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Abstract: Pakistan is exposed to heavy floods every year, which can cause significant damage to 
property, infrastructure and loss of life. To minimize the loss, an estimation of the post flood disaster 
using images of inundated areas and Machine learning is a better solution for improving the effi-
ciency and accuracy of disaster response efforts in the country. The research aims to enhance flood 
disaster management by utilizing real-time data to measure flood water levels in inundated ar-
eas.Estimating floodwater levels is challenging due to different levels and moderate visibility of 
objects. Building precise flood level maps is crucial for assisting emergency plan activities in the 
case of a flood. It's crucial to gather data from the disaster region in order to create these maps. In 
this circumstance, National disaster management authorithy (NDMA) platforms might be helpful 
information source. In this article, we provide a technique for measuring floodwater using images 
from (NDMA) sites. If there is no previous experience or understanding of the area where the image 
was taken, determining how much the items in the image are immersed in water might be one 
method of estimating the flood level. Several things contribute to the difficulty of this endeavor, 
including: The size of the items in the photograph may not be understood with certainty;  Different 
areas of the photographic scene's flood-water may appear at varying heights, and objects may only 
be just partially apparent since they may be submerged in the water. We provide an approach to 
address these issues that first identifies classes of items whose sizes are roughly known before using 
this feature to calculate the water level. We first create a dataset of flood-water images to test the 
viability of this method, and then we train a deep learning model on it. Finally, we demonstrate how 
our trained model can accurately estimate flood levels while also recognizing objects. Flood Disaster 
Estimation using images and machine learning has the potential to make a policy based decision on 
flood disaster estimation in the country. With the use of this proposed solution one can save the 
lives and property on bigger scale. 
Keywords: Estimation Flood Disaster, Images, Machine Learning, Pakistan. 

 
1. Introduction 

Floods are considered to account for 84% of all natural disaster-related deaths globally. There has been 
a significant rise in the previous 20 years in the recorded number of flood occurrences, resulting in im-
pacted persons and economic damage, and this trend does not seem to be slowing down [1]. Annually, 
frequent flood catastrophes in several countries result in indirect economic losses of $60 billion[2] and 
hundreds of lives[3].  In addition, urban areas are home to more than half of the world's population, with 
over 500 cities providing homes for over a million people [4]. Inadequate drainage systems in metropolitan 
areas have made the prevention of floods from unexpected, intense rainstorms a top priority [5]. Therefore, 
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governments are under pressure to develop reliable and accurate maps of urban flood risk zones and to 
maintain planning for flood risk management that priorities prevention, protection, and preparedness [6]. 
Rapid and dependable flood forecasting models are essential for predicting future urban flooding, mini-
mizing risks enhancing water resource management, policy recommendations, data analysis, and evacua-
tion planning [7]. 

During a flood, the water that is present in an area can rise to an abnormal height. Floods are usually 
caused by excessive rain or heavy snowmelt, but they can also be caused by powerful storms that produce 
very heavy rain. Flooding can also occur as a result of the leakage of water from a nearby river or a lake, 
drained by a drought or a construction project. Where flooding occurs, the water can rise so quickly that it 
can damage property and affect the operation of transportation facilities[8]. 

Flood disasters can be devastating, leaving death and destruction in their wake. For many years, at-
tempts to accurately estimate the extent of a flooding disaster and its potential damage have been ham-
pered by the lack of reliable data. However, with the development of machine learning and image pro-
cessing, it is now possible to collect a huge amount of data that can be used to precisely estimate the extent 
of flooding disasters. By combining the data collected with machine learning and image processing, an 
accurate estimate of the damage a flooding disaster can cause can be generated, enabling governments and 
emergency responders to better prepare and respond to the disaster. This article will discuss how machine 
learning and image processing can help to estimate the extent of a flooding disaster and its potential dam-
age. 

This research introduces a new method for identifying floods based on automated picture analysis. 
This model combines machine learning and image processing techniques in a comprehensive manner for 
efficient post-flood management.  The resulting model has shown to be more accurate and require less 
training time than earlier methods. The objective of this research is to create a computationally efficient 
model that can categories flooded and non-flooded photos more accurately and quickly, allowing for quick 
rescue efforts in flood-affected areas. A comprehensive sequential multi-step approach based on image 
processing and training the model for picture examination has been created for this aim. The classifier uses 
the updated images to train the model and machine on detections and update the fundamental methods. 
Results revealed a decrease in training time and an increase in accuracy. The proposed approach is dis-
cussed after a discussion of several techniques employed in both image processing and machine learning 
for flood management over the previous ten years. 

In this research convolutional neural network (CNN) is used for object detection. We use again neural 
network architecture to identify how much they are submerged in water. We take dataset from National 
disaster management authority (NDMA) and also we use MS-COCO pretrained model to predict the water 
level estimation. 
 
2. Literature Review 

Previous research has shown the outstanding capacity of physically-based models to mimic various 
flood events. In [9] a article suggests a way for employing a convolutional neural network (CNN) to fore-
cast the long-term temporal two-dimensional range and depth of flooding in all grid points. Using a sig-
nificant rainfall dataset gathered from actual flooding occurrences, the deep learning model was trained, 
and the related raster flood statistics were generated using a physical model. When comparing the perfor-
mance of two CNNs, a simple CNN and Inception CNN, different rainfall distributions (at various times 
or over various development periods), the network of the simulated area, and the simulated area's topog-
raphy were taken into account. When the coordinate data was absent from the input data, neither CNN 
architecture could converge. The accuracy of flood predictions was improved by including topography 
elevation information to the rainfall data that already contained coordinates. The outcomes of this study 
showed that the suggested technique does not require real-time flooding observation data for adjustments, 
and we came to the conclusion that the system may be applied to long-term flood forecasting. When the 
water level changes from rising to falling, our model can precisely predict the change. Within seconds of 
obtaining meteorologically predicted rainfall data, a long-term forecast of the two-dimensional flooding 
range and depth may be made.In [10] explains a water level detection system that leverages aerial drones 
and image recognition technology. The system employs the R-CNN learning model in conjunction with a 
novel labeling method for reference objects, including houses and cars. By utilizing data augmentation and 
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transfer learning techniques, and address the challenges associated with the limited and diverse data set 
of flood images captured from a top-down perspective. We enhance the object recognition model by over-
laying Mask R-CNN, and for water level detection, we employ the VGG16 network. To evaluate the effec-
tiveness of our proposed system, we conducted assessments using realistic images captured during the 
disaster. Preliminary results indicate that our system achieves a detection accuracy of 73.42% for sub-
merged objects, with a remarkably low error of only 21.43 cm in estimating the water level As mentioned 
in [11], it has been shown that 1D, 2D, and 3D (dimensional) models of floods are all conceivable. One-
dimensional models (or 1D model) depict the flood flow as a straight line parallel to the main channel of 
the river [12]. 2D models compress the flood field into two dimensions because they presume with the 
intention of the third dimension, water depth, is insignificant relative to the further two [13]. The 3D mod-
els can solve the horizontal flow using the 2D shallow water equations, and they can replicate the vertical 
characteristics using the quasi-3D extension [13].To achieve state-of-the-art performance in physically-
based flood simulation, a multitude of original algorithms, approaches, and concepts have been developed. 
A mound of textual content comparing and contrasting several ways. Regarding mathematical modeling 
of flood propagation, Alcrudo et al. [14] supplied the Impact Project with a comprehensive reference. 
Pender et al. [16] examined the hydraulic models used in research on flood risk management and catego-
rized them based on their maximum flood size. Woodhead et al. [17] conducted an in-depth analysis of 
flood inundation models for the FLOOD site project. However, its utility for short-term forecasting was 
hindered by the complexity of floods and the substantial processing required [18].By decreasing the hy-
draulic concepts, physically reduced approaches [19] may minimize the computational cost of calculations 
required to provide predictions. The simplicity with which the cellular-automata flood model [20] may be 
implemented has contributed to its rising popularity. Floods pose a significant threat to people's lives, 
property, and urban infrastructure. Effective flood control can be improved by utilizing advanced methods 
like image identification and machine learning. This research introduces a three-step method for identify-
ing flood-affected areas using photos, classifying them as flooded or not, and training a machine learning 
system, achieving an accuracy level of 90%. [21], Leitao et al. [22] built flood-simulation-specific Self-Or-
ganizing Maps to rapidly predict the flood magnitude and water depth. 

Not only have physically based approaches been explored and used for flood estimation, but also 
various ML techniques. The dataset used by Kim et al. [23] includes hourly precipitation from 160 rain 
gauges around the region, enabling the researchers to improve flood predictions by including atmospheric 
parameters into an ANN model. Using daily rainfall-runoff data from 1986 to 2003, Aichouri et al. [24] 
created an MLP and a traditional MLR model for flood prediction. According to the results, it seems that 
MLP is more productive than MLR in terms of rainfall-runoff yields. Mahdi et al.[25] explores the use of 
convolutional neural networks (CNN) and recurrent neural networks (RNN) for spatially specific flash 
flood probability prediction and mapping in Golestan Province, Iran. The study uses a geographic data-
base, SWARA, and ROC analysis to understand the interaction between floods and contributing varia-
bles.Chang et al[26] .'s hybrid ANN model can forecast regional flooding in a metropolitan area in real 
time. Due to its high R2 and low RMSE, the hybrid model seemed more precise. Using a model based on a 
mix of ANN and WNN models, Partal et al. [27] predicted daily precipitation. The research indicates that 
the hybrid model performed much better than the other variations at several test locations. Kan et al. [28] 
created an innovative hybrid machine learning (HML) hydrological model for flood forecasting using 
ANN and KNN.DL models have shown their applicability for flood forecasting over the last many years 
by routinely outperforming the standard ML technique at an acceptable rate [29]. Compared to MLP and 
SVM, the predictive accuracy of a Deep Learning Neural Network created by Bui et al. [30] for mapping 
flash flood hazard is much higher. By applying deep convolutional neural networks to the issue of flood 
detection in surveillance video, Moy de Vitry et al. [31] shown that this method might serve as a low-cost, 
scalable alternative to existing methods. Gebrehiwot et al. [32] used a VGG-based fully convolutional net-
work to recover flooded areas from UAV images more precisely than traditional classifiers such as SVM 
(FCN-16s).RNN, a neural network structure that can maintain temporal information, may show to be more 
effective for spatial flood forecasting tasks when applied to time series flood data. Chang et al. [33] trained 
an RNN to estimate the stream flow of a river two days into the future using data from several gauge 
stations. This method was used to multiple-step-ahead prediction using a neural network architecture that 
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permits growth [34]. Comparing RNN to physical and statistical models, Gude et al. [35] revealed that 
RNN predicted water gauge height with greater precision. 

However, Many Research Papers used deep learning models, machine learning and image processing 
models to detect flood water estimation using different methods but they have used post-processing tech-
nique that can’t be implemented easily in real-time application. Real-time field data collecting, however, is 
sometimes costly, risky, and challenging to get. Stream gauges can offer real-time data, but only for sites 
that are being watched. High cost sensors have been used previously Like Radar ranger and sonar ranger 
and many others. We plan to propose image Dataset from National Disaster management authority 
(NDMA) to detect or estimate the flood water parameters (water level and depth). 
 
3. Research Methodology 

The research methodology entails the systematic collection of data, specifically images depicting 
flood-affected regions, sourced from the repositories of the National Disaster Management Authority 
(NDMA) websites and various associated reports. Subsequently, a comprehensive data pre-processing 
phase is executed to enhance the quality of the images and render them amenable for analysis. This pre-
processing stage may encompass activities such as labeling and image enhancement to ensure optimal data 
readiness. Following data pre-processing, the dataset is partitioned into distinct segments for the purpose 
of training and testing machine learning models. This division sets the stage for selecting a machine learn-
ing model that best aligns with the research objectives. Finally, the chosen machine learning model is dili-
gently developed, enhance  in its deployment for real-world applications in the context of flood disaster 
estimation. Figure 1 demonstrates the comprehensive methodology used in the research study. 

 

 

Figure 1. Proposed Methodology of Flood Disaster Estimation. 

For object detection, convolutional neural networks (CNN) are utilized. Then, for the items falling 
under specific classifications, we assess their degree of submersion in water once more using a Neural 
Network design. After developing the network design, we locate photos that include data on flood-water 
levels and utilize that dataset to train our network. To train a neural network, the pictures in our training 
dataset need to be labeled. The first stage in determining which things we should examine for the classifi-
cation task—in this case, it is human—based on things that are partially immersed in water, to determine 
the flood-water level. 

The deep learning method for estimating flood-water levels is described in this section. We build our 
architecture on Mask R-CNN[36], a cutting-edge method for, say, segmentation. Figure.2 demostrates the 
primary feature extractor functions as the architecture's skeleton. Any conventional convolutional neural 
network will work. The goal is to run a single image through a number of layers to extract distinct elements 
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from it. Low-level characteristics like blobs and edges are picked up by the lower layers. They begin iden-
tifying entire things like automobiles, people, and buses as we advance through the levels. In this module, 
the input picture is transformed to feature maps for simpler handling in the other modules.[37] The Region 
Proposal Network (RPN), a neural network, scans the picture and assigns scores based on whether or not 
there is an item in the scanned regions. They are essentially boxes that cover the image, and they are re-
ferred to as anchors. Numerous anchors of various sizes and aspect ratios are around the image. Depending 
on how well they perform, these anchors are categorized as positive, neutral, or negative. The next level of 
categorization is then applied to the anchors with high scores (positive anchors).RPN also scans the feature 
maps produced by the backbone rather than the picture to avoid performing additional calculations. Pos-
itive anchors might not entirely enclose an object in their protection. The non-maximal suppression ap-
proach is used to suppress bounding boxes per class due to their overlap and proximity. The method com-
putes the intersection of anchors, maintaining only the box with a higher object score.[37] 

In this research study the deep learning method is used for estimating the flood-water level. The ar-
chitecture uses Mask R-CNN for segmentation and features extraction. It runs through layers, detecting 
low-level characteristics and identifying objects like automobile, people, and buses. The input image is 
transformed into feature maps, and Feature Pyramid Network (FPN) can be used to enhance the backbone. 
The Region Proposal Network (RPN) is a neural network that analyzes pictures and rates them according 
to the presence of anchors—boxes that surround the image 

 

Figure 2. The architecture diagram of Mask RCNN 

3.1 Dataset 
In this research study we collect image dataset from National disaster management authority 

(NDMA) reports. For this research study we collect 1000 images from the NDMA reports we use 650 im-
ages for training purpose and 350 images for the validation purpose. We have taken actions to improve 
our model's performance because the quantity of the dataset we acquired for training is quite little. We 
have decided to use a pre-trained model to get around this constraint. We have specifically included our 
unique class information to the Ms-COCO pre-trained model as a basis. The objective of this strategy is to 
increase our model's accuracy while it is being trained. [38][39] 
3.2 Reference average Height Values used to Estimate water depth 

Estimating water depth is a crucial aspect of various industries and scientific studies. Whether it's for 
navigation, hydrographic surveys, flood forecasting, or environmental monitoring, accurate knowledge of 
water depth is essential. One common approach to estimate water depth is by using reference average 
height values, which play a fundamental role in this process. For estimating the depth of flood water ref-
erence height values are required for this purpose Table.1 indicates the average references height values 
which are used to find out the depth of flood water.   

Table 1. Average reference values used to estimate the water level and depth 
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Objects: Reference Average Value 
(cms) 

Reference Average Value 
(feet) 

Man 175cm 5.74147ft 
child 120cm 3.93701ft 
car 17cm 0.557743ft 

House 240cm 7.87402ft 
 

4. Evaluation strategy and Results 
The proposed work is to automate the estimation of flood water level from the images. The proposed 

Mask RCNN model is trained on the flood water level datasets.  
To accomplish the experimental research, we used the free and open-source Mask R-CNN package. 

All experiments were carried out using Kaggle notebook, CUDA 9.0, and CUDNN 9.0 implemented on 
machines with an Intel Hp Elite Book 830 G6v4@3.40G Hz CPU and a Quadro M5000 graphics processing 
unit. A total of 70 epochs with 200 steps each were trained. We trained the model using a mini-batch size 
of 1 image per GPU for 11k iterations, starting with a learning rate of 0.001. 

We utilized a momentum of 0.9 and a weight decay of 0.0001. In this configuration, training on a single 
1-GPU computer took four hours. The performance of the object detector is often assessed using the aver-
age precision (AP), and the precision/recall curve is summarized by computing the area under the curve. 
Recall is used to show the proportion of positive samples that the classifier judges to be true, and precision 
is used to account for the proportion of positive samples that are considered to be true for a specific cate-
gory. 

The mAP, which stands for "multiple APs," is a performance statistic for algorithms that forecast the 
positions and types of objects. The common COCO [40] measures, including AP, AP50, and AP75, were 
employed in this study. 

We used the COCO [36] weight file to train the upgraded network in Mask R-CNN, and the testing 
set to assess its correctness. The training took four hours in GPU mode. A 744 x 992 pixel image took 1.8 
seconds to analyses in GPU mode. Four different kinds of electronic components' APs were captured. Fig-
ure 3 shows that the AP of tantalum was greatest, at 97.32%, and that the APs of the electrolytic capacitor, 
resistor, and potentiometer were, respectively, 86.55%, 92.23%, and 96.36%. 

Figure 3 shows the precision value of the flood level estimation using the as the threshold dividing 
point, sample-by-sample methodology. This is because when the threshold points are shifted to the left, 
more positive samples are discovered to be positive and more negative samples are discovered to be pos-
itive as well. 

 

Figure 3. precision value of the flood level estimation 

4.1 Testing New Images 
 In order to evaluate the upgraded Mask R-CNN's performance in instance segmenting flood level 

estimate, we used 650 new images. When building the training dataset, we make sure that the MS COCO 
dataset and the Flood dataset are represented fairly. This dataset is used to train the model (standard), and 
k-fold cross-validation is used to further confirm its accuracy. To lessen the bias and the amount of com-
putations needed for training, a 5-fold cross validation approach is employed. The analysis of some of the 
test photos on a qualitative level are shown in Figures 4 and 5. We have labeled the ground-truth level in 
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the black boxes of the images for easy examination and comparison. Also note that the colors of the masks 
in the following figures have no particular meaning. It is common to observe that objects are likely to be 
partially hidden and dispersed in images of flood catastrophes. Therefore, the model must perform as 
intended under these conditions. 

 

(a)  

 

(b) 

 

(c)  

 

(d)  

 

(e ) 

 

 

(f ) 

 

 

(g ) 

 

 

(h ) 

 

Figure 4. Displays a qualitative analysis of test photos. 
Figure 4(b) depicts one example of such a picture. The fact that just a tiny portion of the items in 4(b) 

are visible and that they are standing close to one another demonstrate how strongly obscured they are. 
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This makes the detecting procedure more difficult. As can be seen from the prediction, two persons are 
detected in this case as a single person, while a third person is not detected at all. Despite the fact that this 
is not the best detection outcome, it is not crucial for our objectives to recognize every instance of an item 
in the image since we are more interested with accurately calculating the water level. 

It's also typical to see individuals sitting or standing on high objects or surfaces during floods. In order 
to protect themselves against flooding, individuals often try to move to higher locations when the low-
lying areas get inundated first. The flood-water level might not be seen throughout the entirety of the 
photograph. Figure 4(d) depicts this type of event in detail, thus it is important to identify and precisely 
locate them there. Since certain objects in a picture of a flood event are partially submerged, the model 
performs significantly better when the events are properly predicted. 

Figure 4(d) shows two individuals on higher ground who are correctly classified, while several of the 
automobiles are categorized as level 6 rather than level 5, and the opposite is true. Level 0 was correctly 
predicted in Figure 4(f), when a human being may be seen standing within the backseat. However, the car 
doesn't always make the right predictions. It is anticipated that level 4 will exist when level 3 of the actual 
world exists, but the other car will experience level 4 when level 3. With the exception of one object that 
was mistakenly assigned to level 6 rather than level 7, the flood event image in Figure 4(h) contains three 
objects, two of which are appropriately predicted. 

Figure 5 shows two examples of the model functioning badly. In Figure 5(b), the automobile is mis-
taken for a house because of its windows and entryway. Furthermore, despite the fact that flood water can 
be seen in the picture, no class disaster flood has been identified. This could be the case since flood water 
is unique for a body of water in that it is brown in shade and also motionless. Figure 5(d), the second 
picture, displays simply one individual who was incorrectly thought to be two persons. 

 

(a) 

 

(b)  

 
(c ) 

 

 

(d ) 

Figure 1. Displays two instances 

Output Values of Floodwater Level and Depth Estimations from Images 
The provided data in Table 1 consists of output values corresponding to various images. These images 

are used to estimate the levels and depths of floodwater. The data likely represents the results of some 
predictive or analytical process that takes images as input and calculates the associated floodwater levels 
and depths as output. 

In the context of floodwater estimation, these output values are likely numerical measurements that 
quantify the extent of flooding in terms of water levels and depths. These measurements could be 
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represented in units like meters or feet, indicating how high the water has risen in a particular area or how 
deep the water is at different points within the flooded region. 

This kind of data is essential for understanding the severity and scope of flooding in an area. It can be 
used for various purposes, such as disaster management, risk assessment, urban planning, and emergency 
response coordination. Analyzing these output values can provide valuable insights into the potential im-
pact of flooding and help authorities make informed decisions to mitigate its effects. 

Table 2. Output values of Flood water level and watet depth  
Level Name Water level Water depth 

Level 0 No water 0 
Level 1 0.995 174.005cm 
Level 2 0.988 174.012cm 
Level 3 0.961 151.039cm 
Level 4 0.962 174.038cm 
Level 5 0.985 174.015cm 
Level 6 0.973 174.027cm 
Level 7 0.976 174.024cm 
Level 8 0.981 174.019cm 
Level 9 0.991 174.009cm 
Level 10 0.998 16.002cm 

4.2 Model Specifications 

For achieving optimal accuracy, different hyper parameters were used during the implementation of 
flood water level prediction. Categorical cross entropy function chosen as the loss function to measure the 
model performance during training. The number of epochs used in the training was set to 70.An epoch 
represents a complete iteration through the entire training dataset. A learning rate of 0.001 was utilized 
during training to determine the step size at each iteration while adjusting the model's weights and biases. 

Table 3. The model Hyper training parameters 

Parameters Values 
Optimizer 

 
Accuracy 

 
Learning rate 

 
0.001 

 

Loss 
 

Categorical cross entropy loss 
 

Metrics 
 

accuracy 
 

Epochs 
 

70 
 

Verbose 1 

4.3 Confusion Matrix 
A confusion matrix is a table that is frequently used to assess how well a machine learning classifica-

tion model is performing. Comparing the model's predictions to the data's real ground truth labels aids in 
determining the model's accuracy. When it comes to challenges involving binary or many classes of cate-
gorization, the matrix is extremely helpful. 

Useful measures including accuracy, recall (sensitivity), specificity, and F1-score are provided by the 
confusion matrix, which aid in analyzing the model's performance and pointing out potential improve-
ment areas. 

The model's precision recall and F1 score values are 1.00 and average precision is 0.50, respectively. 
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 Figure 6. Attained results of the Flood water level in form of the confusion matrix 

5. Conclusion and Future Work 
In this research study, we introduce a fully automated methodology designed to predict floodwater 

levels with a high degree of accuracy. Our approach revolves around analyzing images sourced from re-
ports of the National Disaster Management Authority (NDMA). The primary aim of our study is to estab-
lish a robust framework for estimating water levels associated with instances of flooding. The prediction 
is accomplished through the utilization of a deep learning framework.. We have built this algorithm par-
ticularly on top of the Mask R-CNN architecture. When an instance of a certain item is discovered, the 
suggested model conducts instance segmentation while also forecasting flood level. We also offer a tech-
nique for combining the level forecasts for several object instances to get a single water level estimate for 
the whole image. The trained model effectively estimate water level from images within an acceptable 
accuracy i.e 74.5% and water depth acceptable accuracy i.e 78% 

As technology continues to evolve, the combination of images and machine learning holds immense 
potential for revolutionizing how we anticipate, prepare for, and respond to flood disasters. This study 
opens avenues for further research, collaboration, and implementation of image-based machine learning 
solutions in real-world scenarios, ultimately contributing to more resilient and adaptive strategies in the 
face of increasing flood challenges. 

As part of our future endeavors, we envisage an expansion of our framework to incorporate textual 
information. Frequently, images are accompanied by relevant text describing the content. Our intuition is 
that by synergizing these two interlinked sources of information, we can potentially enhance the accuracy 
of predictions even further. 
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