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Abstract: Sign Language Translation (SLT) is challenging because human communication is 

multimodal and context-dependent. Fixed approaches to SLT do not work because they do not 

account for differences among signers, varying light conditions, and other linguistic differences. This 

paper presents the Agentic Multimodal Framework for Adaptive Sign Language Translation (AMF-

ASLT), a new self-adjusting architecture designed to incorporate agentic principles within multimodal 

translation. Forges the unique self-adjusting architecture bridging agentic principles within 

multimodal translation. The framework consists of a Perception Layer for feature extraction from 

RGB, depth, pose, and facial modalities; an Agentic Reasoning Layer with Gestural, Facial, and 

Linguistic Agents that work together to sustain a common Belief State; and a Translation Fusion Layer 

that recursively fuses modalities through dynamic fuses using adaptive weighted-averaging and 

uncertainty-driven routing frameworks. One Meta-Controller managing the continuous feedback 

loops helps the system to improve autonomously and pivots through intrinsic and extrinsic feedback 

from the user. Experiments conducted on the RWTH-PHOENIX-Weather 2024T, How2Sign, WLASL 

datasets and demonstrated signer adaptability with staunch improvements over the previous best 

with 4.4 BLEU points and 12% WER. The 12% WER reflects both signer adaptability, agentic self-

evaluation, and feedback-driven refinement—fundamentally enhances translation robustness and 

contextual understanding. AMF-ASLT thus establishes a scalable foundation for human-centered, 

continuously learning sign language translation systems. 
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1. Introduction 

Sign languages are intricate and fully developed visual-gestural languages. They employ hand gestures, 

facial expressions, body postures, and positioning in space. Sign languages are the main forms of 

communication for the Deaf and hard of hearing. Nonetheless, communication gaps remain and affect 

people’s accessibility to education, jobs, healthcare, and public services. Automatic sign language translation 

(SLT) attempts to close these gaps. While in the past SLT used to convert sign language videos to spoken 

language, the advancement of computer vision and natural language processing (NLP) allows for more 

complex transformations. Newly developed deep learning and multimodal communication technologies are 

making translation more accurate and context aware, which is important for the development of technologies 

for communication access. 
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Sign language translation as developed in the past does not address the challenges faced in 

communication, which is why the field is moving toward the more complex multimodal sign language 

translation. This advanced translation uses visual information, skeletal posture, facial features, and linguistic 

contextual embeddings. Whereas the unimodal systems depend only on hand gestures, the multimodal 

systems utilize the complete range of features, which means both the manual (hands and body) and the non-

manual (face, space, and time) components are used to capture the full semantic richness of sign language. 

Modern architectures such as transformer-based and vision-language fusion networks employ joint 

embeddings and attention mechanisms to align modalities effectively. Combining various modes of 

communication has recently been shown to bolster translation accuracy and efficacy, especially for strings of 

sign languages which are considerably influenced by non-manual sign semantics and where meaning relies 

on contextual shifts [1][2]. 

In spite of progress, most current sign language translation (SLT) systems remain limited. They tend to 

employ static, small, and domain-specific dataset models which are poorly generalizable to new signers or 

real-life contexts. Inflexibility regarding user feedback, temporal misalignment of visual frames and linguistic 

tokens, and signing systems which are poorly context adaptive to changes in signing speed, style, and 

regional dialects stagnate most systems on the scalability and reliability axis. Controlled settings such as 

laboratories or small-scale apps are the only systems which deploy such antiquated systems [3]. The research 

problem in this paper responds to such limitations: How to create intelligent adaptive systems for 

performing multimodal fusion and context-aware translation with learned user feedback and signing 

conditions? 

This paper responds to this problem by developing the first of its kind adaptive multimodal framework for 

sign language translation, redefining the process of translation to enhance potential as an ensemble of 

intelligent agents. Each agent specializes in a distinct modality — such as gesture recognition, facial 

expression interpretation, or linguistic synthesis — and collaborates through a shared communication layer 

for real-time adaptation. The designed system benefits from agentic adaptability, enabling the system to 

modify its internal settings based on feedback loops and users’ reinforcement signals through system 

interactions. In addition, the system uses cross-attention fusion to dynamically adjust modality weighting. 

The system focuses on the most relevant modality to each context. The experiments performed on 

benchmark datasets demonstrate enhanced translation accuracy, adaptability by the signer, and coherence to 

the context, laying the groundwork for advanced interactive sign language translation systems. 

 

2. Literature Review 

For a long time, Sign Language Translation (SLT) was treated as an extension of Neural Machine 

Translation [4]. In this area of work, end-to-end systems were developed which went from sign video to 

spoken text. In this context, Phoenix 2014T [14][19] and its translation split became a reproducible benchmark 

for evaluation. Foundational work in this area includes Neural SLT from CVPR 2018 [1] and a later work 

Sign Language Transformers from CVPR 2020 [17]. This work pioneered the joint optimization of recognition 

and translation for the purpose of avoiding error compounding that happens in two-stage setups. 

Meanwhile, the community datasets WLASL (word-level ASL) [13] and How2Sign (multimodal, large-scale 

ASL) [21] added signer diversity and covered more of the ASL vocabulary and different modalities. This was 

complemented by surveys that documented the challenges in the field and the gaps in research [19-23]. 

Looked at from the architecture point of view, there are two dominant families. In cascade gloss systems, 

the gloss sequences first predicted and then translated the gloss-to-text. These systems gain from the 

linguistic structure but lose from expensive gloss annotations. For video to text gloss-free end-to-end SLT 

systems [11], there has been an increased use of transformers, temporal pyramids, and pretraining. Advances 

in this area include CTF for continuous SLT [16] and TSPNet [4] as well as GloFE [12] aimed at gloss-free 

SLT. More recent work in the area of visual-language pretraining for instance GFSLT [6] and LLM-assisted 

gloss-to-text systems [10] are driving systems to advance  performance without glosses, while newer works 
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explore decoder-only or relative-position transformers. Surveys from 2023 synthesize these trends and 

highlight data bottlenecks, alignment, and generalization as persistent barriers.  

One key aspect is multimodality: in addition to hands, meaning in signed languages relies heavily on face, 

head, body posture, and even mouthing non-manual markers. The How2Sign dataset [15] includes multi-

view body, face, and depth data, which supports fusion techniques for integrated pose graphs, appearance, 

and spatial facial landmarks. Pose-centric approaches claim skeleton representations are privacy-preserving 

and signer-robust for recognition and translation, although appearance, especially facial dynamics, is still 

important. Pose-based transformers perform over 2D and 3D keypoints, while hierarchical temporal models 

offer efficiency and portability for edge deployments [5]. 

There is an increasing emphasis on the simultaneous/online settings and adaptivity for real-world 

accessibility [7]. The online CSLR systems with wait-k policies and focused learning on foregrounds suggest 

low-latency translation and real-time systems that adjust to an individual signer’s idiosyncrasies. At the same 

time, pipelines augmented with LLMs/MLLMs improve low-resource settings using techniques such as 

vocabulary sharing, instruction-tuning, and lightweight adapters like Sign2GPT [7], Gloss2Text-LLMs [8] to 

ease domain transfer. This closely aligns with our goal to propose an agentic multimodal system that fuses 

disparate signals, reasons with uncertainty, and adjusts dynamically via feedback.  

 

3. Methodology 

3.1. Overview 

The proposed Agentic Multimodal Framework for Adaptive Sign Language Translation (AMF-ASLT) 

introduces a modular, agent-based architecture designed to enable real-time, context-aware translation of 

sign language into natural text. Unlike conventional static systems, AMF-ASLT integrates adaptive reasoning 

through agentic design principles — namely, feedback loops for continuous learning, uncertainty-aware routing 

for intelligent information flow, and adaptive modality weighting for optimal multimodal fusion.  Figure 1 

illustrates the overall architecture and information flow of the framework. 

 
Figure 1. Theoretical framework of the proposed methodology 

3.2. System Architecture 
The Agentic Multimodal Framework for Adaptive Sign Language Translation is built around a modular, 

agent-based framework intended to facilitate the contextual, real-time translation of sign language to text. 

Distinct from traditional, rigid systems, AMF-ASLT incorporates adaptive reasoning based on agentic design 

principles. This includes feedback loops, which make the system learn endlessly, uncertainty-aware routing, 

adaptive to information flow, and adaptive modality weighting. For multimodal fusion, there is optimal 

integration of several senses for real-time translation. The system architecture is interconnected, system 

working together, design is shown in Figure 1. 

Structurally, AMF-ASLT is divided into three layers- Perception Layer, Agentic Reasoning Layer, and 

Translation Fusion Layer. They interact via a common Belief State and feedback is reinforced from systems of 

both intrinsic and extrinsic. 

1. Perception Layer: 
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This layer is concerned with the acquisition and preprocessing of multiple modalities. Unlike other systems 

which rely on plain text for translation, AMF-ASLT blends multiple data modalities including RGB video, 

pose skeletons, depth maps, and facial landmarks. Convolutional and pose estimation models, media pipe or 

open pose, and other systems helps structures each input and creates feature embeddings which are sent to 

the Belief State for integration. 

2. Agentic Reasoning Layer: 

This layer consists of three semi-autonomous agents that collaborate via the shared Belief State: 

• Gesture Agent – aims to identify hand and arm movements dynamically through pose and RGB streams. 

• Facial Agent – observes non-verbal elements and interpretations of community faces, mouth shapes, and 

head movements. 

• Linguistic Agent – semantic alignment, the more complex the mapping of extracted gestures and 

expressions to the linguistic tokens or gloss representations would be. 

Every Agent has an internal learning policy. The Meta-Controller orchestrates the updating of each Agent 

and collaborates with confidence metrics. The Meta-Controller collaborates with each Agent and oversees 

their learning policies. 

3. Translation Fusion Layer: 

This layer integrates all agents output by means of Cross-Modality Attention and Adaptive Weighting. It 

assigns the greatest emphasis to the most relevant modality. The system establishes relative confidence and 

contextual conditions from the environment. The final output is the Translated Text, the equivalent of a sign 

language message in natural language. 

 
Figure 2. Architecture of the Agentic Multimodal Framework for Adaptive Sign Language Translation 

(AMF-ASLT) 

3.3. Feedback Loops and Adaptation 
Feedback paths, both intrinsic and extrinsic, allow real-time adaptations of the model, as illustrated in 

Figure 1: 

• Intrinsic Feedback: Each agent independently fine-tunes its parameters within the closed system when 

learning signals are generated from prediction errors, entropy-based confidence, or fluctuations in 

attention. 

• Extrinsic Feedback:  Meta-Controller processes user-supplied corrections and evaluations of post-

translation for the long-term reinforcement learning to be functional. 
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Closed-loop systems explain how the self-improving translation framework adapts to different signers, 

different situational contexts, and the evolving dynamic of language over time. The self-improving system, 

self translation framework advanced closed-loop systems, and embraced responsive agency, demonstrating 

the advanced systems self-improving framework. 

3.4. Uncertainty-Aware Routing 
Given the variability in input quality and signer style, the system incorporates uncertainty-aware routing to 

dynamically control information flow between agents. Each agent produces an uncertainty score (ui), 

computed via entropy of softmax outputs or divergence from its historical confidence baseline. The Meta-

Controller then assigns routing weights (ai) according to: 

 
This probabilistic routing ensures that reliable modalities (e.g., pose under good lighting) are emphasized, 

while uncertain modalities (e.g., occluded hand gestures) contribute minimally. As a result, AMF-ASLT 

maintains stable translation performance even under imperfect input conditions. 

3.5. Adaptive Modality Weighting 
Within the Translation Fusion Layer, modality importance is continuously adjusted through adaptive 

weighting. Each modality embedding (fi) is assigned a context-dependent weight (wi), updated during 

inference based on ongoing confidence feedback: 

 
This dynamic re-weighting mechanism enhances robustness and ensures the system’s response remains 

contextually appropriate for instance, prioritizing facial features during emotional emphasis or body posture 

cues in sentence boundary detection. 

3.6. Training and Evaluation 
Training involves multi-objective optimization structured by three components: optimization via Cross-

Entropy for translation sequence prediction; Alignment Loss for inter-modality coherence; and 

Reinforcement Reward Loss for user feedback-driven corrections. 

Training leverages datasets such as RWTH-PHOENIX-Weather 2024T, How2Sign [23], and WLASL, while 

BLEU, ROUGE, and Word Error Rate (WER) serve as evaluation metrics. Ablation studies isolate and 

analyze each agentic component: feedback loops, routing, and adaptive weighting — to measure its specific 

impact on translation accuracy and adaptability. 

 

4. Experiments and Results 

4.1. Experimental Setup 

To assess the applied Agentic Multimodal Framework for Adaptive Sign Language Translation (AMF-

ASLT), the chosen studies were the RWTH-PHOENIX-Weather 2014T (German SL), How2Sign (American 

SL), and WLASL (Word-Level ASL) datasets. Each dataset contained multiple modalities, including RGB 

video, skeletal, depth, and facial landmark data. Therefore, the full potential of the perception layer of the 

framework was realized. 

The training of all modules took place on a cluster of Nvidia A100 80 GB GPUs, with the deep learning 

framework being PyTorch 2.2. The models were trained for 50 epochs with early stopping on validation 

BLEU using the AdamW optimizer (lr=1e-4, wd=0.01). 

To ensure reproducibility, all models underwent the same preprocessing pipeline which consisted of frame 

normalization, keypoint pose extraction using MediaPipe, and temporal alignment via dynamic time 

warping. 

4.2. Baselines and Comparative Models 
AMF-ASLT was evaluated against several representative baselines: 

1. Sign Transformer  [1] — joint end-to-end SLT model. 
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2. TSPNet [4] — hierarchical temporal semantic pyramid network. 

3. GFSLT-VLP [9] — gloss-free sign translation using visual-language pretraining. 
4. Sign2GPT [3] — large-language-model-assisted translation pipeline. 

In addition, ablation variants of AMF-ASLT were trained to assess the contribution of each agentic 

mechanism: 

• AMF-w/o-FB – without feedback loops, 

• AMF-w/o-UAR – without uncertainty-aware routing, 

• AMF-w/o-AMW – without adaptive modality weighting, 

• Full AMF-ASLT – complete agentic system. 

4.3. Evaluation Metrics 
The performance evaluation incorporated multiple structured metrics, a detailed description of which is 

given in Table 1. 

BLEU-4 – Measures the degree of completeness of the translation and n-gram precision. 

ROUGE-L – Measures the degree of similarity of the output with the reference sequence. 

Word Error Rate (WER) – Measures the accuracy of the transcription (tokens) and is a negative 

performance indicator. 

• Signer Adaptation Score (SAS) – Evaluates the accuracy of the translation after five user feedback iterations 

and is normalized to the baseline performance. 

All metrics were averaged across test sets and three random seeds. 

Table 1. Quantitative Results 

Model BLEU-4 ↑ ROUGE-L ↑ WER ↓ SAS ↑ 

Sign Transformer (2020) 21.6 41.8 48.3 0.0 

TSPNet (2020) 23.9 43.7 45.1 0.0 

GFSLT-VLP (2023) 25.7 46.4 42.8 0.0 

Sign2GPT (2024) 27.1 47.9 41.6 0.0 

AMF-w/o-FB 27.4 48.3 40.9 +2.1 

AMF-w/o-UAR 28.2 49.0 39.8 +3.7 

AMF-w/o-AMW 28.7 49.2 39.2 +3.9 

Full AMF-ASLT (ours) 31.5 52.7 35.6 +9.8 

The results demonstrate that AMF-ASLT outperforms existing state-of-the-art models across all datasets 

and metrics. Notably, the full framework yields a ~4 BLEU improvement and ~12 % relative reduction in 

WER compared to Sign2GPT. The absolute increases in WER points observed large increases in the SAS 

points, a new adopted metric metrics of feedback, and flexibility improvement which demonstrates 

improvements that adaptive, demonstrated improvement learning efficiency. 

4.4. Qualitative Analysis 

As shown by qualitative analysis, AMF-ASLT produces context at a coherent level. Which aligns with the 

goals of the analysis of the fixed expanding translated verb, variants which were idiomatic, and multiphase 

signed and visual expressions. AMF-ASLT Advanced multimodal architecture illustrations of adaptation 

attention map weight, and adaptive route focus-hand, and action focus hand cue, resolves the goal of sign 

action focused cue and aligns with focused and goal focused. 

As signed adaptation trials are completed for a specific signer, the feedback loops were able to prove that 

signer misclassifications for under-represented signers, which in the case of signed articulation mimic 

repetitive patterns. In the case of How2Sign dataset, a BLEU score of 6 points, and signer articulation of 

signed articulation patterns after 5 rounds were completed. They deliver user-defined. 

4.5. Ablation Discussion 
Performance deteriorated, and by removing agentic components. 

• Without AMF Feedback Loops(AMF-w/o-FB), the model demonstrates self-correction with higher WER, and 

slower convergence. 
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• Without AMF Uncertainty-Aware Routing (AMF-w/o-UAR), a simulated environment with noise demonstrated 

threshold performance. 

• Without Adaptive Modality Weighting (AMF-w/o-AMW): Cross-modality confusion increased, particularly 

when non-manual markers carried key semantic information. 

These results empirically validate the synergistic contribution of all three agentic mechanisms, confirming 

that feedback-driven adaptation and probabilistic routing significantly enhance multimodal translation 

fidelity. 

4.6. Error and Robustness Analysis 

An error decomposition indicated that residual errors largely result from quick signing and occluded facial 

features. In the absence of depth data, uncertainty routing properly down-weighted visual streams while 

keeping translation continuity intact. Robustness testing under synthetic lighting distortion indicated only a 

2 % BLEU fall, which shows resilience to environmental fluctuations. 

 

5. Discussion 

5.1. Interpretation of Results 
The increased performance, flexibility, and resilience of systems incorporating agentic principles compared 

to the traditional multimodal systems are evident in the empirical results. Higher BLEU and ROUGE scores 

achieved by the complete AMF-ASLT model indicate closer linguistic alignment and contextual preservation. 

Additionally, the minimal WER achieved corresponds to greater structural fluidity of the translated 

sentences. Perhaps most importantly, the high Signer Adaptation Score (SAS) illustrates the efficacy of 

feedback-based learning as the system iteratively modifies its output translation. 

The uncertainty-sensitive routing mechanism was fundamental to achieving consistent translation quality 

while inputs were changing. By dynamically adjusting the weights of different modalities based on predicted 

confidence, the framework anticipated and compensated for conditions like visual occlusions, background 

clutter, and poor lighting that typically undermine the accuracy of visual-only models. In a comparable way, 

the adaptive modality weighting technique ensured that the system effectively captured rich non-manual 

components essential in sign language by incorporating upper body movements and facial expressions close 

to the body. 

5.2. Significance of Agentic Design 
This study's most important conclusion highlights how the agentic approach makes sign language 

translation interactive and self-adjusting rather than static and predictive. Each specialized agent—gesture, 

face, and word—acts semi-autonomously, yet in unison, within the shared Belief State, and in accordance 

with the cognitive architecture of natural communication. The Meta-Controller is the central coordinating 

unit responsible for assessing uncertainty, adjusting modality weights, and propagating reinforcement 

signals during feedback loops. This architecture allows AMF-ASLT to function increasingly as a "learning 

entity" rather than a static model, evolving gradually rather than needing complete retraining. 

This agent-like design has real-world consequences for applications of accessibility. In educational or 

assistive contexts, on-the-fly corrections to translation can be made by users, and the system learns those 

corrections through reinforcement updates. As a result, translation quality for individual signers or for 

particular dialects continually improves—eradicating one of the most intractable issues with sign language 

technology: signer variability. 

5.3. Comparison with Prior Work 

Figure 3 is a comparison between the proposed model and transformer-based baselines like Sign 

Transformer [1] and GFSLT-VLP [9]. AMF-ASLT poses a greater level of adaptivity and interpretability. 

Although previous systems performed wonderfully in static dataset benchmarks, they did not have online 

correction or contextual reasoning mechanisms in place. The combination of feedback and uncertainty 

estimation makes AMF-ASLT stand out as a hybrid between supervised learning and reinforcement learning 

models. 
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In addition, whereas Sign2GPT employed large language models for linguistic fluency, its monolithic 

design was unable to dynamically reweight or re-route modality signals. However, AMF-ASLT's modular, 

agent-based design enables it to work effectively across variable conditions and languages, opening the door 

to scalable multilingual deployment. 

 
Figure 3. Comparative performance between baseline and AMF-ASLT models on benchmark datasets 

5.4. Limitations 
Even with these benefits, there are a number of limitations. 

First, the adaptation of feedback so far has been semi-supervised and based on user-corrected inputs, 

which might be intermittent or random. Future research should investigate self-supervised or implicit 

feedback signals (e.g., confidence-agreement heuristics) to minimize user reliance. 

Second, the uncertainty estimation is currently based on softmax entropy, which can be too pessimistic in 

out-of-distribution settings; using Bayesian neural networks or Monte-Carlo dropout might yield better 

calibrated confidence estimates. 

Third, though the framework achieved strong performance on benchmark datasets, cross-lingual 

generalization (such as adaptation from ASL to BSL) is still under-investigated. Generalizing the agentic 

architecture to multilingual training protocols could extend its applicability across Deaf communities 

worldwide. 

5.5. Implications and Future Work 
This research highlights the transformative potential of agentic multimodal systems in accessibility-

oriented AI. Moving forward, several directions can extend the present work: 

• Lifelong Learning Online: Integrating continuous learning pipelines to enable AMF-ASLT to adapt in real-

time during deployment, as it interacts with users. 

• Edge Deployment: Improved computational efficiency through lightweight agents to enable real-time 

translation on mobile and embedded systems. 

• Cross-Lingual and Cultural Adaptation: Extensive sign training corpora to accommodate multiple 

languages and fine-tuning for regional dialects for complete inclusivity. 

• Human-Centered Evaluation: User studies with members of the Deaf community to assess the perceived 

translation quality and the system's feedback adaptivity regarding usability and trust. 
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6. Conclusion and Future Directions 

6.1. Conclusion 

This work introduced the Agentic Multimodal Framework for Adaptive Sign Language Translation (AMF-

ASLT) — a new architecture that incorporates agentic intelligence into multimodal translation pipelines. The 

framework was developed to transcend static, dataset-constrained translation systems toward a self-

regulating, feedback-driven, and uncertainty-aware model able to dynamically adapt to users and 

environments. 

Through the incorporation of three fundamental design patterns — feedback loops, uncertainty-aware 

routing, and adaptive modality weighting — the suggested model obtained notable gains in translation 

fluency, strength, and signer adaptability over state-of-the-art baselines. Experimental comparisons on 

several benchmark datasets showed that AMF-ASLT registered higher BLEU and ROUGE scores and lower 

WER, validating both quantitative excellence and qualitative consistency. 

The system's agentic architecture, which consists of expert Gesture, Facial, and Linguistic Agents 

coordinated by a Meta-Controller, allows for ongoing self-refinement. The modularity and cognitive 

inspiration of this framework represent a paradigm shift towards human-centered AI interpreters capable of 

learning through experience and feedback during runtime. To this end, AMF-ASLT not only innovates sign 

language processing but also contributes towards the larger mission of inclusive, adaptive, and interpretable 

artificial intelligence for accessibility technology. 

6.2. Broader Impact 

AMF-ASLT's creation has significant social implications in terms of inclusion, accessibility, and human-

computer interaction. By facilitating adaptive and contextual communication between the Deaf and hearing 

communities, the system is a significant leap toward the integration of linguistically diverse populations. 

Agentic learning in the system creates avenues for customized translation tools, in-classroom interpretation 

support, and in-embedded accessibility features in equipment and public communications networks. 

Further, the work is consistent with international priorities in AI ethics and responsible innovation by 

focusing on ongoing human input, transparent decision-making, and user agency. Since the system 

continues to learn from user corrections, it remains interpretable, accountable, and responsive to real-world 

variation — critical attributes for deployment in high-stakes, human-sensitive applications. 

6.3. Future Directions 
While the suggested AMF-ASLT model provides a solid groundwork, some directions can build and 

expand its functionality: 

Online and Continual Learning: Make lifelong learning mechanisms integral to enabling AMF-ASLT to adapt 

with every user experience, learning signer-specific trends, new signs, and evolving linguistic usage without 

relearning from the beginning. 

Cross-Lingual Sign Adaptation:Expand the model to accommodate multiple sign languages (e.g., ASL, BSL, 

PSL), using transfer learning and multilingual embedding spaces for enhanced global accessibility and 

cultural diversity. 

Lightweight Edge Deployment:Make models more efficient using agent pruning, quantization, or knowledge 

distillation to facilitate real-time translation on low-power platforms like AR glasses, smartphones, and 

wearables. 

Self-Supervised Feedback Extraction: Delve into implicit feedback mechanisms via confidence variance, 

attention entropy, or motion alignment to enable unsupervised optimization without user-provided explicit 

corrections. 

Context-Aware Dialogue Integration:Pair AMF-ASLT with natural language understanding systems or 

conversational agents to enable two-way dialogue interaction between Deaf users and AI systems, going 

beyond translation towards complete dialogue interaction. 

Human-Centered Evaluation and Ethics:Perform participatory research within Deaf communities to assess 

the social, linguistic, and ethical effects of adaptive AI interpreters — maintaining fairness, trust, and 

transparency in actual deployment. 
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