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Abstract: Skin cancer is increasingly common worldwide, with melanoma and basal cell carcinomas 
being the primary subtypes, responsible for most of the related deaths. Therefore, screening for early 
identification and classification is essential for proper treatment, a task achievable through deep 
learning techniques. While numerous studies have addressed this problem domain, challenges such 
as limited accuracy, deployment on edge devices, computational costs, execution times, and manual 
feature extraction procedures persist. In this research work, a novel deep learning architecture is 
proposed to address these issues. Three pre-trained deep learning architectures are utilized namely 
VGG-16, VGG-19, and ResNet-50, through transfer learning to develop a composite model named 
"Multi-Model Fusion for Skin Cancer Detection (MMF-SCD)". A composite feature vector is 
generated by these CNN models and passed through a final dense layer with a SoftMax activation 
function for skin cancer classification. Adam optimization algorithm is applied. TensorFlow and 
Keras libraries are employed to develop MMF-SCD model. Rectified linear unit is applied as an 
activation function for the output of convolutional layers of MMF-SCD. This model is developed on 
Jupyter notebook using open-source web platform namely google Collaboratory in python 
programming language. The dataset, retrieved from public dataset repository, consists of seven of 
the most common skin cancer diseases: actinic keratosis, basal cell carcinoma, dermatofibroma, 
melanoma, nevus, pigmented benign keratosis, and vascular lesion. MMF-SCD has demonstrated 
significantly improved accuracy compared to previous studies, achieving an accuracy gain of 97.6%. 
 
Keywords: Classification, Deep learning, transfer learning, skin cancer, VGG-16, VGG-19, ResNet-
50, multi-model fusion. 

 
1. Introduction 
    Skin cancer is a global health challenge characterized by the uncontrollable growth of abnormal skin 
cells, with melanoma being the deadliest form, emphasizing the critical importance of early detection and 
accurate diagnosis [1]. Traditional methods, including Dermoscopy and biopsies, have limitations, prompt-
ing the exploration of innovative solutions [2]. Although Artificial Intelligence (AI) has emerged as a prom-
ising tool in healthcare, many AI studies in skin cancer detection have grappled with the issue of false 
diagnoses [3]. Dermatologists face challenges in accurately distinguishing between malignant and benign 
lesions due to their visual similarities [4]. Dermoscopic images have been used in various studies for skin 
cancer classification [5]. Existing literature has explored various techniques, including machine learning 

https://www.kaggle.com/datasets/gabrielmv/skin-cancer
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algorithms and deep learning models [6] like Convolutional Neural Networks (CNN), to enhance skin 
cancer classification accuracy [7]. However, these studies often encounter obstacles related to data scarcity 
and computational resources [8], [9]. Achieving a robust and generalized deep learning model with a lim-
ited dataset remains a challenge, considering the intricate visual resemblances between different types of 
skin cancers and the subtle variations within the same type. Transfer learning based on deep learning tech-
niques have resulted efficient performance for skin cancer diagnosis [10]. Major skin cancer types are ac-
tinic keratosis (ACK), basal cell carcinoma (BCC), dermatofibroma, melanoma, nevus, pigmented benign 
keratosis, and vascular lesion. ACK is a keratosis lesion that develops on adult skin repeatedly exposed to 
light. It appears as a dry, rough, and sometimes pigmented lesion of varying thickness and size [11]. BCC 
often originates in the deepest layer of the skin's epidermis, where basal cells are located [12]. Dermatofi-
broma belong to the group of cancers caused by the accumulation of various cell types in the skin's dermis 
layer. They are typically 2-3 mm (about 0.12 in) in size, have a purplish-brown color, possess a firm struc-
ture, and feel uncomfortable to the touch [13]. Melanoma skin cancer is serious. It starts in the skin and can 
spread to other parts of the body. They might also itch, bleed, and get bigger compared to regular moles 
[13]. Melanocytes are special cells in the skin that make pigment. Sometimes, they can form a lump called 
nevus pigmentosus, which can look like a birthmark or mole [13]. Pigmented benign keratosis represents 
common and harmless skin growth. These growths encompass lichenoid keratosis, seborrheic keratosis, 
and solar lentigo found on the back, chest, head, and neck, and they have a light skin-colored brown or 
black appearance [14]. Vascular lesion refers to an abnormal gathering or formation of blood vessels on or 
within the skin. These lesions can exhibit various appearances, such as hemangiomas, port-wine stains, 
and birthmarks resulting in visible pink, red, or purple discolorations on the skin's surface [15]. 
    This study aims to consolidate the existing knowledge in the development of an automatic skin cancer 
classification system, delving deep into recent advancements and challenges faced by researchers [16]. The 
proposed research investigates the feasibility of building a high-accuracy deep learning model despite the 
constraints posed by a limited dataset [8], [9]. To achieve this, the study merges features extracted from 
multiple CNN-based architectures; implements transfer learning techniques, and optimize various model 
parameters [7]. In this context, the significance of this work lies in its potential to significantly impact the 
field of dermatology [7]. A successful automated system would alleviate the burden on healthcare profes-
sionals, enabling more individuals to undergo routine screenings efficiently [4]. The contribution of this 
research lies in its innovative approach to merging deep learning models, addressing the challenges of 
limited data, and striving for improved accuracy in skin cancer classification [16]. 
    The dataset for this study comprises dermoscopic images, and the methodology involves implement-
ing a composite model using a deep learning architecture [16]. This novel approach aims to minimize false 
predictions and enhance the efficiency of feature extraction algorithms [7]. The significance of this work 
offers a practical solution to a critical healthcare challenge [16]. 
    The organization of this paper encompasses a detailed exploration of existing literature, highlighting 
the limitations of previous studies [4]. The subsequent sections delve into the methodological analysis, 
experimental results, and findings, providing a comprehensive overview of the research process and out-
comes [4]. This structured approach ensures a thorough examination of the problem and the proposed 
solution, contributing valuable insights to the field of skin cancer detection and classification [16] [7]. 
 
2. Literature Review 
    The rapid advancements in deep learning and convolutional neural networks (CNNs) have sparked 
significant progress in the automated detection and classification of skin cancer. These developments are 
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crucial for early diagnosis and effective treatment. Researchers have explored diverse datasets, such as 
HAM10000 and ISIC 2020, aiming to classify a wide range of skin lesions including melanoma, basal cell 
carcinoma, squamous cell carcinoma, and nevi. Utilizing innovative methodologies and deep learning 
techniques, these studies have demonstrated the potential to transform dermatological diagnosis, offering 
substantial support to healthcare professionals. 
    The study by Sevli et al. [15] centered on the use of a Convolutional Neural Network (CNN) to classify 
several types of skin lesions with remarkable accuracy, achieving 91.51%. Compared to prior research, this 
CNN model demonstrated superior performance. Dermatologists evaluated the model, confirming its abil-
ity to diagnose skin lesions with 90.28% accuracy in practical scenarios. Furthermore, in the second phase, 
the model corrected dermatologists' misdiagnoses by 11.14%, emphasizing its potential to enhance the pre-
cision and efficiency of skin cancer diagnosis. The study by Gouda et al. [16] main goal is to use intelligent 
systems for categorizing skin diseases, considering the challenges posed by skin texture and the visual 
resemblance between different conditions. They worked with a dataset of 25,331 clinical-skin disease im-
ages spanning eight categories, using advanced techniques like Residual Neural Network (ResNet). The 
result was an impressive 92% accuracy in diagnosing different skin lesions, offering valuable support to 
dermatologists for early and precise disease identification and treatment planning. Javaid and colleagues 
[17] presented a novel method that combines image processing and machine learning to classify and seg-
ment skin lesions into non-cancerous or cancerous categories. It employs feature extraction techniques such 
as HOG and GLCM, OTSU thresholding, and contrast stretching. Dimensionality reduction via PCA and 
class imbalance handling with SMOTE are used. The authors introduce a unique wrapper-based feature 
selection method and evaluate various classification algorithms, with Random Forest (RF) achieving the 
highest accuracy of 93.89% on the ISIC-ISBI 2016 dataset, presenting the effectiveness of their approach in 
enhancing skin lesion classification and segmentation. 
    This study [18] evaluated the performance of a convolutional neural network (CNN) in classifying 
clinical images of pigmented skin lesions, comparing it with dermatologists. They collected a dataset of 
5846 images from 3551 patients and trained an FRCNN model, achieving 86.2% accuracy in six-class clas-
sification and 91.5% accuracy in distinguishing benign from malignant lesions. The FRCNN model outper-
formed dermatologists and holds the potential for improving skin cancer prognosis when implemented in 
clinical practice. This study [19] aimed to enhance skin cancer recognition using deep learning and develop 
a mobile application. They reviewed medical knowledge on skin cancer and recent research, then tested 11 
CNN architectures on the HAM10000 dataset with seven skin lesion classes, achieving the best results with 
DenseNet169, which had an accuracy of 92.25%, recall of 93.59%, and F1-score of 93.27%. They also created 
an Android app for two-class skin lesion classification (benign or malignant) and provided sun exposure 
recommendations based on UV radiation, skin type, and sunscreen use, marking a significant advancement 
in skin cancer diagnosis and user awareness. 
    Convolutional neural network (CNN) is a sub-field of deep learning; it has gained success in various 
domains of life including medical image diagnosis. It is being applied in computer vision-based tasks and 
has effective results in image recognition and segmentation [20]. CNN is an efficient tool that automatically 
extracts relevant features (edges, shapes, color, texture) by employing its hidden layers (convolutional & 
pooling), it has also ability to extract complex patterns and features from image, audio, and video data due 
to implementation of ReLU (Rectified linear unit) non-linearity. The architecture of CNN consists of vari-
ous convolutional and pooling layers. The major layers of this network are convolutional and pooling fol-
lowed by dense layers.  
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    Due to the automatic feature extraction, classification, and identification characteristics, CNN has 
gained remarkable achievement in the deep learning domain for applied studies in medical image analysis. 
An automated CNN-based skin lesion classification approach was proposed in the study [21]. The author 
applied three pre-trained CNN algorithms named: ResNet18, vgg16, and ALexNet using a transfer learn-
ing approach for deep feature extraction. These features were then used to train the model and classify 
them using a machine learning classifier support vector machine (SVM) on the ISIC 2017 skin cancer image 
dataset which resulted in an average accuracy rate of 90%.  
    A technique for classifying 12 skin lesions was proposed by Mendes et al. [22] using the CNN-based 
architecture ResNet-152 algorithm. The dataset consists of 3,797 digital images of skin lesions. This pro-
posed technique resulted in 90% and 96% AUC for basal cell lesions and melanoma, respectively. The data 
augmentation technique was applied to the dataset and testing was conducted for the evaluation of the 
model. This study [63] aimed to develop a rapid skin cancer classification system using deep CNN and an 
ECOC SVM. They collected RGB images of skin cancers from the internet and pre-processed them to re-
move noise. By employing a pre-trained AlexNet for feature extraction and an ECOC SVM for classifica-
tion, the system achieved high accuracy, with the best results for squamous cell carcinoma (95.1%) and 
actinic keratosis (98.9%), while the lowest values were observed for basal cell carcinoma (91.8%), squamous 
cell carcinoma (96.9%), and melanoma (90.74%).  
    The study [23] focuses on improving dermatological diagnosis accuracy and presents a MATLAB-
based system for identifying and classifying skin lesions as normal or benign. They utilized the K-nearest 
neighbor (KNN) approach for its efficiency and achieved an outstanding classification accuracy of 98%, 
addressing the need for quick and reliable diagnoses in dermatology. The primary aim of this research 
work by Murugan et al. [24] is the segmentation and classification of skin lesions. The methodology em-
ployed watershed segmentation to partition these lesions, extracting various features such as shape, the 
ABCD rule, and GLCM (Gray Level Co-occurrence Matrix) from these segmented areas. Subsequently, the 
study utilized three distinct classifiers: kNN (k Nearest Neighbor), Random Forest, and SVM (Support 
Vector Machine) for lesion classification. Notably, among these classifiers, the SVM classifier demonstrated 
superior performance in accurately classifying skin lesions with an accuracy rate of (89%) while KNN (69%) 
and RF (76%) had low performance. 
    The research by Nie et al. [24] introduces the You Only Look Once (Yolo) algorithms, utilizing Deep 
CNNs to detect melanoma. V1, V2, and V3 are the variants of the Yolo algorithms, which resize input 
images and split them into cells. By considering the object's position within a cell, the network predicts 
both the object's bounding box and class confidence score. The study achieves a mean average precision 
(mAP) of over 0.82 with only a 200-image training set, highlighting its effectiveness in lightweight systems 
for melanoma detection. In another study, Nie et al. [9]  provokes the problem of insufficient data for 
effectively classifying melanoma using Deep Convolutional Neural Networks (DCNNs) within Swedish 
hospital surroundings. To address this issue, the paper recommends implementing K-Fold cross-validation 
in combination with a DCNN algorithm and utilizing Vgg16 for feature extraction. The outcomes demon-
strate a significant enhancement in predictive accuracy when dealing with small skin cancer datasets. 
Through experiments utilizing 760 training images and a 5-Fold cross-validation approach, the study pro-
duced five models that achieved an accuracy rate of 63.35% when applied to new images. 
    The study by Atta et al. [25], proposed a robust methodology for the classification of skin cancer. The 
dataset consists of 3600 images, each sized at 224 x 224 pixels, and is divided into two classes: Malignant 
and benign, with each class containing 1800 images. To establish a reliable classification system, a 
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Convolutional Neural Network augmented with fully connected layers was utilized. Remarkably, the 
model achieved a significant accuracy of 86.23% while keeping computational efficiency integral.  
    In the study by Akter et al. [26], various deep-learning models are utilized to categorize skin lesions, 
specifically for distinctive skin cancer from other types of skin abnormalities. The study involves prepro-
cessing and augmenting data from the HAM10000 dataset, which encompasses seven diverse classes of 
skin lesions. These models encompass Convolutional Neural Networks (CNN) as well as transfer learning 
models namely Xception, Densenet, Mobilenet, Resnet-50, VGG-16, and Inceptionv3, achieving accuracy 
rates ranging from 77% to 90% in detecting skin cancer. Besides, the study explores the use of stacking 
models, but it observes that their performance is comparatively lower, with the highest accuracy among 
them reaching 78%.  
    Tahir et al. [27] introduced a novel deep learning-based skin cancer classification network called 
DSCC_Net and assessed its performance on three standard datasets (ISIC 2020, DermIS, and HAM10000). 
DSCC_Net achieves remarkable results, including a 94.17% accuracy, 99.43% AUC, 94.28% precision, 
93.93% F1-score, and a 93.76% recall when classifying four types of skin cancer (basal cell carcinoma, mel-
anoma, squamous cell carcinoma, and Nevus). Comparative analysis against six established deep networks 
highlights DSCC_Net's superiority, highlighting its potential to assist dermatologists and healthcare pro-
fessionals in accurately diagnosing skin cancer.  
    The primary objective of the research by Mridha et al. [28] was to develop strong deep-learning models 
capable of effectively classifying skin cancer while tackling class imbalance issues and offering transpar-
ency in decision-making. The study also introduced a comprehensive healthcare system accessible via an 
Android app. Utilizing the HAM10000 dataset; the researchers fine-tuned a CNN model with various func-
tions. Furthermore, they devised an Explainable Artificial Intelligence (XAI) system employing Grad-CAM 
and Grad-CAM++ to explain the model's decision process. This innovative system achieved an 82% accu-
racy in classifying skin cancer, with a minimal 0.47% loss accuracy, thereby aiding physicians in early-stage 
skin cancer diagnosis. 
    The effectiveness of ResNet50, Support Vector Machines (SVM), and MobileNet is assessed by Mam-
pitiya et al. [29] for classifying the HAM10000 skin cancer dataset, encompassing seven cancer types. SVM 
incorporates the Synthetic Minority Oversampling (SMO) method and Histogram of Oriented Gradient 
(HOG) features with Principal Component Analysis (PCA) for dataset balancing. Furthermore, six tradi-
tional machine learning approaches are compared, using F1 Score, accuracy, precision, and recall as eval-
uation matrices. The findings highlight SVM's outstanding performance, achieving an impressive accuracy 
rate of 99.15%.  
    In the research by Polat et al. [30], two approaches are introduced for the automated classification of 
skin diseases: a self-contained Convolutional Neural Network (CNN) model and a strategy combining 
CNN with one-versus-all classification. No preprocessing methods were utilized; instead, the raw derma-
tology images were directly utilized in training and testing the CNN. The standalone CNN achieved a 77% 
accuracy in classifying seven skin disease categories, while the combined CNN and one-versus-all ap-
proach demonstrated outstanding performance with an impressive accuracy of 92.90%. HM10000 skin can-
cer public dataset with seven categories named: Vascular lesions, Actinic keratosis, Basal cell carcinoma, 
Dermatofibroma, Melanoma, Benign keratosis, and Melanocytic type was utilized for training of models. 
    In this investigation by Ratul et al. [31], dilated convolution in deep learning is examined for its ability 
to enhance accuracy without adding computational complexity, in contrast to conventional CNN methods. 
The study applied transfer learning to four widely used architectures (MobileNet, VGG-16, VGG-19, and 
InceptionV3) using the HAM10000 dataset, which comprises 10,015 dermoscopic images across seven skin 
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lesion categories, presenting class imbalances. The achieved top-1 accuracy on dilated versions of these 
architectures ranged from 85.02% to 89.81%. Particularly, Dilated InceptionV3 exhibited the highest classi-
fication accuracy, recall, precision, and f-1 score, outperforming other approaches for skin lesion classifica-
tion on this complicated dataset characterized by class imbalances. 
    The research by Rashid et al. [32] presents an innovative deep transfer learning approach employing 
MobileNetV2 for melanoma classification, differentiating between malignant and benign skin lesions. The 
model's effectiveness is evaluated on the ISIC 2020 dataset, which exhibits a significant class imbalance, 
with less than 2% malignancies. To moderate this imbalance and improve dataset variety, various data 
augmentation methods were employed. The proposed method, applied to the ISIC-2020 challenge dataset, 
attains an impressive diagnostic accuracy of 98.2%, highlighting its effectiveness in skin cancer classifica-
tion. 
    In the tapestry of scientific discovery, Ali et al. [33] have woven a masterpiece: a Deep Convolutional 
Neural Network (DCNN) model. Like a skilled artist, it delicately refines, reducing noise, harmonizing 
colors, and chiseling features. With a sprinkle of magic, it multiplies its data, enhancing its vision. This 
enchanted dance boosts accuracy, painting the world of skin lesion classification in vibrant hues. The per-
formance of the DCNN model is evaluated against several transfer learning models, including AlexNet, 
ResNet, VGG-16, DenseNet, and MobileNet, using the HAM10000 dataset. The results demonstrate the 
proposed model's excellence, achieving impressive training and testing accuracy rates of 93.16% and 
91.93%, respectively. A fine-tuning method is applied to the pre-trained Xception model by Moataz et al. 
[34] for classifying skin lesions. Additional layers are incorporated into the Xception model, and all model 
weights are retrained. This fine-tuning process is carried out using the HAM10000 dataset with seven clas-
ses, and data imbalance is mitigated through augmentation. Comparative assessments showcase the effec-
tiveness and dependability of the proposed model, which achieves an impressive 96% accuracy in discern-
ing various skin cancer classes when working with a balanced dataset. 
    An innovative automated method is introduced by Saba et al. [35] for detecting and recognizing skin 
lesions, employing a deep convolutional neural network (DCNN). The approach consists of three key 
stages: enhancing contrast using HSV color transformation and fast local Laplacian filtering (FlLpF), ex-
tracting lesion boundaries through a color CNN with XOR operation, and performing comprehensive fea-
ture extraction via transfer learning with the Inception V3 model. Feature fusion is achieved using the 
hamming distance (HD) approach, and an entropy-controlled feature selection method is introduced for 
selecting relevant features. The method's performance is assessed on the PH2, ISBI 2016, and ISBI 2017 
datasets having benign and malignant dermoscopic images, resulting in impressive accuracies of 98.4%, 
95.1%, and 94.8%, respectively, surpassing existing methods. The summary of current literature is pre-
sented in Table 1. 

Table 1. Related Work Analysis 
Article/Ref Dataset Contribution/Method Results/Finding Weakness/Limitations 

[22] 1470 images 

Data augmentation, CNN 
based ResNet-152 
algorithm 

AUC (BC: 91%, 
melanoma: 96%) 

Limited representation of 
benign lesions, lack of 
diversity 

[36] 

3,753 
dermoscopic 
images 

CNN feature extractor and 
SVM classifier 

Accuracies: BSS 
(94%), SCC 
(95%), AK (98%) 

Class imbalance, limited 
scalability 
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[23] 100 images 
KNN, MATLAB 
classification 98% accuracy 

Small dataset, restricted 
lesion categories 

[24] Not specified 

Watershed segmentation, 
GLCM, ABCD rule, 
SVM, KNN, RF 
classifiers 

89% accuracy 
from SVM 

Limited scalability, class 
imbalance 

[8] 200 images 
Yolo V1, V2, V3, deep 
CNN mAP: 0.82 

Small training set, 
potential over fitting 

[9] 

 
 1000 images 

Deep CNN, K-fold cross-
validation, Vgg16 for 
feature extraction 

63% accuracy at 
100 epochs 

Limited accuracy on new 
data, class imbalance 

[25] 3600 images 

CNN for feature 
extraction and fully 
connected layers 86.23% accuracy 

Computational efficiency 
not specified 

[26] 

10,015 
dermatoscopy 
images 

Xception, Densenet, 
Mobilenet, Resnet-50, 
VGG-16, Inceptionv3, 
CNN 

90% maximum 
accuracy 

Limited interpretability of 
deep models 

[27] 

ISIC 2020, 
DermIS, 
HAM10000 DSCC_Net, deep learning 94.17% accuracy 

Lack of explanation of 
model decisions 

[28] 
 

HAM10000 
dataset 

Deep learning, Android 
app, fine-tuning of CNN, 
Explainable AI 82% accuracy 

Limited validation in real-
world clinical settings 

[29] HAM10000 
ResNet50, SVM, 
MobileNet 99.15% accuracy 

Class imbalance not 
addressed 

[30] HM10000 
Automated classification, 
CNN Accuracy: 92.90% 

Lack of detailed 
methodology description 

[31] HAM10000 
MobileNet, VGG-16, 
VGG-19, InceptionV3 

89.81% accuracy 
rate 

Limited discussion on 
computational efficiency 

[32] 
ISIC 2020 
dataset MobileNetV2 Accuracy: 98.2% 

Class imbalance and 
dataset variety issues 

[33] HAM10000 

Deep CNN, AlexNet, 
ResNet, VGG-16, 
DenseNet, MobileNet 

Training: 93.16%, 
Testing: 91.93% 
accuracy 

Limited transparency in 
model decisions 

[34] HAM10000 
Xception model, 
augmentation of images 96% accuracy 

Small dataset, potential 
over fitting 

[35] 

PH2, ISBI 2016, 
ISBI 2017 
datasets CNN, Inception V3 

Accuracy ranges: 
94-98% 

Limited discussion on 
generalizability to diverse 
datasets 

 
3. Proposed Methodology 
    The workflow architecture of proposed study is presented in Figure 1 for skin cancer classification. A 
public dataset ISIC is employed for experiment of this study. This dataset is split into two portions. Train 
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set is 80% of dataset, whereas remaining is 20% of dataset is for validation set. This image data consists of 
dermoscopic skin lesions that undergo pre-processing steps named: resizing and rescaling. Data 
augmentation is conducted using ImageDataGenerator function based on keras for training proposed CNN 
model. Three CNN algorithms: VGG-16, VGG-19, and ResNet-50 are applied for feature extraction by 
means of transfer learning approach. Then these features (feature set of each algorithm) are combined to 
generate a final feature matrix. Nadam is utilized as optimization algorithm for training of model. A 
composite model “Multi-Model Fusion for Skin Cancer Detection (MMF-SCD)” is developed using features 
of these three algorithms and then trained on intended dataset. Classification is performed using fully 
connected layers with SoftMax activation function. 

    
Figure 1. Proposed methodology block diagram showing major steps of this study namely: input dataset, 
data augmentation and division, image pre-processing, feature extraction and optimization, and model 

predictions. 
    The proposed methodology consists of various steps as shown in Figure 1. These steps of this proposed 
methodology are explained in the next sections. Skin cancer ISIC dataset is accessed and data augmentation 
technique is applied on them. Then whole dataset is divided into training, validation and testing sets. 
Image pre-processing techniques are applied that includes reshape/resizing and rescaling. A composite 
model “MMF-SCD” is designed and three deep learning based CNN models named: VGG-16, VGG-19, 
and ResNet-50 are utilized for feature extraction during model training process. These features are then 
optimized and classification of skin cancer diseases is conducted using fully connected/dense layers by 
utilizing SoftMax activation function, so model can make predictions. 
3.1 Dataset augmentation and division 
    The ISIC dataset for skin cancer classification employed in this study is publically accessible and 
available at Kaggle website named: Skin Cancer [37]. It consists of seven skin cancer lesions named: actinic 
keratosis, basal cell carcinoma, dermatofibroma, melanoma, nevus, pigmented benign keratosis, and 
vascular lesion. In the next phase, data augmentation is applied by utilizing an image data generator 
technique from TensorFlow to increase the number of dermoscopic skin cancer images. This approach 
augments both the training and validation datasets in real-time during the MMF-SCD model's training 
phase, eliminating the need for pre-processing. Through the augmentation phase, this method generates a 
diverse set of images with the objective of preventing from overfitting and enhancing the model's ability 
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to accurately classify skin cancer diseases. The parameters name and their values set during data 
augmentation are presented in Table 2.  

Table 2. Data augmentation parameters and their description 
No. Name Value Description 

1 Rotation range 20 The degree of random rotation for each 
image is set to 20. 

2 Fill mode Nearest This mode is set to nearest to fill the 
spaces created during rotation of images.  

3 Width shift range 0.2 Value is set to 0.2 to control the range of 
horizontal shift of images.  

4 Vertical flip True All the images are flipped in vertical 
manner. 

5 Horizontal flip True All the images are flipped in horizontal 
manner 

6 High shift range 0.2 Value is set to 0.2 to control the range of 
hight shift of images. 

 

    The details of these images are presented in Table 3. Total number of images in training and validation 
are 8,512 and 1,503 respectively as shown in Figure 2 as bargraph.   

  Table 3. Class distribution of Images 

Disease Name Distributions for training Distributions for 
validation  

Actinic keratosis 278 49 

Basal cell carcinoma 437 77 

Dermatofibroma 98 17 

Melanoma 946 67 

Nevus 5,699 100,6 

Pigmented benign keratosis 934 165 

Vascular lesion 120 22 

    The objective of this division is to enhance and assess the model's performance. The training dataset 
is employed to train the proposed MMF-SCD model with its biases and weights being adapted during the 
learning phase to reduce misclassifications. On the contrary, the validation dataset is distinct and used to 
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optimize the MMF-SCD's hyperparameter settings, such as the learning rate. Its primary purpose is to 
prevent overfitting and evaluate the model's ability to generalize during the training process. 
 

 

Figure 2. Dataset division 

    The dataset images are divided into two main portions. A large number of images (8512) are allocated 
for training and (1503) images are kept for validation. A small number of images (141 in count) are kept 
separate for testing purpose after model development (training and validation) process.  
3.2 Data pre-processing 
    Image preprocessing plays a vital role in enhancing image quality and streamlining dataset 
manipulation by eliminating noise and anomalies. Within this study, the dataset comprised more than 
10,000 dermoscopic skin cancer images, each with varying resolutions. Given that all images surpassed the 
resolution of 224 × 224, it became necessary to pinpoint the region of interest (skin lesion) and eliminate 
any extraneous elements from each image as shown in figure 3. All images of dataset are pre-processed by 
advanced two methods: resizing and rescaling to make them uniform and reduce computational 
complexity by employing TensorFlow and Keras based procedures.   

                

             600x450                        224x224 

Figure 3. Resizing process of images, the actual dimensions of images are 600x450 whereas resized 
dimensions are 224x224 to meet the model requirement 

    The original size is 600x450 in dimensions which is resized by down-sampling method to 224x224 as 
shown in Figure 3. By resizing process, all the images have same dimensions which help MMF-SCD to 
efficiently perform and result in improved high generalization ability.  
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    The next step is rescaling, in this every pixel of image is rescaled from original range of 255 to 0-1 by 
dividing them to 255. Presume img is the input image, the rescaled image is acquired as follows: 

                          𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑_𝑖𝑚𝑎𝑔𝑒 = !"#
$%%

                            (1) 

3.3 Feature extraction 
    Three models are applied for features extraction [38] namely: VGG-16, VGG-19, and ResNet-50. These 
models are explained in the following along with their fundamental layers. 
3.3.1 VGG-16 Model 
    The VGG-16 [39] was trained on an extensive dataset containing more than a million images sourced 
from ImageNet. It comprises a total of 19 layers and possesses the capability to categorize images into 1000 
distinct classes, including a wide range of categories including animals, as well as everyday objects such 
as computers, chairs, and pencils. The network has acquired the ability to generate diverse and 
comprehensive feature representations that are well-suited for effective skin cancer dermoschopic image 
classification. For image analysis using this network, the input skin cancer image must follow to a fixed 
shape of [224, 224, 3], equivalent to 224x224 pixels, with the number 3 indicating the presence of RGB 
channels. The only required preprocessing step involves subtracting the mean RGB value from each pixel 
throughout the entire training dataset. 
    During the 2014 ILSVR (ImageNet) competition, VGG16, a CNN architecture featured in the 
illustration, secured victory. This design has gained acclaim as one of the most exceptional vision model 
architectures ever devised. VGG16 stands out for its focus on 3x3 filter convolution layers with a stride of 
1, as well as its consistent utilization of 2x2 filter stride 2 for max pooling and padding layers. The 
architecture maintains an even distribution of convolution and max pool layers [40]. Finally, seven dense 
layers with SoftMax as the activation function are introduced. VGG16 consists of 16 layers with varying 
weights. This model, in integrated with VGG-19 and ResNet-50, to accurately classify the type of skin 
cancer. 
• A reduced network size. 
• High computing speed. 
• This model applies incremental learning for improved classification ability, fast computation, and 

decrease deprivation. 
3.3.2 VGG-19 Model 
    This model is the extension of VGG-16 and introduced in 2014 by Simonyan and colleagues [44]. The 
architecture of this model is based on Convolutional networks (ConvNet). It consists of 19 layers which are 
organized stacks convolutional layer, pooling layer, and fully connected/dense layer. In this research work, 
this model is utilized as feature extractor from skin cancer image dataset. This pre-trained model is fine-
tuned. Seven fully connected layers are added for our dataset on the top of this model. 
3.3.3 ResNet-50 Model 
    Due to the skin cancer dataset's significantly limited number of labeled images in comparison to the 
ten million labeled images found in ImageNet, the training of deep CNN models for skin cancer 
classification becomes a challenging task, resulting in reduced accuracy in model estimations. Nevertheless, 
implementing the capabilities of transfer learning allows us to achieve robust performance with deep CNN 
models that were originally trained on ImageNet, even when opposed with small datasets in diverse 
domains, such as automated medical image analysis, including the detection of skin cancer from 
dermoscopic images. In this research, we actively employ the ResNet-50 model [39], pre-trained on 
ImageNet, for the purpose of skin cancer classification. As its depth increases, ResNet-50 rapidly achieves 
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higher accuracy. Due to ResNet-50's outstanding classification capabilities and its ability to extract robust 
features from images, we hypothesize that the feature extraction layers within ResNet-50 will excel when 
applied to medical image classification. A pivotal component of ResNet-50 is the use of residual blocks (RB) 
as shown in figure 4. RB relies on the concept of employing shortcut connections to bypass specific 
convolutional layers. These techniques play a critical role in enhancing training parameters during error 
backpropagation, effectively tackling the challenge of vanishing gradients. Therefore, this facilitates the 
development of deeper CNN structures, ultimately resulting in improved performance in skin cancer 
classification. These residual blocks are composed of multiple convolutional layers (Conv), batch 
normalizations, ReLU activation functions (BN), and a single shortcut. Suppose f is non-linear function in 
RB for convolutional path, then output is computed as follows: 

			y = f(x) + x                                      (2) 

 

 

 

 
 
 
 
 
 
 
Figure 4. Residual block (RB): A building block of ResNet-50 representing X as input and then processed 

by ReLU [39]. 
    Several RB blocks are applied in this model as published in [39] and applied in this research work for 
extracting features from skin cancer dataset. All of these models (ResNet-50, VGG-16, and VGG-19) are 
applied to extract features from skin cancer dataset. These features are then combined to generate a 
composite feature vector. 
3.3.4 Layers for feature extraction 
    The MMF-SCD model consists of various layers namely: input layer, convolutional layer, activation 
layer, max-pooling layer, flatten and dense layers. A stack of these layers is utilized to build the model. 
These layers are defined in the table 4 and 5 as follows: 

Table 4. Layered architecture of VGG-16 representing stack of neural network layers is sequence. 

VGG-16 Layers Input/output Shape of input/out-
put 

Convolution Input (None,224x224x3) 
Convolution2D  Output (None,224x224x64) 
Convolution  Input (None,224x224x64) 
Convolution2D  Output (None,224x224x64) 
pooling  Input (None,224x224x64) 
Maxpoolinging2D  Output (None,112x112x64) 
Convolution Input (None,112x112x64) 
Convolution2D  Output (None,112x112x128) 
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Convolution Input (None,112x112x128) 
Convolution2D  Output (None,112x112x128) 
 pooling  Input (None,112x112x128) 
Maxpoolinging2D  Output (None,56x56x128) 
Convolution  Input (None,56x56x128) 
Convolution2D  Output (None,56x56x256) 
Convolution  Input (None,56x56x256) 
Convolution2D  Output (None,56x56x256) 
 Convolution  Input (None,56x56x256) 
Convolution2D  Output (None,56x56x256) 
 pooling  Input (None,56x56x256) 
Maxpoolinging2D  Output (None,28x28x256) 
 Convolution  Input (None,28x28x256) 
Convolution2D  Output (None,28x28x512) 
 Convolution  Input (None,28x28x512) 
Convolution2D  Output (None,28x28x512) 
 Convolution  Input (None,28x28x512) 
Convolution2D  Output (None,28x28x512) 
 pooling  Input (None,28x28x512) 
Maxpoolinging2D  Output (None,14x14x512) 
 Convolution  Input (None,14x14x512) 
Convolution2D  Output (None,14x14x512) 
 Convolution  Input (None,14x14x512) 
Convolution2D  Output (None,14x14x512) 
 Convolution  Input (None,14x14x512) 
Convolution2D  Output (None,14x14x512) 
 pooling  Input (None,14x14x512) 
Maxpoolinging2D  Output (None,7x7x512) 
flatten 1 Input (None,7x7x512) 
Flatten  Output (None,25088) 
Dense 2  Input (None,25088) 
Dense  Output (None,7) 

   
   Table 5. Layered architecture of VGG-19 representing stack of neural network layers is sequence. 
     VGG-19 Layers   Input/Output      Shape of input/output 

Convolution  Input (None,224,224,3) 
Convolution2D  Output (None,224x224x64) 
Convolution  Input (None,224x224x64) 
Convolution2D  Output (None,224x224x64) 
 pool  Input (None,224x224x64) 
MaxPooling2D  Output (None,112x112x64) 
Convolution  Input (None,112x112x64) 
Convolution2D  Output (None,112x112x128) 
Convolution  Input (None,112x112x128) 
Convolution2D  Output (None,112x112x128) 
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pool  Input (None,112x112x128) 
MaxPooling2D  Output (None,56x56x128) 
Convolution  Input (None,56x56x128) 
Convolution2D  Output (None,56x56x256) 
 Convolution  Input (None,56x56x256) 
Convolution2D  Output (None,56x56x256) 
Convolution  Input (None,56x56x256) 
Convolution2D  Output (None,56x56x256) 
Convolution  Input (None,56x56x256) 
Convolution2D  Output (None,56x56x256) 
pool  Input (None,56x56x256) 
MaxPooling2D  Output (None,28x28x256) 
 Convolution  Input (None,28x28x256) 
Convolution2D  Output (None,28x28x512) 
Convolution  Input (None,28x28x512) 
Convolution2D  Output (None,28x28x512) 
Convolution  Input (None,28x28x512) 
Convolution2D  Output (None,28x28x512) 
Convolution  Input (None,28x28x512) 
Convolution2D  Output (None,28x28x512) 
pool  Input (None,28x28x512) 
MaxPooling2D  Output (None,14x14x512) 
Convolution  Input (None,14x14x512) 
Convolution2D  Output (None,14x14x512) 
Convolution  Input (None,14x14x512) 
Convolution2D  Output (None,14x14x512) 
 Convolution  Input (None,14x14x512) 
Convolution2D  Output (None,14x14x512) 
Convolution  Input (None,14x14x512) 
Convolution2D  Output (None,14x14x512) 
pool  Input (None,14x14x512) 
MaxPooling2D  Output (None,7x7x512) 
flatten  Input (None,7x7x512) 
Flatten  Output (None,25088) 
dense  Input (None,25088) 
Dense  Output (None,7) 

3.3.5 Input layer 
    The first layer which receives pre-processed (resized and rescaled) skin cancer images is input layer. 
This layer has tensors of skin cancer images with 224x224 dimensions of pixel values. This layer transfers 
all these images to convolutional layer. 
3.3.6 Convolutional layer 
    This layer is responsible for extracting features [41] from skin-cancer images based on number of filters 
defined as a parameters, and it plays a vital role, as a building block in CNN. This layer is designed on a 
mathematical function called convolution operation which extracts features (i.e., shape, color, edges) from 
input images. This layer preserves all the parameters and weights learned during the training phase. The 
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tensors within these layers exhibit lower values compared to the input layer but possess greater depth. 
Furthermore, this layer stores both training configurations and weight information as follows: 

					𝑀& = 5𝑘' ∗ 𝑘$ ∗ 𝑀!()*+ ∗ 𝑀,*+)*+	 +	𝑀.!/08                             (3) 
𝑘'and	𝑘$ are kernals, 𝑀!()*+ and 𝑀,*+)*+	are number of input and output filters respectively. Where, 
																			𝑀,*+)*+	 = 𝑀.!/0                      (4) 
    Feature maps are generated as a results of convolution operations.  
    In this network, the convolutional layer employs a 3x3 kernel size with a one-pixel stride, ensuring 
coverage across the entire image. Spatial padding is incorporated to maintain the image's spatial resolution. 
Additionally, maximum pooling is executed using a 2x2 pixel window and a stride of 2. Notably, N 
signifies the input image's size, s represents the stride value, and f corresponds to the filter size then 
convolution is computed as follows: 
N=224, s=1, f=3x3, size of padding (ps)=1, 64 is the number of applied filters,   

𝐶𝑜𝑛𝑣' =	 @
123
)0
A + 	1	 = 	 @$$4–6

'
A + 	1	 = 	222                        (5)     

The feature map (𝑓"/)) is computed as: 

𝑓"/) =	 @
$$4–67$

'
A + 	1	 = 	224                             (6) 

This has output channel of shape [224𝑥224𝑥64]. 
Now, N=222, ps=1, and f=3 

𝐶𝑜𝑛𝑣$ =	 @
123
)0
A + 	1	 = 	 @$$$–6

'
A + 	1	 = 	220                    (7) 

This has output channel of shape [220𝑥220𝑥64]. 
For third convolutional layer (𝐶𝑜𝑛𝑣6), N=220, ps=1, and f=3 

𝐶𝑜𝑛𝑣6 =	 @
123
)0
A + 	1	 = 	 @$$8–6

'
A + 	1	 = 	218                    (8) 

For 𝐶𝑜𝑛𝑣4 N=218, ps=1, and f=3 

𝐶𝑜𝑛𝑣4 =	 @
123
)0
A + 	1	 = 	 @$'9–6

'
A + 	1	 = 	216                    (9) 

For 𝐶𝑜𝑛𝑣% N = 216, ps=1, and f=3 

𝐶𝑜𝑛𝑣% =	 @
123
)0
A + 	1	 = 	 @$':–6

'
A + 	1	 = 	214                               (10) 

Similarly, the thirteenth convolutional layer 𝐶𝑜𝑛𝑣'6 produced the following: 

    				𝐶𝑜𝑛𝑣'6 =	 @
123
)0
A + 	1	 = 	 @':–6

'
A + 	1	 = 	14                                     (11) 

    Each feature detector in the convolutional layer recognizes and extracts crucial elements from the 
input skin cancer image, producing a feature map that assists in predicting their future spatial distribution. 
The architecture of CNN based algorithms is based on neurons arranged and connected in specific way 
and compute according to human brain simulations. In simple words a neuron is a node in neural network 
through which data flows and computations are passed. Suppose mxm is the size of neuron layer, nxn is 
the filter w, then output of layer will have size of: 
    𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑚 − 𝑛 + 1)x(𝑚 − 𝑛 + 1)                              (12) 
Contributions of each layer is summed to compute non-linearity in one unit 𝑋!;< : 

𝑋!"# =	∑ ∑ 𝑤$%𝑦(!'$)("'%)#)*+)*
%,-

+)*
$,-                           (13)                                                                    

https://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/#:~:text=Convolutional%20Layers,-Suppose%20that%20we&text=In%20order%20to%20compute%20the,)(j%2Bb).&text=Then%2C%20the%20convolutional%20layer%20applies,(x%E2%84%93ij).
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The non-linearity of this convolution function is computed as follows: 
𝑦!;< = 𝜎(𝑋!;< )                          (14) 
3.3.7 Activation function 
    Like a conventional artificial neural network, the feature maps undergo processing by an activation 
function. Specifically, they pass through a rectifier function, which yields a value of 0 for inputs below 0 
and retains the input value otherwise [42]. The working principle is computed in equation and shown in 
Figure 6. 
 

     ReLU = max(0,a) = Q
𝑎	𝑖𝑓	𝑎 > 0
0	𝑖𝑓	𝑎 ≤ 0                       (15) 

Here, a is the input and max() is function of ReLU. 

         
Figure 5. Working principle demonstration of ReLU function, 4x4 table at left is input and table at right is 

output by ReLU function. 
    To infuse non-linearity into the model, ReLU is employed, resulting in reduced computation time and 
improved classification performance. Unlike previous studies that relied on tanh and sigmoid functions, 
ReLU has proven greater. Its computational efficiency and lack of saturation contribute to this dominance. 
3.3.8 Pooling layer 
    This layer, as implied by its name, utilizes incoming tensors from subsequent layers to identify the 
most favorable features. The dimension of the resulting tensor depends on the size of the kernel in the 
input tensors [41]. For instance, if the kernel size is eight, the final result is divided by eight. Following the 
completion of feature extraction and pooling operations, the composite model incorporates seven fully 
connected layers. The initial two layers possess 4096 dimensions each, while the seventh layer consists of 
seven channels. These layers utilize the feature maps generated by the convolutional layers to generate the 
ultimate classification outcome. In the case where the input size N equals 112, the filter size f is 2, the stride 
is 2, and no padding is applied, the subsequent formula is employed for max pooling calculation: 

 Poolingmax = [ ''$2$78
$

]+  1 =  56                                (16) 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 	56	𝑥	56	𝑥	128                                      (17) 

 
Figure 6. Working principle demonstration of pooling layer, 4x4 feature matrix is input and 2x2 is output 

after pooling. 
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3.4 Feature Optimization 
    The above applied layers (convolutional layer, pooling layer) perform feature extraction, and then 
these extracted features are combined. Concatenate () function is applied to combine all features together 
extracted from VGG-16, VGG-19, and ResNet-50. These features are optimized using Adam [43]. It is a 
popular optimizer which has gained success in deep learning for image classification and identification. 
During training, an algorithm known as an optimizer is employed to minimize model loss through adjust-
ments to the network weights. Convolutional neural networks can be optimized using a variety of opti-
mizers, including Adam, AdaGrad, RMSProp, stochastic gradient descent (SGD) and others.  
3.5 Training and evaluation of proposed model 
    This study work employs a transfer learning approach to develop the MMF-SCD. This approach 
enhances performance, reduces development time, minimizes computing resource requirements, and 
results in a model with superior classification potential. It utilizes pre-trained weights and structure for a 
skin cancer dataset. 
    The proposed MMF-SCD model is trained on ISIC skin cancer dataset and validated on validation 
dataset.  The MMF-SCD uses this dataset (training portion), which has examples from all image categories 
and is the biggest part of the data. Image classifiers use image datasets to teach and evaluate themselves. 
These datasets have collections of sample images from the real world. MMF-SCD is supervised model and 
trained with an image dataset that has labels, and these labeled images are the basis for the MMF-SCD to 
learn. Training data, which is the information used to teach the CNN algorithm or any image-classification 
model (i.e., MMF-SCD), is important in the classification process. Training data helps the model get better 
at recognizing. Model training is a way to teach a MMF-SCD model how detects cancer diseases. At first, 
neural networks look at a lot of labeled data, and this helps them get better at handling new data later on, 
using what they've learned before. In the MMF-SCD training process, the validation dataset checks how 
well the model works and prevents it from learning too much.  
    Various evaluation metrics are applied to evaluate the performance of MMF-SCD for skin cancer 
identification using dermoscopic images as input file. Accuracy, loss, recall, f1-score, and precision are 
advance evaluation metrics employed in this research work. To measure these metrics, four basic 
parameters are calculated after training and validation that are true positive prediction (TPP), true negative 
prediction (TNP), false positive prediction (FPP), and false negative (FNP). These parameters are calculated 
as follows: 
TPP: Correct positive predictions by MMF-SCD for skin cancer classification. 
TNP: Correct negative predictions by MMF-SCD for skin cancer classification. 
FPP: Incorrect positive predictions by MMF-SCD for skin cancer classification. 
FNP: Incorrect negative predictions by MMF-SCD for skin cancer classification. 
3.5.1 Accuracy  
    Accuracy is an important evaluation parameter for checking the performance of machine learning and 
deep learning models. The accuracy ranges between 0%-100%, where 100% represents highest accuracy 
with better classification ability of model. It is calculated by following mathematical equation: 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = =&&7=1&
=&&7=1&7>&17>11

                  (18) 

3.5.2 Precision 

    When evaluating deep learning models, it is crucial to emphasize precision as a fundamental aspect. 
In the symphony of algorithms, precision emerges as the virtuoso, crafting melodies of accuracy that 
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resonate through the digital realm. Imagine it as a keen-eyed detective, discerning the true gems from a 
trove of images. With a mathematician's grace, it calculates the purity of its predictions, creating harmony 
between the algorithm's prowess and the dataset's nuances. Precision, the maestro of relevance, conducts 
a symphony where every note resonates with the essence of truth. It is calculated by following 
mathematical equation:        

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = =&&
=&&7>&&

                          (19) 

3.5.3 Recall 

    Recall is also an important evaluation metrics for checking MMF-SCD model performance for skin 
cancer disease classification. It calculates the proportion of accurately identified relevant skin cancer 
images. A model achieves perfect recall when it correctly identifies all relevant images with a score 
exceeding a specific threshold; otherwise, it represents lower recall. The total count of relevant skin cancer 
images serves as a benchmark for evaluating the model's effectiveness in classification of these images. 
It is calculated by following mathematical equation: 

𝑅𝑒𝑐𝑎𝑙𝑙 = =&&
=&&7>1&

                          (20) 

3.5.4 F1 Score 
    This parameter is referred as more effective than accuracy of model. The F1 score serves as a metric 
employed in assessing deep learning models (i.e., in our study MMF-SCD model), including applications 
in skin cancer classification. It combines precision and recall, present a unified assessment of a model's 
effectiveness. It is calculated by following mathematical equation: 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∗ ?@A/<<∗&C@A!0!,(
?@A/<<7&C@A!0!,(

                             (21) 

3.6 Model Predictions 
    The final layers in the MMF-SCD are “fully connected” which are responsible for classification and 
predictions using the SoftMax activation function [44]. Within this layer, training outcomes and weights 
are stored, enabling the identification of the most probable classes for computing classification probabilities. 
When the kernel size is one, it can establish the following parameters.   

                           
   𝑀&/C/" = 5𝑀!()*+ ∗ 𝑀,*+)*+	 +	𝑀.!/08                       (22) 

 
    Figure 7. SoftMax activation results demonstration for model prediction probability counting.   



Journal of Computing & Biomedical Informatics                                           Volume 05  Issue 02                                                                                         

ID : 250-0502/2023  

    In its capacity as the last functional layer in the network, the SoftMax function calculates the probability 
of each input skin cancer image being associated with specific classes related to skin cancer diseases as 
shown in Figure 9. It transforms the output from the previous layer into a probability distribution 
encompassing the seven categories on which the composite network was trained. This enables the network 
to make predictions about the input image by choosing the category with the highest probability, ensuring 
that the total probabilities across all categories sum to one. If 𝑦!  denotes the ith input vector, and σ 
represents the SoftMax function [44], the output is computed as follows: 

σ	(y.) = 	
/DE

∑ /DEF
G

	                        (23) 

    Here, 𝑒H! is exponential function of input vector, exponential function of output vector (j), and number 
of classes are presented by K which is seven in this study work. The visual demonstration of classification 
using softmax activation function is presented in Figure 9. 
3.7 Experiment environment 
    In this study, a computing platform based on a Google Collaborator Python notebook was employed 
to facilitate live coding and outcome analysis. This cloud-based technology enhances the ease of sharing 
and replicating scientific research, allowing access to tests and findings even offline.  
 
4. Results 
    The proposed MMF-SCD model resulted in comparatively high accuracy rate of 97.6%. These results 
are shown in figure: 

 
Figure 8. Line graph of model accuracy. The blue line indicates training accuracy and orange line 

represents validation accuracy. 
    Whereas, the following Figure 11 represents model loss in form of line graph.  

 

Figure 9. Line graph of model loss. Blue line indicates training loss of model whereas orange line 
represents validation loss. 
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Figure 10. Confusion matrix of model predictions, in the diagonal of this matrix all the numbers 

represent accurately classified number of images by MMF-SCD, whereas only five images are 
misclassified. 

    The results of MMF-SCD are also represented in the form of confusion matrix, where confusion matrix 
is a table which demonstrates model performance in the form of predicted values and actual values. The 
X-axis represents predicted labels and Y-axis represents actual labels. The following bar graph (Figure 13) 
represents precision, recall, and f1-score values as a result of model predictions.  

 
Figure 11. Bar graph of evaluation matrices representing precision, recall, and f1-score 

    The blue bar represents precision, green one represents recall metrics while red shows F1-score. The 
precision of model prediction is 97% whereas, the recall and F1-score has 96%. 
The following table 6 and bar graph figure 14 represents benchmark comparison of proposed methodology.  

Table 6. Comparison of benchmark works with proposed MMF-SCD 

Ref No. Diagnosis Dataset Technique 
Accuracy 
Results 

   [26] 

Melanoma, 
Melanocytic nevus, 
Basal cell 
carcinoma, Actinic 
keratosis, Benign 
keratosis-like 
lesions, 

HAM10000 
dataset (Consists 
of 10,015 
dermatoscopy 
images) 

Xception, 
Densenet, 
Mobilenet, 
Resnet-50, 
VGG-16, 
Inceptionv3, 
CNN 

   90% 
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Dermatofibroma, 
Vascular lesions 

 

[27] 

basal cell 
carcinoma, 
melanoma, 
squamous cell 
carcinoma, and 
Nevus 

ISIC 2020, 
DermIS, 
HAM10000 

DSCC_Net, 
deep learning 

   
94.17% 

  [28] 

 

basal cell 
carcinoma, 
melanoma, 
squamous cell 
carcinoma, and 
Nevus 

HAM10000  
dataset 

deep 
learning, 
Android app, 
fine tuning of 
CNN, 
Explainable 
Artificial 
Intelligence 

   82% 

  [30] 

Seven categories: 
basal cell 
carcinoma, 
melanoma, 
squamous cell 
carcinoma, and 
Nevus 

HM10000 
automated 
classification, 
CNN, 

  92.90% 

  [31] 

basal cell 
carcinoma, 
melanoma, 
squamous cell 
carcinoma, and 
Nevus 

HAM10000 

MobileNet, 
VGG-16, 
VGG-19, and  
InceptionV3 

  89.81%. 

  [34] 

basal cell 
carcinoma, 
melanoma, 
squamous cell 
carcinoma, and 
Nevus 

HAM10000 

Xception 
model, 
augmentation 
of images 

  96%  

Proposed 

actinic keratosis, 
basal cell 
carcinoma, 
dermatofibroma, 
melanoma, nevus, 
pigmented benign 

 ISIC MMF-SCD   97.6% 



Journal of Computing & Biomedical Informatics                                           Volume 05  Issue 02                                                                                         

ID : 250-0502/2023  

keratosis, and 
vascular lesion 

 
The above table shows the benchmark comparison of work of other authors related to skin cancer. 

 
Figure 12. Bar graph of benchmark comparison of proposed MMF-SCD with results of recent studies in 

the literature work. 
It is evident from the above table and bar graph that our model MMF-SCD has the highest accuracy 

(97.6%) among the earlier developed models used to classify various types of skin cancers. 
 
5. Conclusion 
    Skin cancer affects a considerable number of people on a daily basis and is a major contributor to 
related fatalities. Consequently, the identification and classification of various skin cancer types are crucial 
for early screening and treatment. Current clinical diagnostic procedures are vulnerable to human errors, 
often due to the inexperience of physicians and native subjectivity. During the last decades, deep learning 
has shown remarkable success in medical field including skin cancer identification and classification. This 
thesis introduced an efficient method for reducing the number of false diagnoses and eliminating 
subjectivity in the visual interpretation of dermoscopic images for skin cancer classification. It is achieved 
by presenting a composite feature extraction approach and introducing the Multi-Model Fusion for Skin 
Cancer Detection (MMF-SCD). The ISIC skin cancer dataset utilized is publically available at Kaggle 
website. It has seven classes namely: actinic keratosis, basal cell carcinoma, dermatofibroma, melanoma, 
nevus, pigmented benign keratosis, and vascular lesion.  
    Data augmentation is applied using image data generator by TensorFlow to generate augmented 
images at real time during trainig process of MMF-SCD for better model development. Transfer learning 
approach is adopted to train the model with reduced computatational cost and time. The applied MMF-
SCD model is evaluetd in terms of various evaluation metrices namely: accuracy of model (97.6%), loss of 
model (5%), f1-score (96%), precision (97%), and recall (96%). These results demonstrate that model has 
gained high accuracy for the identification and classification of skin cacner. The suggested approach could 
be applied for cancer classification in real time applications to assist specialists and novice physicians in 
diagnosis at health care centers.   
 
6. Future Work 
    The presented research work could be expanded to some other image based modalities with high 
precision and accuracy rates for medical image analysis and disease identification such as lungs cancer 
detection, brain tumor identification, and classification of eye diseases. Therefore, in this domain proposed 
MMF-SCD model is suitable for appliactions having similar issues.   
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