14)

Precision:
TP+FP

6.5.3.  Specificity (True Negative Rate):
The specificity of a diagnosis test is explained by Equation 15 as accurate negative predictions divided by

total observed negative cases.
TN
TN+FP
6.5.4.  Recall (Sensitivity, True Positive Rate):

This prescribes how many actual positive cases our model was able to predict with absolute certainty. Recall

Specificity: (15)

comes is handy measure whenever False Positive is of higher concern than False Negative as shown in equation
16.

PR TP
Sensitivity: ———

6.5.5.  Matthews Correlation Coefficient (MCC)
The MCC provides a fair assessment of classification performance, especially when dealing with datasets

(16)

that are unbalanced and have a large difference in the proportion of positive and negative samples shown in
equation 17.
MCC

(TPXTN)—(FPXFN)
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

17)

7. Limitation of Work

There are some limitations in this study, despite positive performance results observed in the proposed
models. The models might not be effective to generalize to other areas in Pakistan because of time and space
limits in the dataset. Consistency of prediction can also be different with variation in quality of data, resolution
as well as local climatic variability.

Moreover, the models do not use dynamical features and they are not connected with real-time sensor data
and large scale meteorological indices like ENSO or NAO. Whilst the models have been successful in the area
of training, their applicability in new time patterns and invisible climatic areas is still unclear.

Real-time rainfall forecasting would require automation of the data ingestion process, retraining of the
model, and frequent calibration of the model with satellite- and IoT-collected meteorological data streams to
be practically deployed. The future research to improve the operational reliability of the model should thus
focus on multi-source dataset construction and the implementation of more sophisticated hybrid optimization
methods.

8. Conclusion

The main aim of this research was to create a correct and effective machine learning and deep learning -based
rain classification model using meteorological data of the Visual Crossing weather portal in relation to
Pakistan. The sample size of 4,778 observations and 33 climatic variables (data) was used to train and test seven
different sophisticated machine learning models to predict rainfall. The results show that machine learning
algorithms could be successfully used to form a meteorological data with clear categorical characteristics that
are identified in the form of Receiver Operating Characteristic (ROC) curves and Confusion Matrix. Random
Forest was the most accurate with 0.997 followed by AdaBoost (0.996) and Gradient Boosting (0.994), which
validated their robust predictor variables of rainfall in the short term. Although it was not as precise, the K-
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Nearest Neighbor (0.907) still exhibited potential practicality in rainfall classification. These findings confirm
that ensemble learning approaches are better than the classical classifiers, including the Logistic Regression,
Support Vector Machine, and Naive Bayes, in solving prediction problems related to weather. Random Forest
model, especially, was very reliable and robust and thus it is an appropriate choice in operational weather
forecasting. Notably, a deep learning-based Bidirectional LSTM (BiLSTM) model was created and tested as
well. It had a test accuracy of 99.89% with the least loss meaning that it was learning at an exemplary level of
stability and prediction. It proves that by combining deep learning architectures with machine learning
ensembles, the accuracy of rainfall prediction can be further improved, and this approach will become a
promising way to improve climate analytics and operational weather forecasting systems in the future. The
next direction in work will be the creation of a completely integrated Al-based early warning system that will
integrate predictive modeling with real-time communication infrastructure to warn communities in rain-prone
areas. This system would improve preparedness against disasters, improve the effects of floods, and promote
climate resilience measures throughout Pakistan.

Abbreviations:
KNN:  K-Nearest Neighbors
GBM:  Gradient Boosting Machine

NB: Naive Bayes
RF: Random Forest
LR: Logistic Regression

ROC:  Receiver Operating Characteristic

FPR: False Positive Rate

TPR: True Positive Rate

SVM:  Support vector machines

BiLSTM: Bidirectional Long Short Term memory
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