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Abstract: APTs mutually coupled with Cyber Kill Chains (CKC) and its specified phase of malicious 
command and control (C2) servers. These C2 servers maintain communication using malicious 
domains with a specially crafted malware called Domain Generating Algorithm (DGA). The DGA 
malware is available in different compositions and complexities associated with various APTs as 
well as DGA families. DGA detection is achieved using different Machine Learning (ML) models 
and recently DGA detection is further improved with Deep Learning (DL) models. These trained 
DL models have solved DGA detection using text classification, successfully classifying legitimate 
domains from malicious domains. DL models' optimal detection is further optimized by tuning DL 
key functions, one such key function is the Activation Function (AF). Primarily AF provides the 
property of non-linearity which is very effective in mapping and solving real-world problems. 
Recently reported AFs in literature are based on their superior performance in text classification are 
identified and analysed in these optimal DL models. Due to Long Short Term Memory (LSTM) and 
Attention models successful detection in text classification, LSTM with Attention is implemented 
for deeper analysis of these reported AFs. In this research paper, the DGA detection DL models have 
been simulated with the default AFs and performance of proposed AF has been tested against 
default AFs. The proposed AF Zash outperformed the ReLU, Hyper-Tangent (Tanh) and Swish AFs 
in terms of their polynomial properties. Sparse activations being core property of ReLU may miss 
some of significant weight updates in comparison to dense activations of exponential fixed shaped 
Tanh and Swish AFs. Results have shown that the proposed Zash AF have overcome the sparse 
activations of ReLU and has achieved proficient results in dense activations over Tanh and Swish 
AFs. This novel AF has shown better detection results in training and validation for text based 
character classification using dense activations. 
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1. Introduction 

Conventionally most of the security approaches focus on hardening the perimeter of the networks 
against outsider attacks, known as Castle Approach [1]. These castle approaches are exploited using ad-
vanced and customized attacks like Advanced Persistent Threats (APTs). Today the most advanced and 
hybrid cyber threat is manifested as APTs. APTs are not an aggressive attack but rather a progressive clan-
destine cyber operation. Examples of strategic level APTs [2] include felony of espionage/ sensitive infor-
mation, trade surveillance, cyber/ digital thefts, cyber frauds, ransoms, and extortion. APT phases of cyber-
attacks are chained and conceptualized as Cyber Kill Chain (CKC) [3]. MITRE’s Adversarial Techniques 
and Tactics and Common Knowledge (ATTCK) [4] is an advanced malware knowledge book very effective 
in associating cyber-attack with the known APT groups. CKC phase of Command and Control (CC) re-
vealed that the bots exploit legitimate communication protocols like DNS to evade detection.  
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The malicious domains are generated sporadically from infected systems by a specifically crafted mal-
ware called Domain Generating Algorithm (DGA). These DGA connect to CC servers preset by malicious 
actors. In this research, APT detection is coupled with detection of DGA domains after analyzing CKC and 
ATTCK and conceiving a simplified APT detection cycle as depicted Figure 1. The idea is how a multi-
pronged complex cyber-attack like APT can be detected at a Single Point of Detection (SPOD). DGA detec-
tion model grabs malicious domains generation and can be further associated with either a known APT or 
a new APT for further probes. The detection of malicious domains involves analysis of high volumes of 
DNS log data (URL names), which is logically suitable for ML based text classification.  

 
Figure 1. Proposed APT Detection Cycle 

Initially ML models were adopted for DGA detection, however recently 46 the DGA detection is 
switched from ML to DL models such as Long-short term memory (LSTM) and convolution neural net-
works (CNN) models with considerable improved performance over traditional ML models. Further, hy-
brid approach of both LSTM and CNN were also applied and shown significant results over previous 
models. More recently, the introduction of Attention models in DGA detection has further improved the 
in-formation loss in case of much longer URL (text) strings. The LSTM with Attention model has shown 
optimum performance for text classification-based problems. To fine tune LSTM with Attention model in 
training and testing, various model functions, parameters and hyper parameters are available. However, 
to avoid a scattered approach, a key function namely, Activation Function (AF) is selected to narrow the 
in-tended research aspiration. In DL model, layers are made of neurons and each neuron operation and 
out-put is controlled by the AFs. Scope of this research has been focused on the best performing AF in a 
LSTM with Attention model.  

A recent study on performance of AFs in natural language processing (NLP) based tasks has been 
adopted for best performing AFs in LSTM networks. However, the study is limited to available community 
datasets from Alexa [5] and Bamabanek [6]. The motivation of this work is to implement the best perform-
ing AFs in real time problems of text classification specifically like DGA detection. Moreover, this work 
has introduced an uncharted fixed shaped exponential AF named as Zash for LSTM networks. This AF is 
being developed with an inspiration from base functionalities and properties of the ReLU, Tanh and Swish 
AFs. The core properties used to compare these AFs include non-linearity, sparse vs dense activation, mon-
otonic vs non-monotonic, expressiveness and smoothness. Section-2 explains DGA detection taxonomy 
and Sec-tion-3 is about basic operations and properties of AFs in a neural network (NN). Section-4 talks 
about pro-posed methodology of optimization approaches with various AFs. Same has been simulated to 
substantiate the proposed methodology. Section-5 discusses graphical and tabular results and contem-
plates the core properties of AFs. Section-6 is culminated with future research directions and conclusive 
remarks. 
 
2. Domain Generating Algorithm (DGA) Taxonomy  
DGA malware structure is divided broadly into two types, seeds source based and generation-based 
schemes respectively [7]. The DGA malware generates bulk DNS requests data making it a potential can-
didate for ML which has already outperformed in text classification problems. DGA detection techniques 
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can be broadly divided into early detection techniques which later evolved to ML and DL techniques re-
spectively. The taxonomy of these broad contours of DGA detection are projected in Table-1. Brief explana-
ion of these contours is given in ensuing subsections. 
 

Table 1. Taxonomy of DGA Detection Techniques 

DGA Detection 
Methods DGA Detection Techniques Years References 

Traditional 
Methods 

Blacklisting and Whitelisting 
2014 Mark Kuhrer 
2014 Huang D 

Sequential and Hypothesis testing 2013 Srinivas Krish-
nan 

Log Aggregation Techniques 2013 Srinivas Krish-
nan 

Domain Reputation System 2010 M. Antonakakis 
Lexical Analysis 2018 E. Kidmose 
Word Graph 2018 Mayana Pereira 

Machine 
Learning 
Methods 

Clustering Techniques 2012 S. Yadav 

N-gram methods 
2012 S. Yadav 
2014 S. Schiavoni 
2019 H. Zhao 

Random Forest 
2018 D. X. Cho 
2015 E. Kidmose 

HMM 2012 Manos Antona-
kaki 

Deep Learning 
Methods 

LSTM 
2016 J. Woodbridge 
2019 Akash 
2018 Duc Tran 

CNN 

2018 R Vinayakumar 
2017 Joshua 
2018 W. Bush 
2019 Shaofang Zhou 

Hybrid 

2018 B. Yu, J. Pan 
2020 K. Highnam 
2019 Y. Qiao 
2021 J. Namgung 

    
2.1. Traditional DGA Detection Methods2018 
Early DGA detection techniques in Table-1 are white listing and blacklisting of domains [8] , [9][10]. Later, 
whitelisting and blacklisting are further aggregated with other detection techniques like DNS Reputation 
Systems (DRS) [11], log aggregation techniques [12] lexical analysis [13], word graph methods [12]. 
2.2. Machine Learning DGA Detection Methods 
ML DGA Detection in Table-1 is switching of DGA detection to ML models like clustering techniques [14], 
n-gram methods [15][16], Random Forrest (RF) classifiers [17] and Hidden Markov models (HMM) [18] 
which have shown remarkable improvement in detection performance over traditional detection tech-
niques. ML models learn to distinguish between benign and malicious domains using labelled data. ML 
needs samples of both legitimate domains and malicious domains datasets for training and learning. How-
ever, manual feature engineering in ML becomes superannuated due to new DGA malware evasion tech-
niques applied by DGA malware authors. Moreover, manual feature engineering is not considered dy-
namic to rapidly evolving DGA tactics. 
2.3. Deep Learning DGA Detection Methods 
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To address these impediments, DL has surpassed ML with the ability of automated features extraction. 
Utilizing the capability of automated feature engineering, LSTM based DGA detection was tested initially 
for the first time in 2016 [19]. The results in [19] have clearly shown that LSTM based DGA detection out-
performed all traditional and ML Methods. To advance the work in DL methods, in [20] authors imple-
mented CNN for detecting malicious URLs, file paths and registry keys. It is learnt from both approaches 
that as LSTM is good in detecting temporal relationships between texts (domain names), the CNN model 
detects spatial relationships in same texts. This pushed the researchers to adopt hybrid neural network 
approaches in [21][22][23][24],[25][26][27][28] of LSTM and CNN methods. Further, introduction of atten-
tion techniques has further elevated the performance of DGA detection models due to it inheriting longer 
dependencies of texts. 
 
3. Selecting an LSTM Model with Attention 
   The research study aims to achieve optimal performance of LSTM models for achieving an efficient and 
accurate DGA detection approach. LSTM models are considered capable of showing impact of AF due it 
inherits back propagation property and continually updating model to a point of stability. After sufficient 
training of a DL model, the model is further validated and tested which dictates how well the model is 
generalized. Before we further go deeper in LSTM, an added layer of Attention model is attached which is 
considered a latest approach and is instrumental in longer dependencies.  

 
Figure 2. Neuron cell with input weights, bias, activation function and output 

3.1. Activation Function (AF) 
  AF is the mathematical gateway computing output at each neuron. A proficient AF is considered a key 
parameter or hyper parameter which fastens the training and learning process by substantially decreasing 
the computational cost. Figure 2 is a graphical view of a single neuron cell of a neural network and its 
generic function in a LSTM model. The single neuron cell is summing up the input and its weights and 
adding biases in summation process. The sum of all input weights is operated by an AF (linear or non-
linear function as desired) mathematically as, Input = max ∑ f(x)= (weights (w1, w2, w3) inputs) + Bias (1), 
The inputs are multiplied by weights (w1, w2, w3...) and adjusted with the bias. Then these summed and 
biased weights are passed through the selected AF, normally a nonlinear AF. A DL model reaches a point 
of convergence after it is fully trained. Faster convergence means an efficient AF and stopping the Back-
propagation (BP) process earlier, thus reducing the computational cost. Neural Networks work on gradi-
ents to improve the error by updating the new weights. In BP new weights are calculated using cost func-
tion and learning rate. Derivation of cost function and learning rate for calculating new weights is achieved 
by keep on iterating until model converge to a desired training level or simply an optimal convergence. 
New weights are calculated using back propagation as, wnew = wold − (dC dx ) ∗ LR (2), A non-linear AF find 
complex relationships in the given data and map it to a specified class by grouping them in using their 
class closest probabilities. The outputs of AFs are further smoothed by another function called model op-
timizer (SGD, Adam, RMSprop etc.). Exploring Legacy AF like Rectifier Linear Unit (ReLU), Hyper Tan-
gent (Tanh) and Swish which are among the default AFs, by taking a deeper insight in identifying the most 
139 desirable properties of AFs. 
3.2. Non-Linear Legacy Activation Functions 

Non-Linear AFs are better categorized as fixed shaped and trainable AFs as shown in Figure 3 sim-
plified from [27, 28]. Non-Linear AFs are commonly the traditional AFs and are further subdivided in fixed 
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shape AF, rectifier-based AF and trainable AFs. Traditional mostly used AFs are Rectifier Linear Unit 
(ReLU) and Hyper Tangent (Tanh) apart from recently discovered Swish in deep learning models. Follow-
ing subsections will explore further these traditional AFs with an introduction of a novel AF with emphasis 
on the most desired properties from any of AFs. Traditional AFs are fixed shaped functions broadly include 
identity, Linear, Sigmoid, Hyper-Tangent (Tanh), Swish and rectifier based. 

 
Figure 3. Activation Function operational categorization 

These are like Rectifier Linear Unit (ReLU), Leaky ReLU, Parametric ReLU and Exponential Linear Unit 
(ELU) activation functions. Comparison of the fixed shaped AFs in LSTM models is the potential dimen-
sion of this research work, as fixed shape AFs work better with LSTM networks. Fixed shape AFs like Tanh, 
Swish and ReLU are considered exceptional to be implemented in DGA detection LSTM models.  
 3.2.1. Hyper Tangent (Tanh) Activation Function 

 Tanh is default AF of LSTM neural networks, Tanh(x) and its derivative are given as,  
 
tanh(x) = (e −x − e −x)/(e −x + e −x )                                                               (3) 
 
f(x) = 1 − tanh2 x = sech2 x                                                                       (4) 
 
 Tanh is zero centered, a balanced AF which provide smoother nonlinearity. Its clipping on both sides 

contains the output from -1 to +1. 
3.2.2. Swish Activation Function 

 Swish outperformed ReLU in machine translation and image recognition in [31]. Swish is smoother 
for generalization and non-monotonic property which improves gradient flow. Mathematically swish 
function is given in equation 6 and its derivative in equations 7 and 8 as,  
 
f(x) = s ∗ sigmoid(x) = xσ(x) = 1 1 + e−x                                                                (5) 

 
f(x) = 1 1 + e−x + x[ 1 1 + e−x − 1 1 + e−x2 ]                                                             (6) 

 
f(x) = σ(x) + xσ(x)(1 − σ(x))                                                                            (7) 
 
3.2.3. Rectifier Linear Unit (ReLU) Activation Function  
  ReLU is a slicing linear function between positive and negative inputs/ weights. ReLU simply gives out-
put on only positive inputs. Negative input is discarded with no activation which nullifies the output to 
zero. It is fast as well as efficient in training the model as compared to other legacy AFs. It provides the 
basic property of non-linearity in a linear way. Mathematically  
 
f(x) = max(0, x)                                                                                       (8) 
 
The property of giving true zero for negative output works with piece-wise linearity. It has also overcome 
the problem of vanishing gradients in deep learning models. 
3.3. Properties of Activation Functions 
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 Most desirable property which is nonlinearity helps in mapping the given data feed/ inputs of a real-
world problem. Other properties of AFs include computational efficiency, smoothness in learning process, 
Sparsity or dense activation and faster convergence. Non monotonic property of swish is also considered 
a pivotal in training, non-monotonic property gives more expressiveness. Despite strong foothold in DL 
models, fixed shape nonlinear AFs needs a deeper exploration of a better activation function in most widely 
adopted AFs like Tanh and recently the Swish AFs other than ReLU being an exceptional pseudo linear 
AF.  
3.4. Activation Functions in text classification 
   As this research is solving DGA detection problem which is purely a text classification problem. Re-
search conducted in Legacy AFs in [31] which implemented for various NLP tasks to assess the perfor-
mance of these AFs with varying NLP problems. Overall results of the research in [31] for best performance 
AFs in NLP tasks are highlighted in Table-2. Referred work on legacy AF is relevant to text classification-
based ML models. Solving the problem of DGA Detection on choosing the best AFs projected in Table-2 is 
ReLU, Tanh and Swish. These AFs are selected as base AFs for our DGA Detection. Legacy AFs are simu-
lated and analyzed along with introduction of a new AF Zash in next classification problem of DGA De-
tection. 
 
4. Proposed Novel Zash Activation Function 

Authors In light of identified properties of nonlinear fixed shape AFs, a new AF which has been dis-
covered. This AF is called Zash and can show properties better than both Tanh and Swish AF. Moreover, 
it has shown that in case of dense and sparse activation, this AF will drop significant weight updates by 
achieving ReLU sparse activations property and have shown better performance in nonlinear legacy fixed 
shaped AFs like Tanh and swish AFs. Zash AF (ZAF) approach is slight modification of Sigmoid AF as 
same is applied in swish however we have deviation from swish method. ZAF is variant of Sigmoid AF 
and use an input x in both nominator and denominator while swish uses the input only in nominator, 

f(x) = x x + e−x                                                                                   (9) 
ZAF achieves non-linearity and being zero-centered properties like swish and Tanh. This function 

shows greater accumulation on both sides for larger negative and positive inputs which significantly re-
duces both the problems of exploding and vanishing gradients problems faced in deep neural networks. 
Graphical presentation of Zash AF with fixed nonlinear shaped legacy AFs Tanh and Swish is shown in 
orange color. The derivatives of these AFs are in blue color and same is projected in figure 5. It’s clear from 
its clipping property that it will not be lost in exploding gradients. Its longer smoothness improves which 
settling for outputs and excluding chances of vanishing gradients as well. It achieved this property by 
rather an abrupt clipping like Tanh and swish. Primarily in Figure 5 Tanh and swish properties both are 
integrated in one single function Zash. ReLU’s sparsity may cause loss to some of significant features in 
training of model. However, that is not the case with ZAF which accumulates all inputs and weights within 
dense activation. 
 4.1. Analyzing Proposed Activation Functions with Taylor Series  

 Keeping in view of the various activation functions discussed above, the introduced new ZAF which 
is computationally compatible to ReLU, Tanh and Swish AFs. Graphical presentation of Zash function is 
range bound and its derivative resembles the derivative of Tanh output. Moreover, Taylor series expansion 
of selected AFs up to order of 5. ReLU Taylor series is given as, 

 
f(x) = 0 f orxlessthan0 = 1 f orxgreaterthan0                                                      (10) 

 
Tanh is,      tanh(x) = x − (1/3) ∗ x 3 + (2/5) ∗ x 5                                                (11) 

 
Swish is,      swish(x) = (1/2)x − (1/4) ∗ x 2 + (1/48) ∗ x 4                                        (12) 

 
Zash is,       Zash(x) = x − (1/2) ∗ x 3 + (1/6) ∗ x 4 + (5/24) ∗ x 5                                  (13) 
 
Taylor series expansion shows that Zash possess both Tanh AF and Swish polynomial properties with 

more expressiveness in its output. ZAF and Swish skipped second order while Tanh skipped 3rd order in 
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Taylor series. ReLU has no expressiveness in Taylor series. This property of expressiveness is further dis-
cussed in the results section. 

 

 
Figure 4. Fixed shape Activation functions with its derivative simulations 

 
Figure 5. LSTM Attention implemented model 

5. Proposed Methodology 
Proposed methodology to undertake analysis of the DGA detection performance using LSTM with 

Attention model as depicted at Figure 5 has been adopted. All AFs are tested including a new AF Zash 
(ZAF) for optimal performance. Desired properties of proposed novel AF Zash are compared with legacy 
AF. DGA Dataset samples are composed of legitimate domain samples from Alexa [5] and malware do-
main samples of 20 DGA families from Bamabanek [6]. Data samples (entire dataset) are composed of 
Alexa data samples as legitimate domain names are the biggest dataset while the rest all are 20 families of 
DGA. The ratio of data set is set 75 % to 25 % for training and validation respectively. All the relevant codes 
and dataset are made available at [34].  

 
Table 2: Performance results using LSTM model with state-of-the-art activation functions. 

 

 

LSTM 
Model RELU RELU Tanh Tanh Swish Swish Zash Zash 

Epochs 10 20 10 20 10 20 10 20 
Accu-
racy 0.9298 0.9402 0.9118 0.9247 0.9206 0.9300 0.9193 0.9485 

Preci-
sion 0.9214 0.9365 0.9016 0.9136 0.9111 0.9230 0.9136 0.9455 

Recall 0.9298 0.9402 0.9118 0.9247 0.9205 0.9299 0.9192 0.9485 
F1 0.9231 0.9345 0.9029 0.9160 0.9205 0.9226 0.9125 0.9438 
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Figure 6. Graphical Presentation -Performance Metrics Comparison for 20 Epochs 

Dataset samples are fed into LSTM with Attention model as projected in figure 5. This model process 
input data to extract maximum temporal relationships. Entire input sequence is converted as single context 
vector by the encoder. To address the loss factor for longer dependencies, an attention mechanism is inte-
grated with LSTM model. Output from LSTM with attention mechanism is passed to fully connected (FC) 
layer for binary classification of legitimate and malicious domains. In the last layer Softmax layer is applied 
for multi-class classification. ReLU, Tanh, Swish and Zash AFs are set as default AF for LSTM with Atten-
tion model for comparison analysis of performance metrics (categorical accuracy, recall, precision and F1). 
The performance of the model is measured with (harmonic mean of precision and recall). Simulations are 
based on 20 epochs for each selected activation 240 functions [34]. 

 

 
Figure 7. LSTM Attention Model showing Performance Metrics Curves 
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Figure 8. LSTM Attention Model Training/ Validation Accuracy and Loss Comparison 

6. Results and Discussion 
      6.1. Results  

 Results of LSTM with Attention models were trained and tested with 4 variants of AFs (ReLU, Tanh, 
Swish and Zash) respectively. Each model has simulated twice for 10 epochs and 20 epochs respectively. 
The model performance metrics are projected both in a tabular form in Table-3 and graphically in Figure-
6. Both Table-3 and Figure-6 projected results for 10 epochs and 20 epochs respectively. From numerical 
results to bar graphs in Figure-6 performance metrics of Zash AF is evidently outperforming the rest 3 
legacy AF. In the Figures-7 overall Zash is performing with marginal difference with ReLU AF. However, 
Zash AF is showing much smoother curves in its all-performance metrics as well as a better convergence 
comparable with all AFs. This smooth training is visible in performance metrics curves and Zash AF is 
acting a better activation function. In Figure-8 model training and validation accuracy for 04 x AFs is pro-
jected. A close look at Zash AF raining and validation accuracy curve showing its smoothness and sub-
stantiating its smoothness over all other AFs. In same Figure-8 Training and validation loss is again sub-
stantiating its property of smoothness in converging of model at a point of stability. Figure-8 shows how 
the accuracy stable at end of 20 epoch for each model and proposed Zash AF validation curves for both 
accuracy and loss are smoother than other legacy AFs. Categorical accuracy curves are highest of ReLU, 
and second highest is Zash in all four models depicted in figure 9. The results of Swish and Tanh Afs 
performance metrics are quite similar but not better than Zash. ReLU and ZAF has shown overall best 
results. Convergence of Swish and Zash AFs are evident in figure 8. However, curves of Zash AF are 
smoother than rest of AFs which shows its superiority on rest of the three selected AFs. Implemented DL 
model results compared with selected AFs are highlighted in Figure-8  
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Figure 9. Precsion of 4 Activation Functions with 10 and 20 Epochs 

 
Figure 10. Recall of 4 Activation Functions 

Each performance metric results are collated and projected in Figure-9, 10 and 11 for the performance 
metrics of Precision, Recall and F1 score respectively. Figure-9, 10 and 11 projected the performance metrics 
of the 4 AFs graphically with 10 and 20 epochs of training and validation. Overall ReLU and ZAF are closer 
in performance and competing in precision and recall). Simulations are based on 20 epochs for each se-
lected activation 240 functions [34]. As compared to this projection, ReLU and ZAF have better perfor-
mance metrics in their respective frames of Figures-9, 10 and 11. Moreover correlation matrices of the 4 
models with of ReLU, Tanh, Swish and Zash AFs are also depicted in appendix to this paper for deeper 
visibility.   
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Figure 11. F1 of 4 Activation Functions 

6.2. Discussion  
Default fixed shaped AFs like sigmoid, Tanh and Swish use dense activations which are computation-

ally expensive, time consuming and lead to vanishing gradients. On other hand rectifier-based AFs like 
ReLU use sparse activation which may also miss some important feed in initialization of training of a neural 
network. Keeping in view the trade-off between sparse and dense activations, selection of an AF becomes 
is very important parameter of neural network modelling. Swish works better than ReLU for deep neural 
network for more than 50 layers [35], therefore introduction of ZAF is to be considered as replacement of 
swish for minor and moderate deep learning models up to 40-50 layers. As in this case we tested our 4 
models training up to 10 and 20 epochs. However, in nonlinear fixed shaped AFs Zash is closer to a rectifier 
AF ReLU with an additional property of dense activations. Zash AF has shown almost equivalent perfor-
mance in LSTM models against Tanh and swish AFs with a marginal improvement. This indicates that 
further tuning of the model may further boost the performance of the Zash AF based models. Zash AF has 
shown that with dense activations fixed shape AF performance can come closer to rectifier-based AF like 
ReLU whenever dense activations are desirable. Zash AF still showing better than Tanh and Swish AFs in 
this real-world text classification problem.  
6.3. Future Directions  

ZAF may be implemented in models where data sparsity is intolerable and at the same time may be 
validated and tested further against default fixed shape competitors like Tanh and Swish AFs. CNN mod-
els default AF are ReLU, Leaky ReLU and ELU AFs and ZAF needs to be tested as future research directions 
in these models. The area of dense and sparse activations needs deeper investigations, and some may be 
part of future research works. 
 
7.	Conclusion	 	

RNN networks work better with fixed shape AFs by default and inclined to dense activations. Tanh is 
considered a leading function within LSTM models. However, ZAF has almost same polynomial behaviour 
as of Tanh shown in Fig 4. Promising features of the ZAF needs to be refined further for LSTM networks 
using other model parameters. Future work may include fine tuning of other model parameters and hyper 
parameters, optimization algorithms and regularization techniques. ZAF may also be plugged in CNN and 
Attention/ Transformer models. DGA detection is achieved using DL models and hybrid approaches of 
these DL models have improved the performance further. In adoption of deep learning models, goal is to 
penetrate in APT detection cycle and detect DGA malware in organizational/ corporate networks. Specify-
ing a DL model and identifying one of model key parameter like AF for optimization is a unidirectional 
approach. However, using these AFs like swish, Tanh and ZAF may be augmented with other DL param-
eters and hyper-parameters. Subject exploration has given an important insight of fixed shaped AFs in 
LSTM networks which may be further probed with rectifier shaped AFs. Authors declares that They have 
no conflict of interest. This article does not contain any studies with human participants or animals per-
formed by any of the authors. 
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