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Abstract: The current paper investigates the application of a Long Short-Term Memory 

Autoencoder (LSTM-AE) to identifying anomalies in the multi-variate time-series of air-pollution 

measurements. The algorithm was used to the sensor data of PM2.5, CO, O3, NO2, TEMP, and 

WSPM of the Beijing Multi-Site Air-Quality Data Set described on Kaggle. The test set included fifty 

synthetic anomalies that were used to assess performance. The anomalies were identified using the 

reconstruction error calculated using Mean Squared Error (MSE) as a dynamic threshold value of 

0.002957. The presented model produced the Precision, Recall, F1-Score, and ROC-AUC of 77.00%, 

100.00%, 87.01%, and 99.86%, respectively, proving its effectiveness in detecting minor and drastic 

changes in the pattern of air quality. 
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1. Introduction 

Air pollution is considered to be one of the most severe environmental and health problems on the 

universal scale [1]. It is particularly acute in the industrial cities with a high population density, which could 

result in developing respiratory illnesses, cardiovascular issues and environmental deterioration due to 

the presence of massive amountsof pollutants, such as PM2.5, CO, NO2, and O3 [2]. Real-time monitoring 

of the air quality permits the authorities to take immediate measures that would safeguard the health of 

people [3]. 

Contemporary sensor-based networks have the capacity to take recordings continuously of 

numerous pollu- tants and other meteorological variables in other positions [4]. But usually noise, missing 

values, and abrupt changes are problems in the collected data [5]. Identification of such anomalies is key 

to defining both detection of pollution outbreaks as well as verification of sensor accuracy and 

interpretation of rare event needs attributable to either weather or respective industrial activity [6]. 

Conventional anomaly detectors operate on constant thresholds or pre-structured rules by the 

subject matter experts [7]. Although these methods are helpful, they tend to be inflexible and might break 

rules to exhibit compli- cated dynamics and/or respond to the factors of fluctuating conditions [8]. In 

addition, most of the environmental data are unlabeled, and therefore, supervised techniques are 

impractical [9]. 

Deep learning techniques are a potential alternative to handle such a challenge [10]. Specifically, 

anomaly detection in time-series data is effectively performed using Long Short-Term Memory 

Autoencoders (LSTM-AEs) [11]. LSTM networks have the ability to learn temporal information about 
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sequences and when auto encoders are used, they can be combined and used to recreate normal behavior 

patterns [12]. Any major variation in the reconstructive process can be held as an anomaly [13]. 

The paper suggests an unsupervised reconstruction-based anomaly detector based on an LSTM Autoencoder 

(LSTM-AE). The model is only trained using normal multivariate sequences of air-pollution and 

meteorological variables whereby the model learns normal temporal trends. Testing identifies sequences 

whose reconstruction error is abnormally high, which are considered anomalous. Anomalous samples 

during training do not have any labels; the synthetic anomalies are only injected during the test set, in order 

to assess performance. This renders the approach a conventional unsupervised anomaly detection method 

as opposed to semi-supervised method [14]. 

To assess our model, we consider t h e  dataset of the Beijing Multi-Site Air Quality with several 

years of measurements of pollutants and weather markers in multiple monitoring sites [15]. The challenges 

presented by this dataset are very realistic being that it adds dependencies over time and seasonality along 

with missing values [16]. To evaluate the model, this proposed model is tested on the synthetic anomalies 

to check its performance, and the results turn out to be good precision, recall, and ROC-AUC scores, 

depicting its sound aspects in detecting abnormal patterns in air quality [17]. 

This study would result in a deep learning replica of a Long Short Term memory Autoencoder 

(LSTM- AE) to identify anomalies in multivariate air pollution data [10]. The model is trained using 

normal sequences and identifies the anomalies on the basis of reconstruction error [13]. Anomalies based 

on synthesis are also inserted into test set to test the effectiveness of the model. The assessment of 

performance is carried out through the same standardized measures as Precision, Recall, F1-Score and 

ROC-AUC. It seeks to demonstrate that LSTM-AE can be successfully extracting abnormal patterns in 

real-life air quality data [5]. 

 

2. Related Work 

Also, the topic of anomaly detection of time-series data has been deeply investigated especially in 

the field of environmental monitoring [5]. Malhotra et al. (2015) were the first to apply Long Short-Term 

Memory (LSTM) networks to the problem of anomaly detection in time series, and this task proved to be 

an effective learning problem, where the LSTM approach achieved success. This method created a basis to 

implement LSTM based models in different fields, such as air quality monitoring [10]. 

Recent experiments performed by Zhou et al. (2013) [14] and Tabassum et al.(2021) [21], 

demonstrated that semi-supervised deep learning can be effective with relatively small amounts of labeled 

data and this result is especially applicable to real-world environmental data where anomalies are poorly 

labeled [14]. Continuing this thought, some literature uses autoencoder-based models namely LSTM-

Autoencoders in identifying abnormal trends in multivariate time-series data. Such models have been able 

to perform well in industrial use-case and sensor fault diagnosis since they are able to capture complex 

temporal patterns and indicate anomalies of normal behaviour [10]. Researchers using unsupervised 

methods have been applied to the scenario of air pollution where Zhang and 

Audibert have used unsupervised methods to identify an abnormal trend in multivariate sensor 

records [5]. The models are effective even in the absence of annotations of anomalies and can be adjusted 

to different conditions in the environment. Nevertheless, a few studies have implemented LSTM based 

methods to multi site air quality information with synthetic anomalies. The study fills that gap by applying 

LSTM-Autoencoder to identify anomalies in pollution data at Beijing and testing it against synthetic 

anomalies. 

Table 1. Samples of Related Work on Anomaly Detection in Time-series 

 

Paper 

 

Year 

 

Method 

 

Key Contribution 

 

Malhotra et al. 

 

2015 

 

LSTM 

 

Proposed LSTM as an anomaly detector on 

time-series data and pointed out the possi- 

bility to learn temporal relationships [8]. 

 

Zhou et al. 

 

2013 

 

Semi- 

 

Demonstrated that it is possible to learn LSTM 
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Table 2. Evaluation Metrics Used in the Anomaly Detection Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Materials and Methods  

In this study, the researcher will utilize the Beijing Multi-Site Air-Quality Data Set found in the 

Kaggle site [15], since it includes hourly quality air data of the various monitoring stations in Beijing over 

the period of 2013 to 2017. The records have six essential characteristics of PM2.5, CO, O3, NO2, 

temperature (TEMP), and wind speed (WSPM) that provide an overview of the atmospheric conditions in 

the city. 

In order to maintain consistency between the monitoring stations, data was standardized with 

MinMax Scaler (handling IoT data in the best practice [23]) using a training set to prevent data leakage [24]. 

Multivariate sequences (24x6) were extracted using a 24-hour sliding window with a 6-hour stride, 

effectively capturing the difference between days in order to be used as inputs into an LSTM-based model 

[25]. This method divides the unstructured time series data, e.g. PM2.5, into structured inputs as shown in 

Figure 1, so that the model can learn temporal patterns localized in time to detect anomalies correctly [8]. 

Table 3. First Five Rows of Raw Air Quality Data from Wanliu Station (March 2013) 

No Year Month Day Hour PM2.5 Station CO O3 NO2 TEMP WSPM 

1 2013 3 1 0 8.0 Wanliu 400.0 52.0 28.0 -0.7 4.4 

2 2013 3 1 1 9.0 Wanliu 400.0 50.0 28.0 -1.1 4.7 

3 2013 3 1 2 3.0 Wanliu 400.0 55.0 19.0 -1.1 5.6 

4 2013 3 1 3 11.0 Wanliu NaN NaN 14.0 -1.4 3.1 

5 2013 3 1 4 3.0 Wanliu 300.0 54.0 NaN -2.0 2.0 

 

 

supervised 

LSTM 

using little la- beled data [14]. 

 

Audibert et al. 

 

2020 

 

Autoencoder 

 

Put forward a non- supervised scheme to 

identify anomalies in multivariate time se- ries 

[22]. 

 

Zhang et al. 

 

2019 

 

Unsupervised 

Learning 

 

Implemented unsupervised approaches 

 in detecting anomalies within air 

quality data [5]. 

Matric Description 

Precision Calculates  the  percentage  of 

the number of correct identified anomalies of the number of de- tected 

anomalies. A high preci- sion implies that there is less false positive rate [18]. 

Recall Calculates  the  amount  of 

properly detected anomalous instances as a percentage of all actual anomalous 

instances. high recall is synonymous with a low false negative rate [18]. 

F1-Score Precision and recall harmonic 

mean. It optimizes the tradeoff between false positive and false negative trade-

off [19]. 

ROC-AUC The model capability of distin- 

guishing between classes. It is desirable to have a high Area Under the Curve 

(AUC) and that shows greater separability [17]. 

Confusion 

Matrix 

A table representing performance 

of a classification model, of val- ues of coutputtp, coutputtn, cout- putfp, 

coutputfn in the form of a table, displaying values of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) [20]. 
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Figure 1. Sliding Window (24h Window, 6h Stride) 

Fig. 1: Multivariate sliding window extraction of air quality. In every 24 hours (colored areas) there 

are 6 characteristics (PM2.5, CO, O3, etc.). The 6-hour stride results in the overlap of windows by 18 hours 

(75 % overlap). Stride length and window size are expressed clearly by using the lower arrows. 

In order to eliminate temporal leakage, the dataset was chronologically divided into 70% training, 

10% validation and 20% testing. The data of all the monitoring stations was merged into one multivariate 

data. Linear interpolation of the pollutant variables (NaNs) were applied at the individual station and then 

the boundary cases were filled by forward/backward filling. Every row that was not completed was 

eliminated after interpolation. The scaling consisting of MinMaxScaler was carried out on the training set 

and the trained scaler was used on the validation and test sets. 

To test the model, a 10% alteration of the test windows was performed to generate synthetic 

anomalies to determine the performance of detection. Such anomalies were created either by adding 

sudden spikes, contaminating pollutant values by random values between 2 and 5, or by introducing short-

term irregular variations. These mutations simulate real-world pollution occurrences and, at the same time, 

are designed in such a way that polluted sequences do not escape the test split. 

An unsupervised LSTM-AutoEncoder that was trained on normal air pollution data to learn to re-

create typical patterns [10]. In the process of inference, more errors tend to be experienced in the 

reconstruction procedure when anomalous sequences are encountered; such measures are expressed as 

MSE [13]. The anomalies are classified by a threshold based on training errors. The method successfully 

captures time patterns and is useful in detecting anomalies in real world data (both large and small) [5]. 

Sensitivity test was done by calculation of threshold with the help of the following statistical rule: 

Threshold = µtrain + 3σtrain 

where µtrain and σtrain are mean and the standard deviation of the training reconstruction errors, 

respectively [7]. Those samples above this threshold were treated as anomalous. 

In the training of a model, the Adam optimizer was used with the learning rate set to 0.001 [26], 

and a loss function of Mean Squared Error (MSE), given by the eq 2 [27]. The training was performed on 

20 epochs, size of the batch was 64 [28]. 

The reconstruction error ET which is the mean squared error between the input xt and the 

reconstruction 𝑥𝑡(Equation 2) is the metric of how well the model is approximating normal patterns [13]. The 

greater the errors, the greater the possibility of anomalies and this is used as the foundation of the detection 

strategy [7]. 

The LSTM-Autoencoder design of this study is expressed in Table IV. The encoder is used to 

compress multivariate time-series input, and decoder reconstructs the same. The design is capable of 

capturing temporal and pollutant interactions effectively and hence, it is suitable to detect the anomalies [11]. 
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The architecture has been useful in capturing temporal dynamics and interaction of pollutants [29], 

and it allows the reconstruction of normal sequences effectively and magnification of errors occur once 

anomalies take place [13]. 

 
Figure 2. Architecture of the LSTM-Autoencoder 

Figure 3. Histogram showing reconstruction error distributions for normal vs. anomalous samples, 

including the threshold line 

The experiments were performed using Google Colab with Tesla T4 GPU and python 3.10. The 

model utilized several libraries amongst which were PyTorch (model training) [28], NumPy and Pandas (data 

processing), Scikit-learn (normalization, metrics), and Matplotlib (plotting) [24]. 

Table 4. Overview of LSTM Autoencoder Architecture 

 
 

 

 

 

 

 

 

 

4. Results 

The model has done well(similar to multi-cloud detection applications [30]) Precision of 77.00%, 

Recall of 100.00%, F1 Score of 87.01%, and ROC-AUC of 99.86%, which means that it identifies them 

Component Description 

Encoder The temporal LSTM features are 

extracted through two LSTM layers that take the input of a dimension of 24 

× 6 and the output is a 16- dimensional vector through using a dense layer. 

Decoder The bottleneck is broadened through dense layer and reshaped which 

undergoes two LSTM layers in order to recover the initial input sequence. 
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accurately and they are balanced. As an imbalance measure, the F1 Score is a harmonic mean of Precision 

and Recall that provides a balanced analysis where imbalance exists as well [20]. 

F1 Score =2* (Precision* Recall)/ (Precision*Recall)         (3) 

Precision is the number of accurately found anomalies divided by the number of all positives [19]. 

The greater the precision, the less false positives and more accurate detection there is. 

 Precision = (True Positives ) / (True Positives + False Negatives)      (4) 

Recall or sensitivity is a quotient of well-identified real positives. It is an indication of how accurate 

the model might be in finding out all the anomalies as far as the data is concerned [18]. The perfect level of 

recall does not reveal the presence of false negative level. 

 Recall= (True Positives) / (True Positives + False Negatives)      (5) 

The Precision-Recall shows the existence of a trade-off between Precision and Recall at various 

values of threshold which is useful to understand the anomaly detection performance of the model (Figure 

4) [17]. 

Figure 5 shows the ROC-AUC score which measures the performance of the model in regard to its 

capability to differentiate between normal and anomalous sequences. AUC being 99.86 % is quite good 

classification [17] [20]. 

Confusion matrix (Figure 6) is a summary of the performance of the model in classification and it 

will display True Positives, False Positives, True Negatives [20], and False Negatives. It points out that the 

model is quite efficient in the detection of anomalies and minimization of errors [31]. 

As shown in Figure 7, the evolution of the anomaly detection by the model with time indicates 

when anomalous patterns are identified and gives us an idea how well the model performed in this respect 

over time. 

 
 . Figure 4. Precision-Recall Curve 

 

Figure 5. Receiver Operating Characteristic (ROC) Curve 
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Figure 6. Confusion Matrix 

The feature-wise reconstruction of the first test sample as seen in Figure 8 demonstrates that the 

model was able to learn and train each feature present in the time-series data with great accuracy and is 

therefore capable of recreating them in a precise manner [13]. 

Figure 7. Anomaly Detection Over Time 

 



Journal of Computing & Biomedical Informatics                                          Volume 10  Issue 01                                                                                         

ID : 1127-1001/2025  

Figure 8. Feature-wise Reconstruction (First Test Sample) 

The training loss curve given in Figure 9 indicates the convergence of the model under training. 

The constant and even loss reduction proves that the model was successfully reducing the amount of 

reconstruction error [24]. 

Table V gives the loss values of the LSTM- Autoencoder after the 20 training epochs [24]. In the 

model, the Precision was 77.00 percent, Recall was 100.00 percent, F1-Score was 87.01 percent, and ROC-

AUC was 99.86 percent, which is a good indicator of similar results across anomaly detection performance. 

Threshold to detect the anomaly was calculated based on the reconstruction error at 0.002957. The 

confusion matrix displayed the number of true positive structural anomalies, false positive structural 

anomalies, true negative structural anomalies, and false negative structural anomalies of 914, 273, 8,876, 

and zero respectively. The model had a 100% recall and high ROC-AUC value of 99.86 which translates to 

the model being able to detect all injected anomalies and the model is capable of differentiating between 

normal and abnormal sequences. Nonetheless, the accuracy of 77% (273 false positives) shows that the rate 

of false-alarm is high. This trade-off is typical of detectors based on reconstruction, which are unsupervised 

detectors, and there is a tendency to detect as many anomalies as possible, at the expense of classifying as 

anomalies some ordinary windows. As such despite having a perfect recall, the precision of the model 

demonstrates that better threshold tuning or the hybrid approach should be used to minimize false 

positives. 

Table 5. LSTM-Autoencoder after 20 training epoch’s assessment. 

Metric Value 

Threshold 0.002957 

Precision 77.00% 

Recall 100.00% 

F1-Score 87.01% 

ROC-AUC 99.86% 

True Positives 914 

False Positives 273 

True Negatives 8876 

False Negatives 0 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Training Loss Curve 

5. Conclusion and Future Work 

This study introduced an unsupervised, reconstruction-oriented anomaly detection model 

utilizing an LSTM Autoencoder (LSTM-AE) for multivariate air pollution data derived from the Beijing 

Multi-Site Air Quality dataset. The model was trained solely on normal sequences obtained via a 24-hour 

sliding window and assessed using synthetic anomalies introduced exclusively in the test split. The LSTM-

AE learns the normal temporal patterns of pollutants and weather features very well, as shown by a high 

ROC-AUC of 99.86% and a perfect Recall of 100%, which means that all injected anomalies were found. 

The model also had a Precision of 77%, which means it had 273 false positives. This means that the 

false-alarm rate was fairly high. This trade-off between perfect recall and moderate precision is typical in 

reconstruction-based unsupervised methods, which are meant to be very sensitive but might mistake 
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normal changes for anomalies. So, even though the model works well to find rare or sudden pollution 

events, the fact that it sometimes gives false positives means that threshold selection and post-processing 

strategies need to be improved. 

In future endeavors, the incidence of false positives may be diminished by investigating alternative 

thresholds, station-specific modeling, probabilistic reconstruction metrics, or hybrid models that integrate 

reconstruction and classification. Testing the model on real labeled anomalies and adding spatial features 

or transformer-based architectures might also make it more stable. 
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