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Abstract: Recent advancements in deep learning have brought remarkable progress in the area of 

predicting the protein functions from its amino acid sequences. These sequences play a crucial role 

in accelerating drug evaluation and uncovering how cells work. This research investigated several 

deep models for predicting protein functions, which include Bi-LSTM coupled with an attention 

mechanism, Gated Recurrent Unit, Long Short-Term Memory, Deep Neural Networks, and 

Bidirectional LSTM. This research used the CAFA5 dataset along with the T5 embedding, which is 

created from this dataset, to test these DL models for the multi-label protein functions prediction 

task. The researchers used state-of-the-art matrices to measure the performance of these models, 

which includes ROC-AUC, Hamming loss AUC, and binary accuracy. The analysis demonstrates 

the Bi-LSTM paired with attention mechanism and DNN models outperformed the baseline 

traditional RNN models in both minimizing loss and accuracy. With an outstanding ROC-AUC 

score of 0.9239 and consistent prediction reliability, the Bi-LSTM plus Attention model performed 

well. This research showed that combining DL models with integrated attention layers produces 

more scalable and accurate results for predicting protein functions. Showing their usefulness in 

practical bioinformatics tasks. 
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1. Introduction 

 Bioinformatics is an interdisciplinary branch that incorporates knowledge of computer science, biology, 

and mathematics in the study of biological systems through computational approaches. Among others, 

one of the most important goals is to understand how protein sequences relate to their biological functions. 

Although in many cases, a protein's three-dimensional structure underlies its function, the experimental 

determination of structure and function is still time-consuming, resource-intensive, and impractical for the 

volumes of sequence data increasing day by day through high-throughput sequencing technologies. In this 

regard, computational approaches that predict protein function directly from sequence information have 

become critical for large-scale biological studies, genome annotation, and downstream applications 

involving drug discovery, precision medicine, and systems biology. The availability of huge protein 

databases, such as Swiss-Prot and UniProt, has further encouraged the development of automated and 

accurate computational models that can assign functional labels in an efficient and consistent manner. 

 Currently, deep learning is one of the most powerful families of methods for the prediction of protein 

function based on sequence. Unlike the traditional techniques that are primarily dependent on sequence 

alignment, handcrafted features, or homology-based inference, a deep learning model can learn the 

relevant features of raw amino acid sequences automatically. The importance of the latter ability emerges 

when working with proteins either with no closely related homologs or belonging to rarely studied 

families. RNNs have played a significant role in this area due to their capability of processing sequential 
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data and capturing the contextual information about the residues over long sequences. Among RNN 

variants, LSTMs and GRUs have garnered particular attention thanks to their extraordinary capabilities to 

model long-range dependencies while coping with issues such as exploding/vanishing gradients. 

Moreover, the literature has already reported that LSTM- and GRU-based models are capable of effectively 

modeling complex residue patterns and conserved motifs, thus leading to an increase in prediction 

accuracy over several GO categories [1–3]. 

Figure 1.   SEQ Figure \* ARABIC 1 (A) Simplified Gene Ontology (GO) hierarchy representing three 

main categories: Biological Process, Molecular Function, and Cellular Component [9] (B) Gene 

distribution across KEGG biological pathways, illustrating functional diversity and annotation 

complexity [10] 

 
 In parallel, CNNs have been explored as an alternative approach. CNNs capture local patterns in a 

hierarchical way, enabling the modeling of biologically meaningful motifs, evolutionary blocks, or 

localized structural signals from sequences. These properties make CNNs particularly useful in 

applications where function is determined significantly by short-range but high-impact patterns. Very 

recently, attention-based architectures have gained interest due to their superior capability of modeling 

non-local interactions compared to both CNNs and RNNs. Attention mechanisms allow for assigning 

different importance weights to residues regardless of their sequential distance, thus better capturing long-

range interactions influencing protein function. Among those, transformers have shown outstanding 
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performance in a variety of sequence modeling tasks including protein function prediction and large-scale 

protein language modeling [4–6]. Despite such progress, a number of challenges remain in the field. First, 

many existing studies evaluate only a single model or a narrow selection of architectures, which makes it 

hard to generalize conclusions as to which deep learning approaches work best for different data 

conditions. For example, some works focus on RNN-based models exclusively, while others consider 

CNNs or attention-based networks alone. This fragmented landscape of evaluations limits the ability of 

researchers to understand trade-offs in prediction accuracy, computational efficiency, and their ability to 

model long-range dependencies and generalization across various GO labels or protein families. Another 

challenge involves the diversity and complexity of the Gene Ontology system itself: proteins often have 

multiple overlapping functions, making the prediction task inherently multi-label. The evaluation of 

models across such a multi-faceted ontology requires rigorous, consistent large-scale benchmarking. Large-

scale, community-wide challenges such as the Critical Assessment of Function Annotation have 

established the importance of rigorous assessment using high-quality curated data sets. In such 

competitions, deep learning approaches often achieve state-of-the-art performance. However, a systematic, 

side-by-side comparative study in which different models are benchmarked against the same dataset using 

an identical preprocessing pipeline and identical evaluation metrics is still missing in the literature. Until 

this kind of comparative analysis is carried out, it is difficult to know whether improvements reported 

from one study to the next are the result of the model architecture, or rather of dataset preparation, 

differences in training procedures, or differences in the functional categories under prediction. To these 

ends, the paper presents the systematic, comparative analysis of several deep learning architectures for 

protein function prediction, including LSTM, GRU, bi-LSTM, DNN, and attention-enhanced bi-LSTM. We 

evaluate each architecture in several GO categories using the CAFA5 benchmark dataset derived from 

Swiss-Prot, with key performance measures that include binary accuracy, Hamming loss, ROC-AUC, and 

computational efficiency. Emphasizing the use of a consistent embedding method and identical training 

settings for all tested models, this study provides a controlled and fair comparison that points out the 

strengths and weaknesses of each architecture within the context of scalable protein functional annotation. 

Overall, the present work contributes to the field by performing a unified and rigorous analysis of state-

of-the-art, widely used deep learning architectures and identifies the model with the highest potential to 

carry out correct large-scale sequence-based function predictions. New insights from this head-to-head 

comparison will be able to support future developments in protein annotation pipelines, enhance 

interpretability and reliability of computational predictions, and guide model selection for practical 

applications in bioinformatics and computational biology. 

 The paper is laid out like this: Section 2 reviews existing research and methods in detail. Section 3 explains 

the approach, focusing on preparing the dataset and building the model. Section 4 includes the 

experimentation, and section 5 discusses the outcomes and suggests areas to explore later. 

 

2. Literature Review 

 Mansoor et al. [15] presented a new model called GOGAN, short for Gene Ontology GAN that helps to 

improve the protein function predictions by using a large number of protein sequence unlabeled data. The 

study aims to address the issues and limitations of the traditional methods that require large amounts of 

labeled data, which isn’t easy to collect. A special artificial intelligence approach is used by the GOGAN 

model called Generative Adversarial Network, which is also known as GAN for short. It generates protein 

sequences and identifies important features on its own. When compared against the other techniques, the 

proposed model GOGAN improved the accuracy of protein function predictions, although one particular 

drawback of this approach is that if the generator produces unrealistic and low-quality sequences, it may 

damage the accuracy of the overall predictions. 

A novel tool Propagation of Affinity and Domain Architecture, also known as PANDA, for prediction 

functions of the proteins on the basis of protein sequences using Gene Ontology was presented by Wang 

et al. [16]. The main objective of this proposed approach is to improve the accuracy of predicting the protein 

functions by combining profile alignment and Bayesian computational techniques to analyze the domain 

architecture of proteins. By narrowing down the gene ontology terms and grouping those using statistical 

importance, the proposed tool does a better job than the current baseline predictors. However, the 

downside of this proposed PANDA tool depends upon the toughness and quality of protein databases. If 
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the databases include incorrect domain details and missing data, the predictions may be biased and 

inaccurate.  

Belper and Berger [17] employed a bidirectional LSTM architecture to model protein sequences with 

the aim of learning similarity relationships directly from sequential data. Instead of introducing the Bi-

LSTM model itself, their work uses this architecture to capture contextual residue information in both 

forward and backward directions, allowing for improved sequence-based comparison. The authors have 

used the SCOP database for training their approach to learn representations indicative of underlying 

structural relationships. A key element of their study is a soft symmetric alignment mechanism that aligns 

sequence embeddings with consideration of the correspondence of residues. Their approach results in 

competitive performance compared to traditional sequence-based comparison methods. However, 

because the SCOP database is mainly composed of single-domain proteins, the model will have limited 

generalizability to multidomain or structurally diverse proteins, which is a potential drawback of the 

approach. 

Rives et al. [13] introduce a large-scale protein language model that uses unsupervised learning. They 

trained this model, called ESM-1b, with the UniRef50 and UniRef datasets. These datasets include 250 

million protein sequences and 86 billion amino acids. Using a transformer-based deep neural network, the 

model aims to learn biological properties from sequence data. It finds links in evolution and structure 

without requiring any guidance. Its predictions on long-range residue contacts, secondary structure, and 

mutational effects outperform those made by LSTM models. One crucial problem with this approach is 

that it depends upon the variety and quality of data. If the dataset is biased or lacks protein types, the 

model’s results can be more biased against the rare protein families and can be less accurate. 

Pakhrin et al. [18] focused on tools like RaptorX and AlphaFold2, which have made big achievements 

in protein structure prediction, to discuss how DL is helping to improve the structure prediction of 

proteins. The researchers explain how methods like contact map prediction and multiple sequence 

alignments increase the accuracy by utilizing the data from CASP competitions. During CASP14, 

AlphaFold2 showed its exceptional ability to predict the protein structures with a median GDT-TS score 

of 92.4. This study reveals that how DL is evolving and changing the bioinformatics fields suggests its 

better potential paths to explore structure prediction of proteins. One potential limitation of this study was 

that they only focused on RaptorX and AlphaFold2 techniques and did not cover all other techniques used 

in protein structure predictions. 

A new deep generative technique was designed by Qiao et al. [19] to predict protein-ligand complex 

structures. This model uses protein sequences and ligand molecular graphs as input. They compared its 

performance against well-known tools like AlphaFold2 by analyzing datasets from the Protein Data Bank 

and PDBBind2020. NeuralPLexer achieved impressive results showing advanced performance. It scored 

an average TM-score of 0.93 for predicting protein structures and boosted ligand pose accuracy by as much 

as 78% over existing approaches. This study showcases how data-driven models can help understand the 

dynamic connections between proteins and ligands, opening doors to advances in drug creation and 

enzyme development. However, one big challenge is the dependence on high-quality and diverse training 

data. If the datasets fail to include a wide range of protein-ligand interactions, the model's ability to 

generalize might be limited. 

Yang et al. [20] used deep reinforcement learning to tackle protein structure prediction. They applied 

a deep Q-network combined with a long short-term memory setup to the hydrophobic-polar model. This 

model simplifies protein folding by treating proteins as chains of hydrophobic and polar amino acids laid 

out on a grid. Its core idea focuses on increasing contacts between hydrophobic amino acids. They tested 

their approach with benchmark sequences from Istrail’s team using lengths such as 20, 24, 25, 36, 48, and 

50. For these, they hit top energies, like -10 in the 20mer-B sequence and -21 in the 50mer.Their method 

demonstrated how deep reinforcement learning may explore the structure space and find the best potential 

configurations. It makes the PSP progress faster. Although one drawback of this study is that the HP model 

design is simpler, which causes it to not account for real protein folding, such as secondary structure 

prediction or solvent effects,  

Espitia et al. [21] take on the task of predicting protein structures through deep reinforcement learning 

while working with the 3D hydrophobic-polar (HP) model. They introduce two new models. The first uses 

a hybrid reservoir method designed to manage chains with a maximum of 36 residues. The second involves 
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an LSTM model equipped with multi-headed attention aimed at handling longer chains. To evaluate these 

methods, they use sequence data provided by Istrail’s group and benchmark it against the best-known 

energy scores, like -11 for the 20mer and -55 for the 60mer. Their results reveal that the hybrid model 

finishes training 25% quicker but still finds the best conformations. The LSTM model, on the other hand, 

captures long-range dependencies better and enhances both the efficiency and accuracy of protein folding 

predictions during training. A limitation they acknowledge is the use of the simplified HP model, which 

does not completely represent the real-world complexity of protein folding, like solvent interactions or 

post-translational changes. 

Panou et al. [22] introduce DeepFoldit, a model built with deep reinforcement learning to improve 

protein structure predictions through the Foldit platform. They train their model using data from 40 

proteins in the Protein Data Bank. Their focus is on small, unfolded proteins. DeepFoldit uses a Q-learning 

approach with experience replay. It shows notable improvements in scoring. Early results show better 

performance on both the proteins used during training and new test proteins. The research demonstrates 

the value of blending simple user interfaces with advanced deep learning strategies to create more effective 

protein folding methods. However, the study relies on a small protein dataset of 40 examples. This limited 

size might not capture enough of the structural variety needed to work well on more complex and diverse 

proteins found in real-world cases. 

The studies reviewed here show several weak points that affect how generalizable or accurate their 

predictions are. These models often rely on the quality and completeness of training datasets or databases. 

Examples include protein domain annotations [16], the SCOP database [17], UniRef datasets [15], or 

protein-ligand interaction data [19]. These dependencies can create biases or make them less useful for rare 

protein families or structural types. Using simple models like the hydrophobic-polar (HP) [20, 21] approach 

does not capture the complexity of real protein folding. It misses things like how proteins interact with 

solvents or go through changes after they're made. Some studies also rely on benchmark datasets, like the 

PDB [18], or small datasets [22] that fail to reflect the variety seen in actual protein structures. On top of 

that, certain models such as GOGAN [15], depend on the quality of the sequences they produce. Others 

stick to specific tools like AlphaFold2 and RaptorX [18], which limits how much they explore the whole 

field of protein structure prediction. 

 

3. Methodology 

The proposed method explains how experiments were set up to predict protein functions with deep 

learning. It covers steps like data preparation, how protein sequences are represented, the model designs 

used, training settings, and how results are measured. Figure 2 shows the entire process. 

3.1. Data Preprocessing and Representation 

The protein sequences in FASTA format were gathered and standardized as an initial step, prior to 

feature extraction. In order to generate rich numerical representations suitable for deep-learning models, 

we employed contextual embeddings from Rost Lab's T5 protein language model [23]. These pretrained 

embeddings, which capture biochemical properties, evolutionary context, and sequence semantics, were 

obtained from publicly released resources provided by Sergei Fironov [24]. Each protein sequence was 

then represented as a fixed-length 1024-dimensional embedding vector and saved as a NumPy array. 

Corresponding protein identifiers were maintained in a separate indexing file to ensure consistent 

mapping between sequences, embeddings, and annotations. 

3.2. Data Splitting 

Our complete dataset consisted of 142,246 protein embeddings along with their Gene Ontology (GO) 

annotations. Since the complete GO repository contains more than 40,000 terms, direct modeling of the full 

label space would introduce extreme sparsity and generally decrease the reliability of supervised learning. 

Hence, in order to retain biological relevance and at the same time reduce noise and computational 

complexity, we selected the top 1,500 most frequent GO terms. This filtering strategy preserved the 

majority of meaningful functional diversity present in the dataset and guaranteed that each of the selected 

GO terms had enough representation for robust model training. The final curated embeddings and their 

corresponding reduced annotation set formed the input for training, validation, and testing of all deep-

learning models used in our study. 
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The dataset was split into training, validation, and test sets, respectively, with the purpose of unbiased 

evaluation. A random split was carried out: 80%, 10%, and 10% are used for training, model optimization 

during validation, and testing on unseen data, respectively, as presented in Figure 3. Although 

stratification is generally encouraged to maintain class distributions, it has challenging properties to use in 

a high-dimensional multi-label splitting problem due to the huge number of labels (1,500 GO terms) and 

sparsity of many rare classes. However, we monitored label distributions and ensured that all major classes 

appeared adequately in every split. Given the big size of the dataset, 142,246 proteins, even random 

splitting is a quite reasonable approximation of the overall distribution. Advanced multi-label stratification 

chniques could be considered in future works to further avoid potential effects of class imbalance and to 

enhance the robustness of the developed models. 

3.3. Techniques 

This research evaluates different deep learning models to predict protein functions with recurrent 

neural network (RNN) variants. It examines how well several architectures classify protein sequences 

based on their expected biological roles. The goal is to find the model that captures protein sequence-

function connections most accurately. The study focuses on these RNN-based models: LSTM [25, 26], GRU 

[27, 28], Bi-LSTM [29, 30], DNN [31, 32], and the Bi-LSTM with an attention mechanism [33, 34]. The 

architecture of each RNN model used in this study is shown in Figure 5 and the architecture of DNN and 

Bi-LSTM with Attention Mechanism model is shown in Figure 6. 

 

Figure 2. Methodology Workflow 
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Figure 3. Data Split 

Figure 4. Top 20 Label Distributions across Splits 

Figure 5. Illustration of different RNN architectures including LSTM, GRU, and BiLSTM 
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Figure 6. DNN and Bi-LSTM model architectures with attention mechanism 

 

In this study, all deep learning models were implemented using TensorFlow/Keras and trained on 

1024-dimensional T5 protein embeddings. The architectures of the recurrent models included one 

bidirectional layer in LSTM, Bi-LSTM, and GRU models, respectively, each with 64 units in each direction, 

followed by a dropout of 0.3 to prevent overfitting, and a dense output layer with sigmoid activation for 

multi-label classification across the top 1,500 Gene Ontology (GO) terms. DNNs were built as three fully 

connected layers composed of 512, 256, and 256 units, respectively, using ReLU activations, dropout of 0.3, 

and L2 regularization. An attention layer was used to deal with long-range dependencies in protein 

sequences by the Bi-LSTM models. One-dimensional convolutional layers with 64 filters, kernel sizes 

ranging from 3 to 5, followed by max pooling and attention mechanisms including both a custom attention 

and multi-head attention with four heads and key dimension of 16, were used in CNN variants. A more 

advanced DNN architecture has also been explored: it is based on fully connected layers of size 1024, 512, 

and 256 units with batch normalization and dropout combined with an output attention mechanism in 

order to model the label correlations. All models were trained using Adam or AdamW optimizer with 

binary cross-entropy loss, a batch size of 512, and early stopping with patience of 2–3 epochs, which 

restores the best weights. Evaluation metrics included binary accuracy and AUC-ROC to measure the 

performance of the classification models. The dataset was split into random training, validation, and test 

sets according to the ratio of 80–10–10 and was not stratified, hence having a sufficient representation of 

the multi-label space. These comprehensive specifications guarantee that all models are fully reproducible; 

they also provide a clear understanding of the architecture, hyperparameters, and training strategy used 

for the comparative analysis of protein function prediction. 

3.4. Evaluation Metrics 
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We utilized a range of standard performance metrics on our models, such as the F1 score, recall, 

accuracy, and precision. These metrics yield a good understanding of the performance of the models in 

classification. Binary accuracy is a widely used method of assessing binary and multi-label classification 

problems. Hamming loss is one of the popularly used measuring metrics for multi-label classification 

problems. A typical metric of measuring binary and multi-label classification issues is area under receiver 

operating characteristic curve, or AUC-ROC. The most widely utilized loss function for binary and multi-

label classification issues is binary cross-entropy, or BCE. Large scale datasets such as IMDB, when tuned, 

have a good implementation of ROC-AUC. It plots false positive against true positive with varying 

thresholds to see how well a model can separate classes. The formulas are as follows: 

𝐵𝑖𝑛𝑎𝑟𝑦 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
∑ 1(𝑦𝑖̂ =  𝑦𝑖)𝑁

𝑖=1         (1) 

where 𝑵 denotes the number of samples, 𝒚𝒊 is the true label, and 𝒚̂𝒊 is the predicted label. Hamming 

loss captures the fraction of labels incorrectly predicted and is defined as: 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =
1

𝑁⋅𝐿
∑ ∑ 1(𝑦𝑖𝑗 ≠ 𝑦̂𝑖𝑗)𝐿

𝑗=1
𝑁
𝑖=1       (2) 

where 𝐿 is the number of labels. The AUC evaluates the discriminative ability of the models across 

thresholds and is given by: 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥)) ⅆ𝑥
1

0
        (3) 

Similarly, ROC-AUC measures the area under the receiver operating characteristic curve: 

𝑅𝑂𝐶 − 𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) ⅆ(𝐹𝑃𝑅)
1

0
       (4) 

Because this is a multi-label setting, all models produce sigmoid outputs for each label; a fixed 

threshold of 0.5 was used to binarize predictions, as customary in CAFA scoring. This makes the results 

comparable across different models and maintains the interpretability of binary accuracy, Hamming loss, 

and other measures. Together, these measures enable a thorough assessment of both the overall correctness 

of predictions and the ability to discover rare or functionally important labels, hence providing informative 

insights relevant for large-scale protein function prediction. 

 

4. Experimentation 

Our experiments ran on a laptop featuring a 7th generation Intel Core i7 chip, 12 GB RAM, and a 2.0 

GHz processor. We also used Kaggle without a GPU accelerator to boost processing capabilities with GPU 

support. This arrangement benefited data processing speed and model training leading to better outcomes 

that were both accurate and dependable. 

4.1. Dataset Description 

This work utilizes the dataset from the Critical Assessment of Functional Annotation (CAFA 5) 

challenge [35] for computational prediction of protein functions. Proteins were selected with protein 

sequences in FASTA format, each assigned a unique UniProt accession ID. Functional annotations for these 

proteins are provided separately in a TSV file with the relevant GO term ID and an aspect: Biological 

Process (BP), Molecular Function (MF), or Cellular Component (CC) [36]. Obsolete GO terms were 

removed using GO Consortium metadata. The GO hierarchy was propagated according to the "true path 

rule," i.e., each protein was made to inherit all ancestor terms of its annotated GO terms. Negative labels 

were defined as those that did not have an annotation after hierarchy expansion. This provided a clear 

division between positive and negative examples. After curation, it filtered the dataset to the top 1,500 

most frequent GO terms, ending up with over 142,000 protein sequences, making this a highly multi-label 

classification problem. The distribution of these Gene Ontology terms among the top 1,500 labels is shown 

in Figure 7. 

 

5. Results and Discussion 

Table 1. Performance Metrics of Deep Learning Models 

Model Loss Binary Accuracy AUC Hamming Loss ROC-AUC 

GRU 0.0781 0.9767 0.8317 0.0233 0.8348 
LSTM 0.0781 0.9771 0.8317 0.0229 0.8348 

Bi-LSTM 0.0781 0.9755 0.8317 0.0245 0.8348 
DNN 0.0638 0.9757 0.9180 0.0243 0.9239 
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Table 1 shows how five deep learning models performed on predicting multiple protein functions at 

the same time. The Deep Neural Network (DNN) and Bi-LSTM with Attention had the best loss value of 

0.0638 doing better than simpler RNN models like GRU, LSTM, and Bi-LSTM, which had a loss of 0.0781.  

Looking at binary accuracy, the LSTM model came out on top with 0.9771 followed by Bi-LSTM with 

Attention at 0.9759, which put up a close fight. DNN and Bi-LSTM with Attention showed much better 

scores in AUC and ROC-AUC hitting 0.9180 and 0.9239, while GRU, LSTM, and Bi-LSTM lagged behind 

with 0.8317 and 0.8348. This shows they had stronger ability to tell differences in data. When measuring 

Hamming Loss, a way to see prediction errors, Bi-LSTM with Attention had 0.0241 and LSTM had the 

lowest at 0.0229. This highlights that attention-based models lowered mistakes in predictions.  

Figure 7. Distribution of Gene Ontology Terms in the First 1500 Labels 

Results in Table 1 show that while all five deep learning models report high performance in predicting 

multiple protein functions, differences with biological consequences can be observed. The fact that DNN 

and Bi-LSTM with Attention improved the AUC by 0.02–0.04 over their simpler RNN variants suggests 

that the architectures are better at distinguishing subtle functional signals across large datasets of proteins, 

thus improving the reliability of annotation pipelines. Moreover, improvements in recall are important to 

reduce false negatives, which allow for the discovery of previously unannotated or novel proteins. In 

particular, the superior performance by Bi-LSTM with Attention reflects its modeling of long-range 

dependencies in protein sequences that capture biologically relevant interactions between distant residues 

influencing functional activity. Besides, the competitive performance by deep feedforward networks using 

T5 embeddings underlines the importance of informative sequence representations in capturing functional 

patterns beyond sequential modeling alone. These results together point out that an attention mechanism 

and deeper architecture bring a considerable advantage in modeling complex relationships inherent in 

protein sequences and offer practical value for large-scale functional annotation and prioritization of 

candidate proteins for experimental validation. 

While the binary accuracy values for the tested models are relatively high and vary little among them, 

the differences in AUC are more significant. This is because in highly imbalanced multi-label data, where 

most labels are negative, correct predictions of the dominant class may inflate the overall accuracy. In 

contrast, AUC captures how well the model can distinguish between positive and negative labels across 

all threshold values, making it more sensitive to modeling improvements regarding the identification of 

infrequent annotations. Therefore, models like the Bi-LSTM with Attention and DNN show meaningfully 

higher AUCs compared to simpler RNNs with similar binary accuracy. These results highlight the 

importance of multiple measures when evaluating models, especially in multi-label protein function 

prediction, where most labels might be infrequent but of critical biological importance. 

These findings highlight how adding attention layers or deeper structures gave these models an edge 

with tough protein sequence tasks. The experimental data shows that all the tested models perform well 

in predicting protein functions, but deeper networks and attention-based architectures achieve better 

results. Models like LSTM and GRU, which are traditional RNN systems, delivered solid binary accuracy 

with low Hamming loss. However, they fell short compared to DNNs and Bi-LSTM paired with attention 

when measured by AUC and ROC-AUC. This highlights how sequential models have a hard time handling 

Bi-LSTM + 

Attention 
0.0638 0.9759 0.9180 0.0241 0.9239 
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long-range connections in protein sequences, which are crucial to identifying function. On the other hand, 

attention mechanisms shine by focusing on key residues tied to function letting them interpret protein 

sequences in a more detailed way. Deep feedforward networks trained with meaningful embeddings can 

compete with sequential techniques, as demonstrated by the similar performance of DNNs and Bi- LSTM 

+ Attention models. Additionally, the study demonstrates that the use of T5-based embedding improves 

the generalization performance of models across different Gene Ontology terms. 

Several limitations should be acknowledged. First, the models were trained for only five epochs, 

which may have constrained their ability to fully converge and capture intricate sequence-function 

relationships. Second, the hardware limitations restricted Hyperparameters optimization and the use of 

larger batch sizes or deeper models. Third, although practical for dimensionality reduction, the choice to 

limit the dataset to the top 1,500 GO terms would have left out biologically significant, albeit less common, 

annotations. Furthermore, the study only used one embedding representation (T5); ensemble embedding 

or domain-specific language model refinement could be useful for future models. Finally, the biological 

interpretability of the predictions was not addressed, even though the models were tested using 

conventional metrics. 

 

 

Figure 8. Performance comparison of metrics 

across models. 
Figure 9. Hamming loss of each model. 

Figure 10. Binary accuracy of each model Figure 11. Loss of each model 

Figure 13. ROC-AUC of each model Figure 12. AUC of each model 
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6. Conclusions 

This research shows that deep learning models DNNs and attention-equipped Bi-LSTM, can estimate 

protein functions using complex sequence embedding. High ROC-AUC values and better loss metrics 

highlight how deep architectures can unravel intricate links between sequences and their functions. 

Researchers should concentrate on training models with more epochs and exploring better designs to push 

the field further. Using transformer models like BERT or ESM bringing in multi-modal inputs such as 

structural or evolutionary data, and applying methods to connect labels can help boost results. Adding 

explainability tools might also make predictions easier to understand and could bring computational 

findings closer to real-world experiments. 
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