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________________________________________________________________________________________________________ 

Abstract: Dictionary and Classifier learning with discriminatory and joint behavior is a considerably 
effective area in ML research being applied particularly for face recognition, action recognition, and 
object detection. We present an approach to improve classification performance by enhancing joint 
learning of the dictionary and classifier. Dictionary and classifier are separately or jointly learned 
with different sparse representations for training and labels' data. At the perdition stage, sparse 
representation of a test sample computed over the learned dictionary is used as input for the classi-
fier for classification. The accuracy of the classifier can be increased by using sparse representations 
of labels over the classifier. To mitigate this issue, we present an approach to jointly learn the same 
representations for both the test samples and the corresponding labels. At the prediction stage, the 
computed representation of a test sample over the dictionary will serve the purpose. We performed 
tests to confirm the effectiveness of our approach, using the Gibbs sampler as an inference for face, 
object, scene, and action recognition. We compared the results also with other state-of-the-art ap-
proaches in the area of Dictionary and Classifier learning. Our approach achieves a classification 
accuracy significantly higher than that of other approaches.   
 
Keywords: Gibbs Sampling; Discriminative; Dictionary and Classifier; Sparse Weights; Sparse Rep-
resentation; Face Recognition; Object Classification; Action Recognition. 

 
1. Introduction 

Dictionary learning and sparse representation is remarkably used in different approaches of research 
areas, particularly in image denoising and restoration [1]–[3], compressive sensing [4]–[6], face recogni-
tion [7]–[10], action recognition [11]–[14] etc. A dictionary comprises a few column vectors trained in such 
a way that examples of a dataset belonging to a particular domain become linear combinations of the col-
umn vectors. These column vectors are called basis atoms. For instance, a sample from a specific class of 
dataset is expressible as a linear combination of the remaining samples of the same class.  
A discriminative dictionary may be divided into three types. In the first type, it consists of two types of 
atoms i.e., the class-specific atoms contributing to the representations of data samples of a particular class, 
and the atoms contributing to the representations of all samples of the data [15]–[17]. The second type con-
sists of atoms grouped among classes, where each class of atoms represents the data belonging to that class 
only [18]–[22]. In the third type of dictionaries, a data sample is represented as a linear combination of all 
the atoms of the dictionary. However, discrimination in the dictionary is induced by making the represen-
tations favorable for classification [16], [23].  

However, along with inducing discrimination in the dictionary, the relationship between data sam-
ples and the corresponding labels is maintained. A Non-parametric Bayesian approach was followed 
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by [24], [25] to solve the issues in this area in terms of Bayesian settings. They enhanced joint and discrim-
inative behavior while learning the dictionary along with adaptively learning the size of the dictionary. In 
their approaches, they learned the dictionary and the classifier together and induced joint and discrimina-
tive behavior. However, these approaches still have limitations in mapping data samples to the corre-
sponding data labels through the jointly learned classifier. They learn different representations (sparse co-
efficients) for data samples and the corresponding labels at the dictionary and the classifier learning stages. 
Whereas, at the prediction stage, representation of a test sample is computed over the dictionary, and this 
is directly used as input to the classifier for mapping to the corresponding label of the sample. The classifier 
learned with different representation of the corresponding label cannot perform efficiently by using repre-
sentation computed over the dictionary for the test sample. To mitigate this issue, we have devised an 
approach based upon a Non-parametric Bayesian framework that jointly learns the same representations 
for both the data samples and the corresponding labels at the dictionary and the classifier stages, respec-
tively. Now at the prediction stage, the same representation computed over the dictionary for a test sample 
will also play the dual role for the representation of the corresponding label over the classifier. Intuitively, 
this will enhance joint and discriminative learning of the dictionary and will result in increased accuracy 
of the classification.  
We used conjugate priors and analytically derived the posterior probabilities of the proposed Bayesian 
network. To learn the same representations over the dictionary and the classifier for data samples and the 
corresponding labels, we draw the representation components from the same base measure.  
In our work, we have explained the problem and presented the formulation of our proposed model along 
with the Gibbs sampler as an inference algorithm to compute posterior probabilities of the latent parame-
ters. Our work also includes the experiments, the comparative results, the discussion, and the conclusion.  
 
2. Problem Formulation  

A dictionary 𝚽 ∈ 𝑅!×# of 𝐾 atoms is defined as 

𝐀 ≈ 𝚽𝛂      (1) 
Here, 𝐀 ∈ 𝑅!×$ are training examples belonging to 𝐶 classes i.e., 𝐀%, 𝐀&…𝐀' …𝐀(, indexed in 𝐼$. 

A set 𝐼' contains indices of the training examples belonging to 𝑐th class, or alternately, ∑
(

')%
|𝐼'| = 𝑁, where 

|. | is the cardinality of a set. 𝑀 and 𝑁 represent dimension size and number of examples in the training 
data. 𝛂 ∈ 𝑅#×$ denotes the sparse representations of examples in Eq. 1. Similarly, examples belonging to 
a class can be approximated as 

𝐀' ≈ 𝚽𝛂'        (2) 
Where, 𝛂' ∈ 𝑅#×|+!| denotes sparse representations of the examples from 𝐀' . The dictionary and 

representations coefficients learning is a constrained problem that can be expressed as follows. 

< 𝚽,𝛂 >= 𝑚𝑖𝑛
𝚽,𝛂

||𝐀 −𝚽𝛂||/&     𝑠. 𝑡.  ∀𝑖, ||𝛂0||1 ≤ 𝑡, 

Here, 𝛂0 ∈ 𝑅# represents the 𝑖th column of 𝛂 containing representation coefficients of 𝑖th exam-
ple of training data 𝐀. The sparsity of the representation coefficients is controlled by the constant 𝑡. The 
||. ||/ and ||. ||1 are Frobenius norm and 𝑙1-norm. Following model of a linear classifier can be solved by 
using the representation coefficients. 

𝐁 = 𝑚𝑖𝑛
𝐁
@£
$

0)%

{𝐡0 , 𝑓(𝛂0 , 𝐁)} + 𝜆||𝐁||/& , 
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Here, 𝐁 ∈ 𝑅(×# , 𝜆, 𝑓(. ), £, 𝐡0 ∈ {0,1}(represent parameters of classifier, regularization constant, 
predicted label , loss function of the model, and class label for a0 respectively. This model does not inte-
grate classifier with the dictionary learning process and does not exhibit joint learning, as the representa-
tion coefficients and the classifier are learned independently. However, joint learning with discriminative 
behavior of the dictionary and the classifier integrate the labels of the examples in the learning and effi-
ciency of the classifier increases [16], [26], [27]. The approach followed by [24] is very effective among such 
approaches. Bayesian non-parametric framework with Beta-process was exploited by this ap-
proach [28]. [29] introduced the beta process for image restoration and compressive sensing. [25], [24] fur-
ther made use of this process for object and scene classification, and face and action recognition. 
Initially, [28] developed a Beta process for non-parametric factor analysis which is represented by 
𝐵𝑃(𝑎3, 𝑏3, 𝐡‾ 3) with 𝑎3 > 0, 𝑏3 > 0, 	and	𝐡‾ 3 as base measure. Drawing process of Atoms of the dictionary 
from the base measure can be formulated as. 

𝐡‾ =@𝜋4
4

𝛿𝛟"(𝛟),  𝑘 ∈ 𝐾 = {1… ,𝐾},

𝜋4 ∼ Beta(𝜋4|𝑎6/𝐾, 𝑏6(𝐾 − 1)/𝐾),
𝛟 ∼ 𝐡‾ 6,

 

𝛿𝛟"(𝛟) = 1 for 𝛟 = 𝛟4 and 0 otherwise. 𝐡‾  denotes probabilities expressing frequencies of selec-
tion of atoms and its 𝑘th component represents selection frequency of the atom 𝛟4, drawn from the base 
measure 𝐡‾ 6. To induce sparsity, a vector of Bernoulli probabilities, 
𝐁7 = {Bernoulli(𝜋4) :  𝑘 ∈ 𝐾}, corresponding to the atoms selection probabilities 𝐡‾  is introduced. Similarly, 
a sparse binary matrix 𝐙 ∈ {0,1}#×$ of 𝑁 binary vectors can be drawn for the selection of atoms for all 
data examples. Due to the sparsity 𝐙, training data can sparsely be approximated as 𝐀 ≈ 𝛟𝐙.  Non-zero 
elements in a column of 𝐙 depend upon the value of 𝐾. For an instance, if 𝐾 → ∞, the number of non-

zero elements is a draw from Poisson(8#
9#
) distribution [28]. This approach was used by [25] and learned a 

linear classifier independently. Discrimination in the dictionary was induced by drawing different sets of 
𝐁7s for each class of data. However, [24] followed this approach for joint learning of dictionary and classi-
fier. To keep data labels mapped with the data samples, they used the same Bernoulli distributions for both 
dictionary atoms and classifier atoms selection during joint dictionary and classifier learning. However, 
they trained different representation coefficients for data samples and the corresponding labels at the dic-
tionary learning and the classifier learning stages respectively. While predicting a test sample, representa-
tion coefficients computed over the learned dictionary are used directly as input to the classifier. The dif-
ferent representations learned for the labels during classifier learning get ignored at the prediction stage. 
We introduced an approach in which this issue is mitigated by learning the same representations at both 
the stages i.e., at the dictionary learning and the classifier learning stages for both the data examples and 
the corresponding labels. 
 
3. Formulation of Our Approach 

We use Non-parametric Bayesian Framework with two Beta-Bernoulli processes. The model is 
graphically represented in Figure 1 for joint and discriminative learning of the dictionary and classifier. 
We used different sets of Bernoulli variables with different Bernoulli parameters for each class of the train-
ing data.  However, the same set of variables for a particular class was used for both the dictionary and 
the classifier atoms selection for the representation of data examples and the corresponding labels. We 
formulate our approach as follows. For the construction of the 𝑖th training example of the 𝑐th class it is 
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formulated as 𝐚0' = 𝚽𝛂0' + 𝐚:$ and 𝛂0' = 𝐳0' ⊙𝐬0'. Here 𝛂0' is the representation vector for 𝑖th example of 
data, 𝐬0' ∈ 𝑅# is the weight vector associated with dictionary atoms contributing to sparse code represen-
tation of 𝑖th example, and ⊙ represents the Kronecker product. We learn the same coefficients, 𝛂0', asso-
ciated with the classifier 𝐁 for the representation of class labels, in contrary to [24]. The formal represen-
tation of our model is as below. 

∀𝑖 ∈ 𝐼' , ∀𝑐 ∈ {1,2, … , 𝐶},and  ∀𝑘 ∈ {1,2, … , 𝐾}
𝛂0' = 𝐳0' ⊙𝐬0'

𝐚0' = 𝚽𝛂0' + 𝐚:$       𝐡0
' = 𝐁𝛂0' + 𝐡:$

𝜋4' ∼ Beta(𝜋4'|𝑎6/𝐾, 𝑏6(𝐾 − 1)/𝐾)
𝑧04' ∼ Bernoulli(𝑧04' |𝜋4')
𝑠04' ∼ 𝒩(𝑠04' |0,1/𝜆;')
𝛟4 ∼ 𝒩(𝛟4|𝟎, 1/𝜆<%𝐈!)    𝐛4 ∼ 𝒩(𝐛4|𝟎, 1/𝜆9%𝐈()
𝐚:$ ∼ 𝒩(𝐚:$|𝟎, 1/𝜆8𝐈!)    𝐡:$ ∼ 𝒩(𝐡:$|𝟎, 1/𝜆=𝐈()

       (3) 

We train the same 𝐳0'  and 𝐬0'  for both 𝐚0'  and 𝐡0' . We draw 𝑘th  coefficients 𝑧04'  and 𝑠04'  of 𝐳0' 
and 𝐬0' from Bernoulli distribution and Gaussian distribution respectively. 𝜆’s are precision parameters 
of Gaussian distributions as priors in Eq. 3. To represent 𝑘th column of 𝚽 and 𝐁, we use the notations 
𝛟4 and 𝐛4 respectively. 𝟎 is zero vector of dimension 𝑀 for dictionary prior and of dimension 𝐶 for 
classifier prior. The subscript ′𝑜′ appearing in expressions shows the hyperparameters belonging to prior 
distributions. We have also modeled errors for the construction of both 𝐚0' and 𝐡0'. We further place non-
informative Gamma hyper-priors over precision parameters i.e., 𝜆;' ∼ Gam(𝑐6, 𝑑6)  and 𝜆8, 𝜆= ∼
Gam(𝑒6, 𝑓6). The Probabilistic Graphical Model (PGM) of our approach is represented in Figure 1. 

 
Figure 1. Graphical representation of Non-parametric Bayesian Model. 
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4. Gibbs Sampling 
Using the Gibbs sampler as an inference algorithm, we iteratively take samples from conditional 

probabilities for posterior parameters of our model. We drive conditional probabilities for the posterior 
parameters analytically using conjugate priors in our proposed probabilistic model presented in Eq. 3 and 
in Figure 1. We have derived the expressions for conditional probabilities for posterior parameters from 
the joint probability of our model, using the Bayes Theorem. The symbol "| −" in the following conditional 
probabilities of the posterior variables mean conditioned on all variables except the variable of the men-
tioned probability. 
4.1 Sampling Dictionary Atoms 𝛟𝒌: 

The conditional distribution for taking samples of a dictionary atom may be expressed as 

𝑝(𝛟4|−) ∝ ∏
$

0)%
𝒩(𝐚0&"|𝛟4(𝑧04 . 𝑠04), 𝜆8?%𝐈!)𝒩(𝛟4|𝟎, 𝜆<#

?%𝐈!) Where,  

𝐚0&" = 𝐚0 −𝚽(𝐳0 ⊙𝐬0) + 𝛟4(𝑧04 ⊙𝑠04), is re-construction error induced by all dictionary atoms except 𝑘th 

atom in representing 𝐚0. Here dictionary atom does not carry class label 𝑐 with it, indicating that we are 
training a dictionary of the third category where all the atoms are shared for the representation of a data 
example. 𝛟4 can be sampled from 𝒩(𝛟4|𝛍4 , 𝜆<?%𝐈!), where 

𝜆< = 𝜆<% + 𝜆8 ∑
$

0)%
(𝑧04 . 𝑠04)&, 𝛍4 = 𝜆8𝜆<?%∑

$

0)0
(𝑧04 . 𝑠04)𝐚0&"  

4.2 Sampling Classifier Atoms 𝐛𝒌: 
Similarly, 𝐛4 can be sampled from 𝒩(𝐛4|𝛍4 , 𝜆9?%𝐈(), where 

𝜆9 = 𝜆9% + 𝜆= ∑
$

0)%
(𝑧04 . 𝑠04)& , 𝛍4 = 𝜆=𝜆9?%∑

$

0)0
(𝑧04 . 𝑠04)𝐡0'"  Here, 𝐡0'"  is re-construction error induced by all 

classifier atoms except 𝑘th atom in representing 𝐡0. It may be noted here that we use the same weights for 
the coefficients of representations, 𝐬04, for both the dictionary and the classifier learning. 
4.3 Sampling 𝒛𝒊𝒌𝒄  for assignment of atoms: 

The conditional probability for the posterior parameter 𝑧04'  can be expressed as 
𝑝(𝑧04' |−)∞𝒩(𝐚0&"

' |𝛟4(𝑧04' . 𝑠04' ), 𝜆8?%𝐈!)	
𝒩(𝐡0'"|𝐛4(𝑧04

' . 𝑠04' ), 𝜆=?%𝐈()Bernoulli(𝑧04' |𝜋4'). 𝑧04'  can be sampled from the following: 

𝑧04' ∼ Bernoulli( B"
!C(C)

%?B"
!DC(C)B"

!), where 

𝜁% = exp(− E*
&
(𝛟4

F𝛟4𝑠04'
& − 2𝑠04' (𝐚0&"

' )F𝛟𝐤)) and 

𝜁& = exp(−
𝜆=
2 (𝐛4

F𝐛4𝑠04'
& − 2𝑠04' (𝐡0'"

' )F𝐛𝐤)) 

4.4 Sampling Representation Coefficient Weights 𝒔𝒊𝒌𝒄 : 
The conditional distribution for 𝑠04'  is 

𝑝(𝑠04' |−) ∝ 𝒩(𝐚0&"
' |𝛟𝐤(𝑧04' . 𝑠04' ), 𝜆8?%𝐈!)	

𝒩(𝐡0'"
' |𝐛4(𝑧04' . 𝑠04' ), 𝜆=?%𝐈()𝑁(𝑠04' |0,1/𝜆;'), 

The conjugacy relationship makes it possible to derive distribution analytically as given below 
𝑠04' ∼ 𝒩(𝑠04' |𝜇;, 𝜆?%), where: 
𝜆 = 𝜆;' + 𝜆8𝑧04'

&𝛟4
F𝛟4 + 𝜆=𝑧04'

&𝐛4F𝐛4, 

𝜇; = 𝜆?% r𝜆8𝑧04' 𝛟4
F𝐚0&"

' + 𝜆=𝑧04' 𝐛4F𝐡0'"
' s, 
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Here the weights for coefficients, 𝑠04' , are learned jointly for the representation of both the training exam-
ples and the training labels. This behavior of our approach makes it distinct from others. 
4.5 Sampling atoms selection probabilities and pruning atoms 𝝅𝒌𝒄 : 

 𝑝(𝜋4'|−) 

∝ ∏ Bernoulli0∈+! (𝑧04' |𝜋4')Beta r𝜋4'|
8%
#
, 9%(#?%)

#
s, 

∝ Betau8%
#
+ ∑

|+!|

0)%
𝑧04' ,

9%(#?%)
#

+ |𝐼'| − ∑
|+!|

0)%
𝑧04' v. A dictionary atom 𝜙4 is pruned at each iteration of Gibbs sam-

pling according to whether ∑
(

')%
𝛑4' → 0 or not [24]. Likewise, classifier atom 𝐛4 is also pruned. 

4.6 Sampling of Precision parameters for coefficients 𝝀𝒔𝒄: 
𝑝(𝜆;'|−) ∝ ∏ 𝒩0∈+! (𝐬0'|𝟎, 1/𝜆;'𝐈#)Gam(𝜆;'|𝑐3, 𝑑3). 

𝜆;' ∼ Gamu|+!|#
&
+ 𝑐3,

%
&
∑
|+!|

0)%
∥ 𝑠0' ∥&&+ 𝑑3v. 

4.7 Sampling of Precision Parameter for Data 𝝀𝒂: 

𝑝(𝜆8|−) ∝ ∏
$

0)%
𝒩(𝐚0|𝚽(𝐳0 ⊙𝐬0), 𝜆8?%𝐈!)Gam(𝜆8|𝑒3, 𝑓3)	

𝜆8 ∼ Gam{
𝑀𝑁
2 + 𝑒3,

1
2 ∑

$

0)%
∥ 𝐚0 −𝚽(𝐳0 ⊙𝐬0) ∥&&+ 𝑓3| 

4.8 Sampling of Precision Parameter for Labels 𝝀𝒉: 
Similarly, 𝜆= 

∼ Gam(($
&
+ 𝑒3,

%
&
∑
$

0)%
∥ 𝐡𝐢 − 𝐁(𝐳𝐢⊙𝐬𝐢) ∥&&+ 𝑓3). 

After large number of iterations of the Gibbs sampler, we compute the posterior probability distributions 
of dictionary atoms and the classifier parameters. Sparse representation 𝛂 for the prediction of a test sam-
ple is computed over 𝚽 first.  The label of the test sample is predicted by classifying 𝛂 with the classifier 
𝐁. A predicted label corresponding to the test sample is estimated as 𝐁𝛂 ∈ 𝑅( and the index of the largest 
value is declared as the class label. It may be noted here that the same sparse representation 𝛂 computed 
over the dictionary is also the representation of the corresponding label over the classifier. Orthogonal 
Matching Pursuit (OMP) [30] is used to compute 𝛂. As the same 𝛂 is jointly learned at both the dictionary 
and the classifier stages, we expect that 𝐁𝛂 ∈ 𝑅( will result in the true label, enhancing the class prediction 
efficiency.  
 
5. Parameters Initialization: 

The overcomplete dictionary is initialized by randomly selecting a sufficiently large number of sam-
ples from the training data, in the order of 1.25 times the data. We use OMP to compute sparse represen-
tation coefficients for initializing 𝐬0'. We initialize 𝐳0' with all its components equal to one except those 
having zero values for their corresponding components of 𝐬0', in which case they are set equal to zero. 
Ridge regression technique is used to initialize the classifier 𝐁, using 𝐬0' and training labels 𝐡0' ∈ 𝑅( [16], 
[25], [31]. We set all 𝜋4 values equal to 0.5 to make the selection of dictionary and classifier atoms equally 
probable for representation of data samples and the corresponding labels. 
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Algorithm 1 Gibbs sampling 
Require: Initialize the hyperparameters 𝑎3, 𝑏3 with 0 < 𝑎6, 𝑏6 < 𝑚𝑖𝑛

'
|𝐼'|, 𝑐3, 𝑑3, 𝑒3, 𝑓3 

with 10?O, 𝜆<%, 𝜆9% with 
𝑀 and 𝐶, 𝜆;' with 1, and 𝜆8 and 𝜆= with 10P. 
Initialize 𝚽, 𝐁, 𝛑4' , 𝐳4' , and 𝐬4'  as explained in the parameters initialization section. 

1: for 𝑖 ∈ {1,2,3, … ,500} do 
2:  for 𝑘 ∈ {1,2,3, … , 𝐾} do 
3:  Sample 𝛟4, 𝐛4, 𝐬4' , 𝐳4' , and 𝜋4'  (from expressions of conditional distributions ) 
∀𝑐 ∈ {1,2,3, … , 𝐶} 
4:  𝑘 = 𝑘 + 1 
5:  end for 
6:  Sample 𝜆8, 𝜆=, and 𝜆;' (∀𝑐 ∈ {1,2,3, … , 𝐶}) 
7: 			𝑖 = 𝑖 + 1 
8: end for 
9: Compute sparse representation coefficients 𝛂 of test data over the learned dictionary 
𝚽, using orthogonal matching pursuit (OMP), a module in SPAMS package of Python. 
Compute the predicted labels by selecting indices of the maximum valued components of 
the columns of 𝐁𝛂. 
10: Compute the classification accuracy  

 
6. Experiments and Evaluation 

We performed experiments on face, object, scene, and action recognition using standard data-sets 
and compared the results with the state-of-the-are approaches in the dictionary and classifier learning do-
main such as Discriminative Bayesian Dictionary Learning (DBDL) [25], Joint Bayesian Discriminative 
Classifier (JBDC) [24], SRC [32], C-KSVD [16], D-KSVD [31], and FDDL [33]. We implemented the ap-
proach presented in JBDC [24] in Python and generated the results for comparison, as JBDC is also based 
upon Non-parametric Bayesian-based framework. However, we have presented reported results [24] of 
other approaches, seeing a big gap in their classification accuracy as compared to [24]. Gibbs sampling for 
the solution of our model is explained in Algorithm 1. We have abbreviated our approach by DBCL (Dic-
tionary based Bayesian Classifier Learning). We have observed significant improvement in the classifica-
tion accuracy as compared to other approaches. We present the detail and the outcomes of the experiments 
below. 
6.1 Face recognition 
For face recognition, we trained our model on Extended YaleB and AR database . 
6.1.1 Extended YaleB database 

This database was developed for 38 subjects with sufficient variations in illuminations and expres-
sions of the subjects and contains 2,414 images. We used the dataset file provided by [16] containing 504-
dimensional random face features extracted from 192 x 168 cropped face images [32]. We followed the 
protocol of experimentation of [24] i.e., training data contains randomly selected fifteen examples from 
each class, and the rest of the data is used as test data. We took the average of 10 experiments along with 
standard deviation to compare our results with other approaches. We report ±std dev (% accuracy with 
standard deviation), average training time for all training samples, and average recognition time for a test 
sample in Table 1. Our approach of learning the same representations obviously affects the performance 
of the classifier and a significant improvement in the results is noted here. Training time reduction is at-
tributed to training the same coefficients, as in the case of training different coefficients additional compu-
tation resources would increase the training time. 
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Table 1. Face recognition for Extended YaleB database . Note: Results are based upon 10 experiments and 
test time and train time are in milliseconds and minutes respectively 

Method Accuracy(%) Test Time Train Time 
LC-
KSVD [16] 

89.73±0.59 0.60 — 

D-
KSVD [31] 

89.77±0.57 0.61 — 

SRC [32] 89.71±0.45 50.19 — 
FDDL [33] 90.01±0.69 42.82 — 
DBDL [25] 91.09±0.59 1.07 — 
JBDC [24] 92.32±0.70 0.18 30.10 
DBCL 93.75±0.76 0.17 29.00 

 
6.1.2 AR face database 

This database was developed by capturing 26 photographs each of 126 persons at two different times 
to induce variations in facial disguise, illuminations, and expressions. Consequently, this database consists 
of over 4,000 face images. We use 540-dimensional random-face features provided by [16] that were ex-
tracted by projecting 165 x 120 cropped face images onto 540-dimensional vectors using a random projec-
tion matrix. We performed an experiment on 2,600 images consisting of 50 male and 50 female subjects. 
The training set is formed by randomly selecting seven images from each subject and the rest of the images 
were used for testing. We observe the same trend of increase in accuracy and reduction in training time in 
the results listed in Table 2 for AR Face database. The average dictionary size came out to be 697. 

 
Table 2. Face recognition for AR database. Note: The results are based on 10 experiments, and test time 
and train time are in milliseconds and minutes 

Method Accuracy (%) Test Time Train Time 
SRC [32] 84.60±1.37 59.91 — 
LC-KSVD [16] 85.37±1.34 0.91 — 
D-KSVD [31] 85.41±1.49 0.92 — 
FDDL [33] 85.97±1.23 50.03 — 
DBDL [25] 86.15±1.19 1.20 — 
JBDC [24] 88.90± 0.75 0.21 35.03 
DBCL 89.91 ± 0.58 0.16 34.20 

 
6.2 Object Classification 

Caltech-101 database [36] involves 101 categories of objects and consists of 9,144 image samples 
along with a class of background images. The size of each class varies from 31 to 800. 4096-dimensional 
feature vectors were extracted from the data by training the 16-layer deep convolutional neural networks 
for large-scale visual recognition [37]. Our experiment consists of six stages in which we randomly selected 
5, 10, 15, 20, 25, and 30 samples per class respectively for training data sets. The trend of our results contin-
ues here and the listed results in Table 3 clearly show significant improvement in accuracy as compared to 
other approaches. 
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Table 3. Object classification for Caltech-101 database with six stages consisting of randomly selected 5, 10, 
15, 20, 25, and 30 data points from each class for training sets respectively. Note: Accuracy is in percentage 
and training time (Tr. Time) is in minutes 

Training Samples→  5 10 15 20 25 30 
SRC [32] Accuracy 76.23 79.99 81.27 83.48 84.00 84.51 

 Tr. Time – – – – – – 

FDDL [33] Accuracy 78.31 81.37 83.37 84.76 85.66 85.98 

 Tr. Time – – – – – – 

D-KSVD [31] Accuracy 79.69 83.11 84.99 86.01 86.80 87.72 

 Tr. Time – – – – – – 

LC-KSVD [16] Accuracy 79.74 83.13 85.20 85.98 86.77 87.81 

 Tr. Time – – – – – – 

DBDL [25] Accuracy 80.11 84.03 85.99 86.71 87.97 88.81 

 Tr. Time – – – – – – 

JBDC [24] Accuracy 82.92 89.60 91.65 92.81 93.98 93.82 

 Tr. Time 18.00 50.53 100.32 120.11 150.03 250.33 

DBCL Accuracy 83.89 90.28 92.39 93.20 94.69 94.83 

 Tr. Time 11.12 35.12 80.57 100.43 133.86 200.00 

 
6.3 Scene categorization 

The Fifteen Scene Category database [38] involves fifteen natural scene categories and each image is 
of average size 250 × 300 of pixels. The number of samples for each category varies from 200 to 400. 
We used 3000-dimensional Spatial Pyramid Features of the samples provided by Jiang et al. [16]. For con-
structing the training data set, we randomly selected 50 samples from each category, and the remaining 
data was used for testing. We have reported the results of 10 experiments in Table 4. Our approach out-
performed other approaches. 
Table 4. Fifteen Scene Category database  based on ten experiments. Note: Test Time and Train Time are 
in milli seconds and minutes 

Method Accuracy (%) Test Time Train Time  
FDDL [33] 94.08±0.43 57.99 —  
D-KSVD [31] 95.12±0.18 0.58 —  
LC-KSVD [16] 95.37±0.28 0.59 —  
SRC [32] 95.41±0.13 78.33 —  
DBDL [25] 96.98 ± 0.28 0.71 –  
JBDC [24] 97.45 ± 0.28 1.33 37.22  
DBCL 98.10 ±0.08 0.66 30.11  

 
6.4 Action recognition 

We used action bank featured (processed data) [39] of UCF sports action database [40] for action 
recognition. The database consists of 150 clips @10𝑓𝑝𝑠 taken for 10 classes of varied sports actions. 
Our experiment consists of five Five-Fold group-wise cross-validations with different seed values for each 
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cross-validation. The model was trained and tested on 25 partitions and the mean recognition rates were 
reported in Table 5. The proposed approach outperformed as compared to other approaches. 
 
Table 5. Action recognition for Action bank features (Processed data) of UCF Sports Action database with 
five Five-fold cross validations experiment. Note: Test Time and Train Time are in milliseconds and 
minutes 

 

Method Accuracy (%) Test Time Train Time  
JBDC [24] 93.43 ± 4.37 15.44 30.32  

DBCL 95.00 ±1.75 4.98 15.00  

 
7. Discussion 

Prominent feature of our approach is training the same representation coefficients for training exam-
ples and the corresponding labels. Consequently, we gain the classification accuracy as compared to the 
previous approaches. The results support our claim of improvement in the accuracy. Additionally, our 
model also gives an additive advantage of improvement in training time in conjunction with the improve-
ment in classification accuracy. Our approach frees computational resources that would have been engaged 
in learning different coefficients at classifier level, resulting in saving training time. We tuned the hyperpa-
rameters of our model in conjunction with the theoretical background mentioned in [24]. Accordingly, we 

conclude	0 < 𝑎6, 𝑏6 < 𝑚𝑖𝑛
'
|𝐼'|. Mathematically, 𝑁 → ∞ for initialization of dictionary, but 𝐾 > 𝑁 is large 

enough to serve the same purpose for initialization of the size of the dictionary and the classifier. Eventu-
ally, number of dictionary atoms decreases to less than N as the result of dictionary atoms pruning during 
iterations of the Gibbs sampler. Higher values of 𝜆8 and 𝜆= induce precision in the data and label repre-
sentation, suiting our data because most of the data is clean. As we saw in the case of UCF dataset, we set 
these values at 10P due to the availability of a very small size of data. We observed that the value of 𝜆;' =
1 remains almost equal to 1 that was set to initialize this parameter. We also observed that values of 𝜆= 
and 𝜆8 remain around initial values during training. However, we have observed convergence issues in 
case 𝜆= and 𝜆8 are initialized with smaller values. 
 
8. Conclusion 

We used Gibbs sampler as inference algorithm to learn the posterior parameters of our model. The 
Gibbs sampling is a robust technique to solve probabilistic models mostly used by the majority of authors. 
Due to introduction of a new idea of learning same representation coefficients, the results are found to be 
improved as compared to other state-of-the-art approaches. Learning different representations for training 
examples and the corresponding labels, but using the representation of the test sample computed over the 
dictionary is not intuitively convincing. Therefore, the improvement in the results is attributed to the learn-
ing of the same representations for data samples and the corresponding labels. As an added advantage, we 
also achieved a gain in training time, because of the reduction of the computational cost by learning one 
set of coefficients for the representation of data and the corresponding labels at the dictionary and the 
classifier learning stages. Moreover, the formulation of the problem in Bayesian settings enables us to use 
the robust optimization algorithm i.e., Gibbs sampler for solving probabilistic Bayesian networks in an 
efficient way. 
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