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Abstract: Cyber attacks on data servers and critical infrastructure of fifth-generation (5G) wireless 
communication networks are increasing day by day. Therefore, an intelligent, reliable and cost 
effictive security of sixth-generation (6G) wireless communication network is inevitable. Quantum 
technology is one of the enabling technologies of future computing, as well as of the 6G. In the event 
of a cyberattack, rapid response is critical to minimize the risk of data loss and denial-of-service 
(DoS) attacks. Quantum computers are a new generation of computers that are expected to be much 
faster than classical computers. In this study, we have proposed and implemented a hybrid 
quantum neural network (HQNN) model. The proposed HQNN model was trained and tested on 
a dataset from the Australian center for cybersecurity. Simulation results show that the proposed 
HQNN model is faster in training as well as in the testing phase compared to classical neural 
networks. Moreover, our proposed model helps to overcome the underutilization of centeral 
processing unit (CPU) resources. CPU utilization of our proposed HQNN model is 95-100%, while 
that of the classical model is only 35-75% during the training and testing of the dataset. 
 
Keywords: Cyber security, Sixth generation (6G) wireless communication network, Quantum 
computing, Cyber-attack, Big data, Resource utilization.  

 

1. Introduction 
To ensure low latency and the highest reliability, fifth-generation (5G) wireless communication net-

works are being standardized. Massive data generation is an inherent feature of 5G communication net-
works, and 5G networks will not be able to meet all the requirements of future networks. Therefore, the 
need for a new communication network has arisen and the research community is working on 6G commu-
nication network. It is expected that the sixth generation (6G) communication network will provide im-
proved cost efficiency, global coverage, improved energy efficiency, higher intelligence level, enhanced 
security, and better spectral efficiency. To deliver improved services, 6G will use new technologies and 
high-speed computing for fast data processing. 

Along with benefits, the 6G wireless communication network is also prone to cyber-attacks. Accord-
ing to IBM [1, 2], the average cost of a single data breach in 2019 was approximately 3.92 million USD 
which indicates that cyber-attacks are extremely destructive. Consequently, cybersecurity becomes a top 
priority for businesses. In the event of a cyber-attack, incident response is an approach to cope with and 
manage information systems. 

A quick response to any attack/incident is necessary to minimize the damage by taking appropriate 
countermeasures. Rapid incident response helps to mitigate the damage and reduce the recovery time and 
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cost. Machine learning using quantum could lead to a new area of research and the detection of innovative 
models that revolutionize the field of machine learning (ML). Machine learning and in particular quantum 
computing ML will gradually permeate all facets of quantum computing by revolutionizing the way we 
look at quantum computing. Google's quantum computer did a certain number-crunching in 200 seconds 
that would take the most advanced supercomputer 10,000 years to do [3, 4]. Incident response time de-
pends on big data training, big data testing, and the use of central processing unit (CPU) also plays an 
important role.  

Quantum technology is one of the most advanced computing technologies that has made many break-
throughs in the near past. Quantum technology is rapidly evolving from infancy to a mature field of science 
and technology. The parallel information processing capability of quantum technology suggests better per-
formance in terms of security, memory requirements, computational speed, etc., than conventional meth-
ods.    

Richard Feynman proposed in the early 1980s that quantum computers would be able to solve ex-
tremely difficult problems in physics and chemistry in the coming era [5]. Feynman's vision opened the 
doors to many practical and theoretical challenges for the research community. The first challenge was to 
develop a true quantum computer that could perform computations in a large (Hilbert) space at higher 
speeds. The second challenge was to formulate problems that can be solved easily by quantum computers, 
but with great difficulty by classical computers. The superconducting qubit processor [6], a milestone on 
the road to quantum computing, has proven its superiority by efficiently solving the above two challenges 
[7, 8]. 

To overcome the processing and speed limitations of classical computing, quantum computing was 
proposed, and now quantum computers are ready to be used for high-end scientific computations. Pow-
erful applications and algorithms, especially ML, have been developed to support quantum computing [9, 
10]. Quantum computers with sufficient computing power can accelerate the most important ML algo-
rithms, namely: neural networks, Boltzmann machines [12], Bayesian interface, data fitting, support vector 
machines [14], recommendation systems, Monte Carlo methods [20], and principle component analysis 
[21]. 

Deep learning, on the side of classical computation, has neural network-based machine learning tech-
niques [11, 22, 23] and is powered by specialized hardware and new specialized software libraries. How-
ever, computational units in digital computers are bit registers. In deep learning, continuous vectors and 
tensors transformed into a higher dimensional space are used as computational units. 

Considering the advantages of neural networks and quantum computing, we proposed and imple-
mented a hybrid quantum neural network (HQNN) in this study. The proposed HQNN model was trained 
and tested on a dataset from the Australian Center for Cybersecurity (ACCS). Simulation results show that 
the proposed HQNN is faster in the training phase and the testing phase compared to classical neural 
networks. Moreover, our proposed model helps to overcome the under-utilization of the CPU resource.   

The remainder of this paper is structured as follows. Section 2 provide the Preliminaries and back-
ground of neural network and quantum computing. Section 3 presents the proposed system model fol-
lowed by implementation details of the proposed system model in section 4. The results and discussions 
of the study are presented in section 5. Eventually, the conclusion and expected future research directions 
are given in section 6. 

2. Preliminaries and Background 

2.1 Classical neural network (CNN) 
The CNN is composed of a set of nodes arranged in a different number of layers. The actual processing 

of information in CNN takes place at the nodes. CNN has an input layer, one or more hidden layer(s), and 
an output layer. The basic architecture of the classical neural network is shown in figure 1. Input data i.e. 
ACCS dataset is received at the input layer and it reaches to output layer through one or more hidden 
layer(s). The number of iterations, number of hidden layers, and learning rate are the controlling parame-
ters of CNN. Different forms of neural networks are discussed in [11].   
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2.2 Quantum technology 

Classical computers execute tasks based on physical states i.e. 0 or 1, [15] whereas, in quantum com-
puters, the computation is performed on quantum states known as qu-bits. Quantum states represent the 
unclear position and undefined properties of an object. Special computational techniques namely; super-
position and entanglement are involved in quantum computations, which increase the performance of 
computers far beyond that of classical computers. Superposition is a concept that allows computers to have 
simultaneous states of one and zero, whereas classical computers have only one state, i.e. either one or zero 
[15]. Entanglement, on the other hand, is a phenomenon in which the quantum states of two or more objects 
must be described in terms of each other. The quantum machine takes input λ and the parameters α. The 
quantum processing unit (QPU) produces output β using function 𝑓(λ, α) 	= 	β. A	 
Description of the Quantum model's parts is given in the following. 

1) Initialization module: At this stage, quantum states are created against the description given at the 
input. Later on, these quantum states are saved into quantum memory. 

2) Quantum memory module: This module stores the quantum states received from the initialization 
module and exchanges the qubits with quantum transistors. 

3) Quantum transistors: Quantum transformation takes place in this module and there may be an 
array of quantum transistors working in parallel. 

4) Measurement: This module provides a classical bit out of the qubit being measured through the 
implementation of a photon detection procedure. 

2.3 Quantum neural network 

A general quantum neural network (QNN) is constructed as a layered system, where each layer con-
tains a gate from the collective set of gates. This layered approach is based on the analogy that as the num-
ber of layers increases, the mean square error (MSE) is lowered. This approach is useful up to a certain 
number of layers where there is no or very little improvement in MSE with further addition of layers. 

2.4 Variational quantum circuit 

We have used a variational quantum circuit (VQC), which transfers the concept of a linked layer 
model from the neural networks of classical computers to the world of quantum neural networks. the var-
iational quantum circuit includes a set of actions based on some parameters common to continuous-varia-
ble quantum computations. 

3. Proposed system model 
The proposed hybrid neural network model is based on quantum computing. Some layers of the clas-

sical neural network are supplemented with layers of the quantum neural network to minimize the obsta-
cles of technological limitations. The proposed system model of a hybrid quantum neural network is 
shown in figure 2, where three basic parts are shown which are; classical encoder, encoding layer, and 
quantum decoder. The dataset is fed at the classical layer as an input and then the encoding layer trans-
forms the input data into quantum readable format. The next stage of the quantum decoder performs the 
quantum processing in a way that the output of the quantum state of the first layer is used as the input 
quantum state to the second layer. The output of the quantum state of the second layer is fed as the input 
quantum state to the third layer, and this process continues [16]. The different layers consist of different 
sizes by eliminating qumodes within the layers. The elimination of qumodes can be done by calculating 
the replacement qumodes. These qumodes are the basic information-carrying units of CV quantum com-
puters. 

To overcome the limitations of the classical neural network and to utilize the quantum computing 
power, we have proposed to transform CNN into a continuous variable quantum neural network by inte-
gration of CNN and quantum computer. In our proposed hybrid quantum neural network model, a sce-
nario is developed where the gates in VQC and the variables of the neural network do not form any entan-
glement or superposition. By accumulating numerous modules of VQC, we can generate multi-layer neural 
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networks that are very sensitive. Since this neural network is equipped with a universal set of gates, there-
fore, the model provides a quantum advantage.  

A quantum machine can be programmed and its parameters can be changed to alter its specifications. 
We can set some parameters as input data variables x and associate further constraints as learnable varia-
bles θ. The quantum machine eventually produces an output, shown in equation (1), which depends on 
the input variables. Devices using this method operate on the principle of supervised learning. This learn-
ing model is also called a variational classifier.  

A general continuous variable QNN is built in a layered structure, where each layer contains a gate 
from the universal set of gates. Each layer 𝑙 in continuous variable neural network (CV-QNN) consists of 
a successive sequence of gates. 

 
𝑙(𝑥):= 	∅!�̂�"𝐷3𝑆5�̂�!                           (1) 
 

The function computed by a quantum device may be unique to the architecture of its hardware. This 
means the way variables enter the computation and how one describes the inputs and outputs of the quan-
tum model. If we do not know how to simulate the quantum model [16] with a classical computer, we 
cannot do machine learning that can be done with a quantum device. Mathematically, we could say that 
the layer 𝑙: 𝑅# → 𝑅$for each input 𝑥	𝜖𝑅#constructs a circuit that performs the transformation. 

 
𝑙(𝑥) = 	𝜑(𝑊𝑥 + 𝑏)                            (2) 

In equation (2), 𝑊	𝜖𝑅$shows the weight matrix, 𝜑 is the sequential function, and 𝑏	𝜖𝑅$ represents 
a bias vector.  

Evolutionary work on quantum circuits with continuous variables shows how such hardware-derived 
models can be trained with conventional computers, and researchers around the world are currently call-
ing for the superiority and limitations of these quantum models to be investigated. Quantum computers 
can be universally implemented, as we have proposed with classical neural networks. To make CV-QNN 
universally implementable, we will introduce operator versions of the variable	𝑥=, as indicated by equation 
(3). 

𝑥= = ∫ ⟨𝑥|𝑥⟩𝑑𝑥%
&%                             (3) 

 
Developing a new model for machine learning using quantum computers is akin to digging gold out 

of a mine. In the case of machine learning with quantum computers, we have discovered some promising 
gilt symbols through Google research. Therefore, we confidently continued to work and finally achieved 
our goal of better performance. In this work, we aim to develop a new machine-learning model that can be 
trained on cyber incident data to predict whether a certain event is an attack or not. 

4. Implementation details 
We used a multi-layer neural network where each layer has a linear transformation and then a varia-

ble activation function, as shown in figure 2. For every input vector in this system, there is an output vector. 
Training data is given as an input to the classical layers of our model, which is then passed to the quantum 
neural network layer to increase processing efficiency. The first section of the proposed network consists 
of three classical neural network layers. These classical layers collect features from the ACCS dataset 
(UNSW-NB15). These classical layers are followed by two invisible layers of the same size and the result 
is stored on another layer. In this hybrid model, the second part consists of five layers of quantum neural 
network (QNN). Finally, the system classified an incident as normal or an attack based on a set of variables 
in our data. 

A dataset of UNSW-BN15 is trained on the proposed hybrid quantum neural network model, which 
is a combination of CNN and QNN layers. The HQNN is based on a continuous variable architecture (CV) 
that encodes quantum information, as shown in figure 2. Our proposed HQNN model consists of a layered 
array of uninterrupted parameterized gates, as is common for continuous quantum computing. Owing to 
the construction of the model with continuous variables, HQNN can deal with extremely discrete variables 
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while preserving unity. While preserving parallel relations in rotations and discrete activation functions, 
the main foundations of neural networks in QNN are ratified using non-Gaussian and Gaussian gates. 

We used the Pennylane model, which works with the strawberry field and is based on the CV model, 
as described in [18]. We used this model in our security domain to detect anomalies within the dataset 
UNSW-NB15, compiled by the Australian center for cyber security (ACCS). Types of attacks in this dataset 
are given in the following. 

 
1) Analysis of data attack 
2) Backdoors attack 
3) Denial of service (DoS) attack 
4) The exploitation of critical data attack 
5) Fuzzers attack 
6) Generic attack 
7) Reconnaissance attack 
8) Shellcode attack 
9) Worms attack 

 
ACCS has used Argus, Bro- IDS tools [19]. The implementation of the HQNN model using Pennylane 

has proved that the proposed HQNN model can be trained faster than the CNN model on the dataset of 
cyber incidents. We have worked on the proposed model as described in [17] to reduce the training time 
and improve the response time. 

The hybrid neural networks in our research are replicated mathematically using the quantum circuit 
simulator, Python version 3.7, TensorFlow with Strawberry Fields and Pennylane, and automatic differen-
tiation [24] and numerical algorithms are used to train these networks. Automatic differentiation tech-
niques allow researchers to directly use accepted optimization algorithms based on stochastic gradient 
descent. 

 

 
Figure 1. The basic architecture of classical neural network. 
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Figure 2. Proposed system model of a hybrid quantum neural network. 

 

Figure 3: Confusion table of quantum neural networks 
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Figure 4: ROC curve of proposed hybrid quantum neural networks 

 

 

 

Figure 5: CPU resource utilization graph of (a) classical neural network model and (b) proposed HQNN model 
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Table 1. Speed and accuracy comparison of CNN model and proposed HQNN model. 

Entity of interest CNN mode HQNN model 
Number of iterations 1000 1000 
Size of training data set 115000 115000 
Size of testing data set 40500 40500 
Batch size 25 25 
Testing accuracy 0.90 0.68 
Training time 8742.48 s 1965.35 s 
Testing time 11.8 s 3.7 s 

 

5. Results and discussion 
In the case of big data, predictive accuracy, and efficiency become a challenge and the complexity of 

training and testing increases manifold. In this study, we have created two classes where 0 represents 
normal and 1 represents attacks. A list of all attacks can be found in the UNSW-NB15 dataset [19].  

Our proposed HQNN model successfully trained a neural network on sample data to predict whether 
a cyber incident was an attack or not. The proposed hybrid neural network model took only 1965.35 
seconds while the classical neural network model took 8742.48 seconds, as shown in Table 1. The training 
and testing time of our proposed HQNN model is 4 times and 3 times faster than the classical model's 
training and testing times, respectively which indicates a great breakthrough in the field of threat hunting 
and incident response. In this research work, we have trained our proposed model on the dataset of ACCS 
with 115000 training examples and 40500 test examples. For training the data, we used the stochastic 
gradient descent (SGD) method with 1000 iterations and a batch size of 25. 

The testing accuracy of the CNN model was observed 0.90 while it was 0.68 for our proposed HQNN 
model. The training time of the CNN model was 8742.48 seconds whereas, it was 1965.35 seconds for the 
proposed HQNN model using a similar dataset of ACCS. The testing time of the CNN model was recorded 
as 11.8 seconds and for the HQNN model, the testing time was recorded as 3.7 seconds. When testing the 
proposed hybrid neural network model, the security system responded faster than the classical model, 
enabling cybersecurity analysts to respond to malicious activities within seconds. The results prove that 
the proposed HQNN model is three times faster than CNN. Table 1 summarizes the statistics of the two 
models. There is a significant difference in the time consumption of both models for the same dataset.   

The resulting confusion matrix with P = 0.9 is shown in figure 3, where we can see that in the case of 
12.26% of incidents when the true label was "Attack" our proposed HQNN model falsely labeled it as 
"Normal". In case of 30.34% of incidents the true label was "Normal", and the HQNN model truly predicted 
the label as "Normal". In 37.68% of incidents the true label was "Attack", and the HQNN model also truly 
predicted the label as "Attack". Whereas, in 19.73% of incidents when the true label was "Normal", our 
proposed HQNN model falsely labeled it as "Attack". Consequently, it is concluded that our proposed 
HQNN model truly predicted 68% of the total incidents. 

For the analysis of two different classifiers i.e. CNN classifier and HQNN classifier, we have used the 
receiver operating characteristic (ROC) curve. The ROC curve is a method of graphical representation to 
illustrate the analysis performance of a binary classifier. The ROC method was developed in 1941 for radar 
operators at military installations, which is why it was also called the receiver operating characteristic 
curve [20].  

An ideal classifier has a true-negative rate of 1 and a false-negative rate of 0 [17], as shown by a circle 
in figure 4. The classifier in the case of the ACCS dataset has an area under the ROC curve of 0.723, com-
pared to the best value of 1. The results shown in figure 4 represent a significant difference in the efficiency 
of the proposed HQNN model compared to the classical neural network model. 
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Figure 4 is the ROC curve of the hybrid quantum neural network model. This ROC curve shows that 
the false negative rate is 0.2454, the positive predictive value is 0.712, the sensitivity is 0.606, and the spec-
ificity is 0.7545, which proves that our proposed HQNN model is a practical approach for training any 
dataset. 

Rapid response is of paramount value in cybersecurity. Experiments have shown that the accuracy of 
our proposed hybrid quantum neural network is lower as compared to the accuracy of CNN. The accuracy 
of HQNN was 68%, while the accuracy of the CNN model was 90%. A 22% decrease in accuracy and an 
increase in false positive rate are negligible if the cybersecurity analyst can receive faster threat warnings 
and consequently respond quickly and remediate the cybersecurity threats. 

The proposed hybrid quantum neural network model is better for CPU resource utilization. Results 
show that during training and testing of the dataset, the classical neural network model utilizes 35% to 
75% of the total available CPU resource, as shown in figure 5 (a), while our proposed HQNN model utilizes 
95-100% of CPU resource, as shown in figure 5 (b). The underutilization of CPU resources in classical 
models is a waste of CPU resources. Therefore, it is hereby proved that the proposed HQNN model makes 
comparatively better usage of CPU resources. 

6. Conclusion and future work 
Hybrid quantum neural networks (HQNNs) are a new research area that can be efficiently used in 

cybersecurity for threat hunting and rapid attack detection of 6G wireless communication networks. In this 
study, we have used a dataset of ACCS (UNSW-BN15) for training and testing the proposed HQNN model. 
During the study, it was found that a classical neural network took a long time to train and test, while our 
proposed hybrid quantum neural network performed the same tasks with the same dataset in a shorter 
time. The results proved that our proposed HQNN model is four times faster in training and three times 
faster in testing the dataset compared to the classical neural network. However, further research contribu-
tions from the research community will improve the hybrid quantum neural network and make it a strong 
candidate for threat hunting, attack detection, and malware analysis of 6G wireless communication net-
works. Continuing our current research, we intend to develop better and more efficient algorithms for 
hybrid quantum neural networks to make them the best choice for the international scientific community.    
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