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Abstract: The increasing sophistication of cyber threats necessitates the development of advanced attack 

detection methods capable of handling high-dimensional network traffic data efficiently. This paper 

introduces an AI-driven firewall model that leverages the Dragonfly Algorithm (DA) and Bat Algorithm 

(BA) for optimal feature selection, enhancing attack detection accuracy. The proposed approach utilizes 

the UNSW-NB15 dataset and employs a union-based feature selection strategy, combining the best-

selected features from DA and BA to maximize classification performance. Three classifiers— utilize 

Decision Tree (DT), Support Vector Machine (SVM), and Logistic Regression (LR)—are implemented 

for attack detection. Experimental results demonstrate that DT achieved 100% accuracy, SVM achieved 

99.99% accuracy, while LR achieved 99.94%, confirming the effectiveness of the proposed model. The 

AI-embedded firewall significantly reduces false positives and enhances detection robustness. 
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1. Introduction 

Humankind extensively depends on the digital environment in all facets of life, including work, 

education, interaction, and even entertainment [1-2]. However, the digital environment has significant 

weaknesses that intruders exploit. The intruders are utilizing specific tools and methods to initiate intrusion 

acts in the digital environment. These intrusion acts are causing serious damage to the digital environment [3-

55]. A report from 2023 shows that the cost of intrusions into the digital environment has reached 11 trillion 

USD [6]. Therefore, computer security experts have made great efforts to protect the digital environment and 

stop or at least reduce the cost of intrusion acts. In recent years, several security tools, including packet sniffers, 

anti-malware, and firewalls, have been developed to shield the digital environment [7-9]. 

Firewalls are security systems that employ various methods to protect digital environment networks 

and endpoints from attacks. Typical firewalls, such as stateless firewalls, are built from simple rules similar to 

if-else stamens in programming languages to mitigate intrusion. The data that matches the rules is blocked or 

allowed based on the matching rule [6] [10] [11]. However, the intruders are using advanced instruments and 

methods that are beyond the capability of typical firewalls. Hence, the typical firewall should be updated to 

include more advanced techniques that can cope with new intrusion types. The most recent firewalls use AI 
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techniques to prevent intrusion. Particularly, modern firewalls utilize customized Machine Learning (ML) 

algorithms to analyze traffic and avoid intrusion [12-14]. 

ML systems learn and investigate the preceding malicious and benign network traffic to stop 

upcoming attacks [15-16]. Nevertheless, network traffic is massive and requires more effort to learn and 

investigate utilizing ML systems. Moreover, numerous features of the network traffic are irrelevant to the 

attacks. Hence, the precision of identifying the attacks by ML systems would be condensed [17-18]. 

Accordingly, massive network traffic should be lessened using feature selection methods in ML systems. The 

main goal of feature selection methods is to eliminate irrelevant traffic features and keep only the relevant 

features. Numerous kinds of algorithms are utilized for feature selection, including metaheuristic methods [19] 

[20]. 

In previous years, metaheuristic methods have been utilized in many fields to handle difficult issues 

[21-22]. One of the fields that have extensively utilized the metaheuristic methods is cybersecurity. Particularly, 

animal-based metaheuristic methods are widely utilized by researchers to secure the digital environment from 

intruders [23], [24]. Dragonfly Algorithm (DA) and Bat Algorithm (BA) are metaheuristic methods that are 

frequently utilized in many fields to handle difficult issues [25]. In this study, the DA and BA methods are 

utilized to improve the effectiveness of the ML-based firewalls. Specifically, the DA and BA methods are 

utilized as feature selection methods to determine the essential features of the data that assist in finding 

intrusions in the digital environment. In addition, the suggested ML-based firewall will utilize Decision Tree 

(DT), Support Vector Machine (SVM), and Logistic Regression (LR) methods [26-27]. 

 

2. Related works 

A. M. Aleesa et al. [28] developed a deep learning–based intrusion detection system (IDS) using three 

models: Artificial Neural Network (ANN), Deep Neural Network (DNN), and Recurrent Neural Network with 

Long Short-Term Memory (RNN-LSTM). The UNSW-NB15 dataset was preprocessed by replacing missing 

values with zeros, encoding categorical data numerically, and applying min–max normalization. The data was 

then split into 70% training, 15% testing, and 15% validation sets. Each model was trained for both binary and 

multi-class classification, with accuracy as the evaluation metric. For binary classification, the ANN, DNN, and 

RNN-LSTM achieved accuracies of 99.26%, 99.22%, and 85.42%. For multi-class classification, their accuracies 

were 97.89%, 99.59%, and 85.38%. The DNN model demonstrated the best overall performance on the UNSW-

NB15 dataset. 

S. Bagui et al. [29] proposed a hybrid feature selection approach to improve intrusion detection 

accuracy. The method combines k-means clustering with correlation-based feature selection to identify the 

most informative attributes, including dur, service, sttl, dttl, and ct_srv_src. To evaluate the approach, two 

classifiers, Naïve Bayes (NB) and J48, were applied to 8,000 samples from the UNSW-NB15 dataset. 

Experimental results showed that NB achieved significant performance gains with feature selection; for 

example, its accuracy in detecting worm attacks rose from 84% to 99%. In contrast, J48 showed only a minor 

improvement, increasing from 99.59% to 99.94% under the same conditions. These results show that the hybrid 

feature selection method effectively improves classification performance, especially for probabilistic models 

such as Naïve Bayes. 

Y. B. Shuaibu and I. O. Alabi [30] introduced a hybrid feature selection framework for intrusion 

detection that combines Binary Gravitational Search Algorithm (BGSA) and Binary Grey Wolf Optimizer 

(BGWO) using an intersection strategy. Specifically, the approach integrates GS-DT and GW-DT models within 

a wrapper-based selection process, where a Decision Tree (DT) serves as the evaluator. DT, AdaBoost, and 

Random Forest (RF) are then used as the final classifiers. The resulting ensemble, GSGW-DT, identified only 

four optimal features, substantially reducing dimensionality. For data preprocessing, categorical encoding and 

min–max normalization were employed. Evaluation on the UNSW-NB15 dataset, which covers nine attack 

types, and Pearson correlation analysis verified minimal redundancy among features. In terms of performance, 

GSGW-DT-RF achieved 99.41% accuracy with a 0.03% FPR. Similarly, GSGW-DT-AB reached 99.36% accuracy 

with 99.94% precision, while GSGW-DT-DT attained 99.02% accuracy with a reduced 0.24% FPR. 
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S. More et al. [31] developed intrusion detection models using the UNSW-NB15 dataset, incorporating 

exploratory data analysis, correlation filtering, and XGBoost feature importance for efficient feature selection. 

A new derived feature, network_bytes = sbytes + dbytes, was introduced to enrich the dataset, followed by 

categorical encoding and standard scaling during preprocessing. The study evaluated multiple classifiers—

Logistic Regression, Linear SVM, Decision Tree (DT), Random Forest (RF), and XGBoost—with 

hyperparameters optimized via grid search. Results demonstrated that feature selection notably improved 

detection accuracy and reduced false alarms. The RF model achieved the best performance, with 99.45% 

accuracy, an F1-score of 0.9965, and a FAR of 1.94%. This was followed by XGBoost, which achieved 99.41% 

accuracy and a FAR of 2.33%. DT, SVM, and Logistic Regression also performed competitively, confirming the 

effectiveness of the optimized feature selection process. 

 

3. Method  

3.1. UNSW-NB 15 Dataset  

The UNSW-NB 15 dataset's raw network packets were generated using the IXIA PerfectStorm tool 

within the Cyber Range Lab at UNSW Canberra, producing a combination of authentic modern normal 

activities and synthetic contemporary attack behaviors. The tcpdump tool was employed to capture 100 GB of 

raw traffic, specifically in Pcap file format. The dataset comprises nine categories of attacks: DoS, Fuzzers, 

Backdoors, Generic, Analysis, Exploits, Shellcode, Reconnaissance, and Worms. The Argus and Bro-IDS tools 

are utilized, and twelve algorithms are developed to generate features along with the class label. A partition 

of this dataset was designated as a training set and a testing set, specifically, UNSW_NB15_training-set.csv 

and UNSW_NB15_testing-set.csv, respectively. The training set comprises 175,341 records, while the testing 

set contains 82,332 records, categorized into attack and normal types. The UNSW-NB 15 dataset shall consist 

of 42 features utilized for differentiating between normal and attack network traffic. The 42 features of the 

UNSW-NB15 dataset are: dur (f1), proto (f2), service (f3), state (f4), spkts (f5), dpkts (f6), sbytes (f7), dbytes (f8), 

rate (f9), sttl (f10), dttl (f11), sload (f12), dload (f13), sloss (f14), dloss (f15), sinpkt (f16), dinpkt (f17), sjit (f18), 

djit (f19), swin (f20), stcpb (f21), dtcpb (f22), dwin (f23), tcprtt (f24), synack (f25), ackdat (f26), smean (f27), 

dmean (f28), trans_depth (f29), response_body_len (f30), ct_srv_src (f31), ct_state_ttl (f32), ct_dst_ltm (f33), 

ct_src_dport_ltm (f34), ct_dst_sport_ltm (f35), ct_dst_src_ltm (f36), is_ftp_login (f37), ct_ftp_cmd (f38), 

ct_flw_http_mthd (f39), ct_src_ltm (f40), ct_srv_dst (f41), is_sm_ips_ports (f42) [32],[33],[34].  

In this work, the training set and testing set have been combined in one dataset that contains 257,673 

records and 42 features. The data type of three of the 42 features is text [32] [34]. The values of these features 

are converted to numbers as most of the machine learning classifiers readily work with the numerical values. 

The label encoder mechanism was implemented to convert the text values to numbers. After that, the min-max 

scaler is used to map the values of the 42 features to the same scale. This is because some classifiers are sensitive 

to feature magnitude [26] [35], [36]. Finally, the key features will be identified using a union of DA and BA 

metaheuristic methods. Feature selection helps to reduce the overfitting, improve ML model performance, and 

reduce training time [7], [25].  

The DA is a bio-inspired optimization algorithm that simulates the social and dynamic behaviors of 

dragonflies during hunting and migration. For feature selection, DA aims to find the optimal subset of features 

from a dataset by balancing exploration (searching broadly) and exploitation (focusing on the best solutions). 

The algorithm is based on three key behaviors of dragonflies: attraction to food sources, repulsion from 

enemies, and alignment with neighbors. The BA is a metaheuristic optimization algorithm inspired by the 

echolocation behavior of bats. In feature selection, BA is used to identify the most relevant subset of features 

by mimicking the way bats navigate their environment and locate prey using sound waves. The algorithm is 

based on loudness and pulse emission rate, balancing global exploration and local exploitation. Echolocation 

is used to refine the search, allowing the algorithm to focus on promising subsets of features. Table 1 compare 

and contrast the DA and BA algorithms in feature selection [25] [37-39]. 

 

Table 1. Comparison of the DA and BA algorithms. 
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Aspect Dragonfly Algorithm (DA) Bat Algorithm (BA) 

Search 

Strategy 

Uses group dynamics: individuals move 

towards the best solutions based on 

social and cognitive factors. 

Combines global search (based on 

frequency) and local search (fine-

tuning via loudness and pulse rates). 

Feature 

Selection 

Strengths 

Captures global patterns and 

relationships among features due to 

swarm-based behavior. 

Excels at refining feature subsets and 

finding locally optimal solutions due 

to adaptive parameters. 

Performance 

on Complex 

Data 

Effective in datasets with highly 

interdependent features because of 

social interaction modeling. 

Performs well in datasets requiring 

precise optimization, especially for 

subtle or less prominent feature sets. 

Diversity of 

Solutions 

Maintains high diversity by simulating 

attraction, alignment, and repulsion 

behaviors, reducing premature 

convergence. 

May reduce diversity during later 

stages as it converges toward the 

global optima, risking premature 

convergence. 

Sensitivity to 

Local 

Optima 

Less prone to local optima because of 

swarm dynamics and diverse movement 

patterns. 

Can be sensitive to local optima if 

the exploration phase is not robustly 

parameterized. 

Flexibility 

Flexible in adapting to various 

optimization problems but may need 

additional mechanisms for fine-tuning. 

Highly adaptable with simple 

mechanisms for switching between 

global and local search. 

3.2. The Suggested Feature Selection Technique 

Choosing the right features is the first step in making an ML-based firewall work well since it has a 

direct effect on how well the system can separate normal and malicious traffic. A good feature selection method 

improves the ML-based firewall's performance by focusing learning on relevant features. This makes the 

training process easier and more accurate. It reduces computational complexity and training time, hence 

making the ML-based firewall practical and effective [25] [40]. 

This study proposes an enhanced feature selection methodology that combines the DA and BA 

algorithms within the mathematical framework of Union set theory. The Union function combines the key 

features identified by DA and BA without duplication, which produces a comprehensive feature set. The DA 

algorithm identifies broad patterns in the feature space, selecting features of {1, 3, 5, 6, 8, 9, 10, 13, 14, 15, 17, 

18, 19, 20, 22, 24, 25, 26, 27, 29, 30, 31, 34, 35, 37, 38, 39, 40}, while the BA algorithm focuses on precision and 

refinement, producing a subset of {4, 10, 13, 14, 28, 29, 38, 39}. The Union of these subsets yields a combined 

feature set: {1, 3, 4, 5, 6, 8, 9, 10, 13, 14, 15, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 37, 38, 39, 40}. 

This approach of union DA and BA brings several advantages. First, it lessens the possibility of missing 

pivotal features by creating a very diversified and inclusive set of features. Also, it makes it possible to include 

both global and local feature relationships, which are very crucial in dealing with intricate data sets. When you 

combine DA and BA, the whole feature selection process works well because DA focuses on breeding patterns, 

and BA makes sure the results are accurate. These properties significantly enhance the accuracy and generality 

of ML-based firewalls across various datasets [25] [37-39].  

3.3.  Classification 

The key purpose of the proposed ML-based firewall is to be able to differentiate between normal and 

attacked traffic. This process will occur after the completion of comprehensive data preprocessing. 

Accordingly, foolproof measures were taken to safeguard the data quality being processed, like scaling, 

transforming, and feature selection. Three key classification algorithms, namely DT, SVM, and LR, are trained 

and tested to identify the most effective algorithm for the firewall. The data was divided into training and 

testing sets with a ratio of 80% for training and 20% for testing to ensure the reliability of the model is 

preserved. Furthermore, cross-validation is used to decrease the chances of bias and variability that come from 

the usage of a single train-test split. This rigorous assessment backbone not only makes the results reliable but 

also gives a guarantee that the selected algorithm functions properly in many different cases. The details and 
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performance of DT, SVM, and LR algorithms are presented in Table 2, which demonstrates their possible 

deployment in the firewall model [41] [42-43].  

Hyperparameters play a crucial role in controlling model complexity, regulating learning behavior, 

and ultimately determining the classifier’s generalization performance. The main Hyperparameters used in 

the three classifiers are listed in Table 3, which highlights their default values and relative impact on 

performance. Figure 1 demonstrates the proposed ML-based firewall model. 

 

Table 2. DT, SVM, and LR algorithms. 

Aspect DT SVM LR 

Learning 

Approach 

Supervised learning; uses 

a tree-like structure to 

partition the feature space 

based on information 

gain or Gini index. 

Supervised learning; finds 

an optimal hyperplane (or 

decision boundary) to 

maximize the margin 

between classes. 

Supervised learning; 

models the relationship 

between input features 

and the probability of 

target classes. 

Working 

Mechanism 

Recursively splits data 

into subsets based on 

feature thresholds, 

creating branches and 

leaves for decisions. 

Constructs a hyperplane (or 

multiple for multi-class) by 

maximizing margin and 

using kernel tricks for non-

linearity. 

Estimates probabilities 

using a linear equation 

and maps them to classes 

using a sigmoid or 

softmax function. 

Strengths 

- Simple and 

interpretable. 

- Handles categorical and 

continuous data. 

- No feature scaling 

needed. 

- Effective for high-

dimensional and non-linear 

data. 

- Robust to small changes in 

the data. 

- Uses kernels. 

- Fast and efficient for 

linear problems. 

- Provides probabilistic 

outputs. 

- Suitable for binary 

classification. 

Weaknesses 

- Prone to overfitting 

without pruning. 

- Less effective for 

continuous large feature 

spaces. 

- Computationally 

expensive for large datasets. 

- Sensitive to outliers. 

- Assumes linearity in 

relationships. 

- Struggles with non-

linear data. 

- Sensitive to correlated 

features. 

Computational 

Complexity 

Low; training complexity 

depends on the number 

of splits and depth of the 

tree (O (n log n)). 

High; training complexity 

depends on the kernel used 

(O (n²) to O (n³) for large 

datasets). 

Moderate; scales well with 

large datasets (O(nk) for k 

features and n samples). 

 

Table 3. Key Hyperparameters values for DT, SVM, and LR 

Algorithm Hyperparameter 
Valu

e 
Purpose  Impact on Performance  

DT 

criterion "gini" 

Measures 

split 

quality. 

Minor impact; rarely changes 

performance significantly. 

max_depth None 

Controls 

maximum 

tree depth. 

Major impact—prevents 

overfitting; shallower depth 

improves generalization. 
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min_samples_spl

it 
2 

Minimum 

samples to 

split a 

node. 

High impact—larger values 

reduce overfitting and improve 

stability. 

min_samples_lea

f 
1 

Minimum 

samples 

per leaf. 

High impact—smooths the 

model and prevents noisy 

leaves. 

max_features None 

Number of 

features 

considered 

per split. 

Medium impact—reduces 

variance and speeds up training. 

random_state None 

Controls 

randomnes

s. 

No performance effect, only 

reproducibility. 

SVM 

C 1 

Regularizat

ion 

strength. 

Critical impact—balances 

margin vs errors; biggest 

influence on accuracy. 

kernel "rbf" 

Type of 

decision 

surface. 

 Critical impact—defines model 

behaviour (linear vs nonlinear). 

gamma 
"scale

" 

Kernel 

influence. 

Critical impact—controls 

overfitting/underfitting; very 

sensitive. 

degree 3 

Only used 

for 

polynomial 

kernel. 

Low impact unless polynomial 

kernel is selected. 

max_iter -1 
Unlimited 

iterations. 

No direct performance effect; 

only training time. 

LR 

penalty "l2" 
Regularizat

ion type. 

Medium impact—L1 can 

perform feature selection. 

C 1 

Inverse 

regularizati

on 

strength. 

High impact—controls 

overfitting; smaller C improves 

generalization. 

solver 
"lbfg

s" 

Optimizati

on 

algorithm. 

Medium impact—affects speed 

and compatibility with penalties. 

max_iter 100 

Max 

optimizatio

n steps. 

No major performance effect; 

only affects convergence. 

fit_intercept 
TRU

E 

Adds bias 

term. 

Low impact—rarely changes 

performance. 
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Figure 1. The proposed ML-based firewall. 

4. Results and Discussion  

The efficiency of the suggested firewall framework will be assessed on Dell Alienware m18 R2 Gaming 

Laptop with the following specification: 14th Gen Intel Corei9 14900HX CPU (5.80 GHz speed, 8 Performance-

cores, 16 Efficient-cores, 32 Threads, and 36 MB Cache), 32 GB DDR5-4800 RAM, 2 TB SSD, NVIDIA GeForce 

RTX 4090 (24 GB memory), Ubuntu 24.4.1. Moreover, several libraries and tools have been used from Python 

3.13 to develop the proposed firewall model. Some of these libraries and tools are pandas, numpy, 

MinMaxScaler, LabelEncoder, mealpy.music_based.BA, mealpy.bio_based.DA, DecisionTreeClassifier, SVC, 

LogisticRegression, and confusion_matrix.   

The suggested firewall will be assessed utilizing four different metrics. These metrics are the firewall 

accuracy (FAcc), firewall precision (FPre), firewall recall (FRec), and firewall (Ff1). These metrics are calculated 

based on the confusion matrix (CN). The four elements of the CN, in the case of the suggested firewall, are true 

positive (FTPo), true negative (FTNe), false positive (FFPo), and false negative (FFNe). FAcc, FPre, FRec, and Ff1 are 

calculated based on these elements using Equations 1, 2, 3, and 4, respectively. Table 4 illustrates the differences 

between the four evaluation metrics [44-52]. 

 

Table 4. Characteristics of common classification metrics. 

Criteria Accuracy Precision Recall F1-Score 

Definition 

Percentage of 

total 

predictions 

that are 

correct. 

Out of predicted 

positives, how 

many are truly 

positive. 

Out of actual 

positives, how 

many the model 

correctly 

identifies. 

A balanced measure 

combining precision 

and recall. 

What It 

Measures 

Overall 

correctness 

across all 

classes. 

Exactness and 

reliability of 

positive 

predictions. 

Completeness 

and ability to 

capture all true 

positives. 

Trade-off between 

precision and recall. 
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Best Used 

When 

Classes are 

balanced and 

error costs 

are equal. 

False positives are 

costly (e.g., 

blocking 

legitimate emails). 

False negatives 

are costly (e.g., 

missing attacks 

or diseases). 

Dataset is imbalanced 

and you want a single 

balanced score. 

Strengths 

Simple and 

easy to 

interpret. 

Reduces false 

alarms; makes 

positive 

predictions 

trustworthy. 

Ensures fewer 

missed positives; 

ideal for safety-

critical tasks. 

Good for comparing 

models; handles 

imbalance better than 

accuracy. 

Weaknesses 

Misleading 

with 

imbalanced 

datasets. 

Ignores missed 

positives; may 

miss many true 

cases. 

May produce 

many false 

alarms. 

Does not include true 

negatives; different 

precision/recall 

combinations can 

produce same score. 

𝐹𝐴𝑐𝑐 =
(𝐹𝑇𝑃𝑜+𝐹𝑇𝑁𝑒)

(𝐹𝑇𝑃𝑜+𝐹𝑇𝑁𝑒+𝐹𝐹𝑃𝑜+𝐹𝐹𝑁𝑒)
        (1) 

 

𝐹𝑅𝑒𝑐 =  
𝐹𝑇𝑃𝑜

(𝐹𝑇𝑃𝑜+𝐹𝐹𝑁𝑒)
          (2) 

 

𝐹𝑃𝑟𝑒 =  
𝐹𝑇𝑃𝑜

(𝐹𝑇𝑃𝑜+𝐹𝐹𝑃𝑜)
          (3) 

 

𝐹𝑓1 = 2 ×
𝐹𝑃𝑟𝑒×𝐹𝑅𝑒𝑐

𝐹𝑃𝑟𝑒+𝐹𝑅𝑒𝑐
         (4) 

Figure 2 displays the FAcc of the suggested firewall system. The DT, SVM, and LR algorithms will be 

utilized to show the FAcc of the suggested firewall system. The DT attained the optimal FAcc of 100%, the SVM 

attained the almost optimal FAcc of 99.99%, and the LR attained a very high FAcc of 99.94%. Even though the DT 

attained the uppermost FAcc, the SVM and LR algorithms have attained an extraordinary FAcc. These results 

indicate that the proposed firewall system delivers highly accurate traffic classification across all models. The 

minimal variation among the classifiers further confirms that the system’s detection performance is consistent, 

robust, and not dependent on a particular algorithm. 

Figure 3 displays the FRec of the suggested firewall system. The DT, SVM, and LR algorithms will be 

utilized to show the FRec of the suggested firewall system. Obviously, the three algorithms have attained 

extraordinary FRec, whereas the FRec attained by DT is 100%, and by SVM and LR is 99.98%. Hence, the 

suggested firewall system has successfully reduced the FPs. These high recall values indicate that the system 

is highly effective in identifying nearly all malicious traffic with minimal missed detections. The negligible 

difference among the classifiers also demonstrates that the system maintains strong and consistent detection 

capabilities regardless of the chosen model. 

Figure 4 displays the FPre of the suggested firewall system. The DT, SVM, and LR algorithms will be 

utilized to show the FPre of the suggested firewall system. The DT and SVM attained and optimal FPre of 

100%, while the LR attained very high FPre of 99.95%. Though the DT and SVM algorithms attained optimal 

FPre, the LR algorithm have attained an outstanding FPre. Hence, the suggested firewall system has successfully 

reduced the FNs. These precision results indicate that the system is highly reliable in correctly identifying 

benign traffic and minimizing false alarms. The close performance among the classifiers further confirms the 

system’s stability and strong predictive accuracy across different models. 

Figure 5 displays the Ff1 of the suggested firewall system. The DT, SVM, and LR algorithms will be 

utilized to show the Ff1 of the suggested firewall system. The DT attained an optimal Ff1 of 100%, the LR attained 

a very high Ff1 of 99.97%, and the SVM attained also a very high Ff1 of 99.77%. Though the DT attained optimal 

Ff1, the SVM and LR algorithms have attained an excellent Ff1. These results demonstrate that the proposed 

firewall system achieves a strong balance between precision and recall across all classifiers. The consistently 
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high Ff1 scores further indicate that the system maintains robust and dependable detection performance 

regardless of the algorithm used. 

 
 

Figure 2. The FAcc of the suggested firewall system 

 
 

Figure 3. The FRec of the suggested firewall system. 

Figure 6 presents the accuracy comparison of the proposed models (DT, SVM, and LR) and previously 

published baselines, all on the same dataset. The DT classifier achieved the highest accuracy of 100.00%. SVM 

achieved 99.99%, and LR achieved 99.94%. 
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Figure 4. The FPre of the suggested firewall system 

All three outperform the strongest prior works. Taking DT (100.00%) as the reference, the accuracy 

margins are +0.74% over Ref [20] (99.26%), +0.06% over Ref [21] (99.94%), +0.64% over Ref [22] (99.36%), and 

+0.55% over Ref [23] (99.45%). Even the lower-performing models—SVM (99.99%) and LR (99.94%)—surpass 

all existing baselines. This confirms the robustness and effectiveness of the proposed framework. 

 
                 Figure 5. The Ff1 of the suggested firewall system. 
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Figure 6. The FAcc of the suggested firewall system versus existing woks 

In summary, The FAcc result of the suggested firewall system verifies that the DA and BA optimizers 

have effectively selected the significant features to identify the attacks. In addition, the result of all metrics also 

establishes that combining the features chosen by DA and BA optimizers has found the optimal subset of 

features to find the attack, particularly with a 100% result of DT. Moreover, the FPre results demonstrate that 

the subset of features makes the system do well across all classes, avoids bias toward the dominant class, and 

helps the system balance the predictions by avoiding FPs and FNs. 

 

5. Conclusion  
This paper proposed an AI-embedded firewall that integrates DA and BA algorithms for feature 

selection and employs DT, SVM, and LR classifiers for attack detection. By leveraging the strengths of DA and 

BA through the Union Set Theory function, the system effectively preserves critical features, enhancing 

classification performance. Experimental evaluation on the UNSW-NB15 dataset demonstrated that DT 

achieved 100% accuracy, SVM achieved 99.99% accuracy, while LR achieved 99.94%, confirming the 

effectiveness of the proposed approach. The results validate the reliability of the AI-based firewall, which 

minimizes false positives and negatives, ensuring robust intrusion detection. This research highlights the 

potential of metaheuristic-based feature selection in improving cybersecurity defenses. Future work will focus 

on expanding the dataset, testing additional classifiers, and implementing real-time attack mitigation 

strategies.  
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