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Abstract: In this article, a computational technique called artificial neural networks (ANN’s) merged 
with sequential quadratic programming (SQP). The feed forward neural networks are used which 
outperforms in an unsupervised manner. Activation function called Log-sigmoid is applied in the 
hidden layers of neural networks for the accuracy of results because it is more stable than any other 
activation function. This approach is best in terms of accuracy in solving linear and non-linear 
second or forth order ordinary differential equations. The main task is to implement the linear and 
nonlinear equations with their initial boundary conditions. This article also contains the application 
of the Jeffery fluid equation which is fourth order differential equation. Different cases of 
computational complexity in term of time and space are presented. Comparison of exact solution 
with the referenced techniques shows the correctness of the proposed scheme. Furthermore, the 
experimental results show the accuracy 99%-99.9% from the other techniques. This system also 
shows that it is stable at higher values while other systems deviate at higher values from the exact 
solution and remains unstable. In mathematics models, this technique outperforms to solve the 
linear and nonlinear differential equations. So, this will help the mathematicians and scientist to 
solve the higher order differential equations whom their solution does not exist.   
 
Keywords: Jeffery Fluid, Artificial Neural Network, Numerical Approximation, Monte Carlo 
Simulations. 

 
1. Introduction 

A computational numerical technique is implemented for solving ODEs of second and fourth order. 
This system helps to solve those equations like Steller structure of earth, forth order or higher order of 
equations that are difficult to solve, or their solution does not exist.  The equations contain function and 
the derivative of that function [1-3]. Sequential quadratic programming (SQP) optimized the weights that 
are used by the artificial neural networks to solve second order or higher order differential equations. Ar-
tificial neural networks and sequential quadratic programming both are combined to get the better results 
for the equations that cannot be solved in an unsupervised way. Many dynamical and classical systems 
can be solved by using artificial neural networks. Numerous applications in engineering and applied sci-
ence including fluid mechanics, network synthesis, controls, diffusion problems, robust stabilization, sto-
chastic theory, optimal filtering, and the mathematics involve the use of the differential equation [4-8].  

It is difficult to solve the higher order ordinary differential equations which leads researchers to ex-
plore the solution of these equations. Many techniques are implemented to find the solution of these equa-
tions, but the accuracy and the implementation of such systems are restricted to some extent [9]. The 
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solution of equations that are of linear or non-linear type is planned according to the architecture defined 
in Hopfield neural network. To provide the solution of the system the network’s energy function is mini-
mized in different order equations [10-14]. 

Other approach for solving these ordinary differential equations is based on the statistic that many 
different types of splines can be resultant by the super positioning of piecewise activation functions [15]. 
Wavelet scaling is the method that provide the differential equation solution, but the drawback of this 
solution is that it is affected by the ill matrices’ conditions [16]. 

The comparison of the proposed method with other method is that the defined method outperforms 
in term of accuracy and efficiency at higher values and remain stable while many other methods become 
unstable, and it gives approximate same result as the exact solution. 

To provide the solution of the differential equations, this work will motivate and provide easy and 
exact solution towards solving the differential equations. This method is compared with the power series 
neural networks (PSNN), adaptive PSNN [17.18]., Euler, Modified Euler, cosine neural networks and so 
on [19,20]. The accuracy of this systems is somehow can be improved due to which the computational 
burden can be minimized. The techniques based on artificial neural networks which is now extensively 
used in various chemistry, engineering and applied sciences as well.   
 
2. Proposed Methodology 
 In different fields of mathematics second order differential equations are of great interest. Log-
sigmoid function is suitable to be used as an activation function as it is the most stable function for solving 
linear and non-linear differential equations, it is mainly used and implemented in the hidden layer of 
neural network. In this context the following second derivative of log-sigmoid function is used. 

                                                                 (1) 
Where αi, wi and bi are the adaptive parameters which specify the range, the convergence and the shifting 
of the function. In this article the activation function is used in the hidden layer of artificial neural networks 
and is called log sigmoid function. The following equation is the basis of log sigmoid function.  

𝜑(𝑡) = !
!"#!"

                                                                      (2) 

The sequential quadratic programming represents the nonlinear programing methods and is known 
as a local search algorithm. For nonlinear optimization an iterative method is used. Sequential quadratic 
programming has been tested on various methods and has shown good results in terms of efficiency, ac-
curacy, and the percentage of success is better than other systems. SQP involves different steps to find out 
the unknown parameters of the activation function. These steps are discussed below: 

First step is the tool activation while the tool setting criteria is given in the table 1. Second step is the 
program initialization in which the randomly initial boundary values are given according to the number 
of weights that are unknown at the time. Third step define to set the fitness evaluation function. The fourth 
step defined the termination criteria.  

If any of the following given criteria defined in table 1 is occurred the system will terminate its execu-
tion and the result will be defined on the basis of predefined fitness value.  
Fifth step is defined to first store the value for final weight calculation after this it will show the total 
computational time taken by the algorithm. 

Table 1. Defining the Parameters for Sequential Quadratic Programming 

Algorithm (SQP) Values 

Start / Initiation of Algorithm Randomly defined between [15-15] 

Variables defined 30 

Total Iterations 1500 

Hessian BFGS 

Derivation Finite difference 

Scaling Function Objectives and constrains 

Upper bound 15 
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Lower bound -15 

Value defined for fitness function 10^-18 

Other Default 

 
3. Simulation and Results 
 In the following example, the ordinary differential equation is given in which its initial boundary 
condition values and first order and second order differentials are defined. The comparison is made by 
solving these equations with different techniques. The equation is solved by power series neural network 
using sign function. In this article log-sigmoid function is used with SQP-NN because it has shifting 
capabilities, it has convergence stabilities, shrinking and expansion capabilities. The domain is defined 
from 0 to 1 and the step size of 0.1.  
3.1. Example 
 In this example, the differential equation of second order is given with the range from [0,1] and the 
initial conditions [21]: 

                                                         (3) 

The estimated solution of the above second order differential equation is given as follows up to the sixth 
order term. 

                                                       (4) 

 
Figure 1. Euler method compared with exact method for [0-1] boundary values 

 Figure 1 shows the difference between the Euler and the exact solution of the given equation. There 
is a huge difference between the exact and the Euler method defined by John H. Mathews et al. It can be 
observed that only one initial value is matched at step size 0.1 while the rest of the values are above or 
below the exact values and at the higher values like at step size 0.9 the system deviates from the exact 
solution and become unstable.  

 
Figure 2. M-Euler method compared with exact method for [0-1] boundary values 
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 Figure 2 shows the difference between the Modified-Euler and the exact solution of the given equation. 
The result of M-Euler is much better than the Euler method but still at higher value of step size 0.9 and 
above the Modified-Euler does not remain stable. Similar behavior has been observed by Richard L. Burden 
and his co-researcher, the literature reveals the same behavior.               

 
Figure 3. Cosine-NN method compared with exact method for [0-1] boundary values 

Figure 3 shows the difference between the Cosine-NN and the exact solution of the given equation. 
The Cosine-NN [22], cannot give the better results than Euler and the M-Euler as it can be seen in the 
results.   

 
Figure 4. PSNN method compared with exact method for [0-1] boundary values 

Figure 4 shows that PSNN performs better than the other techniques but still at higher values PSNN 
starts diverging and cannot performs better with the equations of higher order, this is the main drawback 
of the PSNN. Hence it has been observed that the proposed method performs well with the higher values, 
it converges at higher values. The difference between the values of Exact and PSNN is defined in the table 
2. 

 

Figure 5. SQP-ANN method compared with exact method for [0-1] boundary values  
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In this research article SQP-ANN (figure 5) gives the best result than Euler, M-Euler, and Cosine-NN 
and even from the PSNN method though there is a small difference between PSNN and SQP-ANN but at 
higher values the PSNN starts divergent while the SQP-ANN converges and remain stable at all values 
which can be observed above.  
 It is clear from the above-mentioned result that the SQP-ANN provide accurate and best results as 
compared with the estimated values of other defined techniques for solving these differential equations. 
Absolute errors are calculated in decibel units so can be more elaborated. The result shown that the 
purposed method is more accurate than the Modified-Euler, Euler, cosine NN and from the PSNN. It is 
also observed that SQP-ANN is not only stable and accurate for solving second order differential equation 
but can also be used for solving higher order differential equations. 

Table 2. Comparative Table Between Exact and Estimated Solutions.  

T Exact Solution Euler M-Euler Cosine-NN PSNN SQP-ANN 

0 1 1 1 1 1 1 

0.1 1.0954 1.1 1.0959 1.0959 1.0955 1.0955 

0.2 1.1832 1.1918 1.1841 1.1839 1.1832 1.1832 

0.3 1.2649 1.2774 1.2662 1.2654 1.2649 1.2649 

0.4 1.3416 1.3582 1.3434 1.3424 1.3417 1.3417 

0.5 1.4142 1.4325 1.4164 1.4153 1.4143 1.4142 

0.6 1.4832 1.509 1.486 1.4846 1.4833 1.4833 

0.7 1.5492 1.5803 1.5525 1.5507 1.5493 1.5492 

0.8 1.6125 1.4698 1.6165 1.6135 1.6125 1.6125 

0.9 1.6733 1.7178 1.7682 1.6734 1.6734 1.6734 

1 1.7321 1.7848 1.7379 1.7322 1.7319 1.7321 

 
 Table 2 shows the exact and the estimated values of different techniques and the SQP-ANN gives 
more accurate results as compared to other techniques. 

Table 3. Absolute Error Between Exact and Estimated Solutions. 

T Euler M-Euler Cosine NN PSNN SQP-ANN 

0 0 0 0 0 0 

0.1 0.0046 0.0005 0.0005 0.1 0.1 

0.2 0.0086 0.0009 0.0007 0 0 

0.3 0.0125 0.0013 0.0005 0 0 

0.4 0.0166 0.0018 0.0008 0.1 0.1 

0.5 0.0183 0.0022 0.0011 0.1 0 

0.6 0.0258 0.0028 0.0014 0.1 0.1 

0.7 0.0311 0.0033 0.0015 0.1 0 

0.8 0.1427 0.004 0.001 0 0 

0.9 0.0445 0.0949 0.0001 0.1 0.1 

1 0.0527 0.0058 0.0001 0.2 0 

 Absolute errors are calculated from the values defined in the table and is finally drawn and shown 
fig 6, these errors are calculated at decibel scale so that these errors can be elaborated. 
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Figure 6. Absolute error of exact and estimated solution 

3.2. Application of Jeffery Fluid Problem 
 Jeffry fluid is considered as a subclass of rate type fluids that could describe the characteristics of 
reduction and delay times. Due to the difficulties in this type of subclass fluid equation, it is not much 
elaborated in the literature. Al-Nimr et al. [23] discussed the passing coquette flow passing over finite 
domains wind-driven flow. Now a days, as compared to the other rate type equations Jeffery fluid 
equations are considered simpler, that is why these equations are most popular among the researchers [24-
27]. The main Jeffry fluid equation is given as [28,29]: 

                   (5) 

 The system given in above equation is solved by taking 5 and 15 neurons, respectively for αi, βi, wi 
adaptive parameters and the resultant profile is represented in Fig. 7, Fig. 8 respectively. It is observed 
from the figures that increase in number of neurons causes betterment in the fitness value however, the 
use of very large number of neurons can cause over fitting and the fitness value will overshoot.     

 
Figure 7. Profile using 5 number of neurons for input domain [0-1] 
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Figure 8. Profile using 15 number of neurons for input domain [0-1] 
 The numerical approximation for the input data set T= [0-3] second with a step size 0.1 with varying 
values of toke number is shown in Figure 9 while the velocity profile is shown in Figure 10, it is quite 
evident from the figures the proposed scheme approximates the Jeffery problem with an acceptable level 
of accuracy.  

 
Figure 9. Jeffery Fluid profile for varying values of stokes number for input domain [0-3] 

 
Figure 10. Jeffery Fluid velocity profile for varying values of stokes number for input domain [0-3] 
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 The Jeffery fluid profile for λ=2, λ=3 and λ=4 is shown in figure 11 for a discrete input domain with 
N=30 no of neurons in the hidden layers.   

 

Figure 11. Jeffery Fluid profile for varying values of λ parameter for input domain [0-3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Computational complexity of the various cases for 200 independents 
 

 The complexity of the system in terms of time and space is calculated and is expressed in terms of 200 
independent runs.   
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4. Conclusion 
 For complex non-linear and linear system, the accuracy in the result of proposed log sigmoid used 
with neural networks is achieved more than the techniques like sign functions, signed LMS algorithm, 
Euler, Modified Euler and the power series. The proposed methodology also defined the advantage of 
giving solid and exploiting formulas for these ordinary differential equations. Comparison with the exact 
solutions and the solutions obtained by the other conventional methods shows the potential of ANN in 
solving singular and nonlinear problems. Secondly, the advantage of the proposed technique is simple to 
understand, ease in implementation good convergence capability and more reliable in terms of accuracy. 
The average computational complexity for the optimization of the model, the different cases and equation 
of Jeffery fluid is used. In future, one can use many other equations like Thin film fluid. Many other search 
algorithms can be used to find the unknown parameters like Genetic algorithm, line search algorithm and 
other Hybrid techniques.  
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