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________________________________________________________________________________________________________ 
Abstract: Clinical experts have extracted clinically relevant information from clinical notes 
through manual review, which has had scaling and financial issues. This is particularly relevant 
for different diseases since clinical notes prevail over structured data. The availability of this data 
gives a wonderful opportunity for natural language processing (NLP) to automatically extract 
clinically relevant information that might delay or prevent the onset of disease, but it also poses 
several challenges. In this work, we sought to investigate the current state of the art and suggest 
possible future research pathways that might expedite the general use of natural language 
processing in disease-related clinical notes. In this study, Kaggle, an open-source platform for 
machine learning challenges, provides the dataset. The patient's age, gender, diagnoses, and other 
vitals are all included in the dataset's text format. The dataset collection contains information from 
many categories. Each stage plays an important role in predicting patient therapy based on clinical 
notes, from dataset preparation through model training and testing. Two feature engineering 
methods, term frequency-inverse document frequency and bag of words are used for feature 
extraction. Six distinct machine learning (ML) methods, Naive Bayes, Light GBM, Random Forest 
(RF), Logistic Regression, Support Vector Machines (SVM), and Extra Tree Classifiers were 
employed for analysis. Various sample sizes of the dataset have been used in the proposed study. 
Based on the findings, logistic regression is the most effective algorithm for predicting medical 
therapy, with an accuracy of 85.94%.  
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1. Introduction 

A medical note is a portion of a patient's private electronic health record (EHR) that details their 
medical visit. All healthcare team members, including doctors, nurses, PAs, techs, radiologists, and 
therapists, are responsible for taking notes after each interaction with a patient, whether in person or 
through telemedicine. Documenting a patient's medical history, current sickness history, diagnosis, 
prescriptions, allergies, therapy, and general care in a systematic manner requires accurate and thorough 
medical notes [1]. Each interaction with a patient is documented in some detail in their medical record; 
these may range from an initial consultation to a second opinion, a follow-up visit, a procedure visit, a 
therapy visit, or even a diagnostic testing visit. The healthcare provider's office visit note for a 
consultation, second opinion, or follow-up, for example, has sections with all the details needed to care 
for the patient, like the patient's Chief Complaint (CC), which is a short medical term or phrase that 
describes the main problem that made the patient go to the doctor in their initial visit [2].  

When evaluating a patient, the attending physician needs to diagnose the disease for proper 
treatment, and this may be accomplished by asking the patient to identify their primary complaint. The 
provider may then use this information to guide the kind of further history they collect as part of the 
assessment and the kind of physical examination they do in light of the stated condition. The History of 
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the Present Disease (HPI) is an in-depth description of how the patient's illness got worse from the first 
signs to the day of the office visit. Review of Systems (RoS) is a collection of questions broken down by 
body system that can be used to find out what's wrong and figure out what's sick. In the physical 
examination note section, the doctor puts down what he or she sees, hears, or measures. The RoS records, 
shows what the patient answers in response to those questions. The doctor may use exertion and probing 
to find out about the size, position, consistency, texture, location, and soreness of a body part or organ. 
They may also use a stethoscope to check the heart beat and valve function. They may also measure the 
person's height, weight, and pulse [3]. 

The keeping of correct clinical records is an important part of both good professional work and 
providing high-quality healthcare. Whether the notes are kept on paper or electronically, good clinical 
record keeping should allow for continuity of care and make it easier for doctors to talk to each other. As 
a result, everyone on the multidisciplinary team (doctors, surgeons, nurses, pharmacists, 
physiotherapists, occupational therapists, psychologists, pastors, managers, or students) must keep 
clinical records up to date as needed [4]. Patients should be able to see their own records so that they 
know what was done and what choices were looked into. In addition to their value in auditing healthcare 
quality, clinical records may be useful in examining significant occurrences, patient complaints, and 
compensation claims. Keeping accurate clinical records is crucial.  

Clinical notes that accurately record a patient's medical history are crucial. All pertinent clinical 
information should be included in a medical record for future use. Always keep in mind that if anything 
does not get recorded, it did not occur. This maintains continuity, which is vital in the event of a 
contentious medical decision. As many different medical personnel are now engaged in the care of a 
single patient, clinical notes must be consistent throughout therapy. In order to guarantee that all 
relevant healthcare personnel have access to the most up-to-date and correct information, clinical notes 
must be prepared properly and with adequate detail. The patient will benefit from this since unnecessary 
tests will not need to be repeated and incorrect diagnoses and treatments will be avoided [5].  

Good clinical records also improve the healthcare system as a whole by speeding up the 
decision-making process for an individual patient, allowing more resources to be allocated to those 
patients who really need them. Last but not least, inaccurate or lacking clinical data may be detrimental 
to a patient's long-term health. Remember that "the obligation to share information might be as important 
as the responsibility to protect patient privacy," as stated in the sixth principle of the NHS report on 
patient information, the Caldicott report [6]. Keeping thorough, up-to-date records of care provided 
might be used as evidence in the event of a complaint or lawsuit. According to the GMC's Good Medical 
Practice and the Nursing and Midwifery Council's professional standards, keeping records is an essential 
component of practice and a key part of providing safe and effective care [7] [5]. 

Present-day human coders spend a lot of time and energy on inefficient manual processes; 
automating annotation will reduce this burden significantly. It is hardest to find the right medical code 
among hundreds of high-dimensional codes when the clinical notes are just a bunch of free text that isn't 
grouped in any manner. Using Convolutional Neural Networks (CNN) and Long Short-Term Memory 
(LTSM) networks, a lot of progress has been made in the last three years on the MIMIC-III full-label 
inpatient clinical notes dataset, which is the gold standard for hard benchmarks. This development begs 
the age-old issue of how close automated ML systems are to the working performance of human 
programmers [8].  

Technologies like automated medical coding (AMC) and automatic clinical coding (ACC) employ 
NLP to produce medical diagnostic and procedure codes automatically from medial notes [9]. They play 
a crucial role in modern healthcare because they provide timely access to comprehensive, accurate 
patient records that improve diagnosis and allow for better, more coordinated treatment [10].   

Laboratory test results, vital signs, medicines, and other therapies delivered to persons at risk for 
AD dementia, and comorbidities may all be included in EHR data. Neuroimaging scans (such as positron 
emission tomography (PET) and magnetic resonance imaging (MRI)) and cerebrospinal fluid (CSF) 
collection for biomarker testing are two expensive and/or invasive procedures that people may get to 
look for signs of Alzheimer's disease. The electronic health record (EHR) could also include findings from 
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these tests. Studies have indicated that longitudinal clinical EHR data (data obtained at various periods in 
time) may be used to track the temporal development of Alzheimer's disease and dementia. The 
extensive use and accessibility of medical devices over the years have generated enormous amounts of 
clinical EHR data, which may supplement the traditional resources of dementia specialists. Researchers 
have been prompted to investigate the potential of artificial intelligence (AI), which is gaining 
prominence in the area of healthcare innovation due to the unmet demands for dementia expertise and 
the enormous datasets necessary [11].  

Machine learning (ML), a subfield of artificial intelligence, can analyze the correlation between input 
variables and clinical outcomes, unearth previously unknown patterns in massive datasets, and draw 
conclusions that guide more informed clinical judgment. However, subject matter experts must still 
verify the accuracy of computational hypotheses produced by ML models before they can be used in 
clinical decision-making [12].  

Rule-based knowledge engineering was used in the first studies of automated document 
categorization, featuring the incorporation of a human-created set of guidelines for expert intelligence 
[16]. NLP and ML algorithms, such as kernel and logistic regression approaches, have lately been used 
for risk stratification, which in turn has facilitated clinical decision-making. Researchers have used 
machine learning and natural language processing to automatically sort clinical papers into groups based 
on ASD [17] asthma [18], heart failure criteria [19], bad drug effects [20], and rheumatoid arthritis activity 
[21]. Some studies have used technology to automate the categorization of clinical documents to enhance 
clinical workflows and patient safety [22]. Neural network models using the distributed representation 
technique [23] are now the gold standard for document categorization jobs. In theory, a deep neural 
network may acquire to represent complex facts on its own, doing away with the requirement for 
hand-crafted feature engineering in clinical knowledge representation. [24] employed CNN with 
dispersed word representation to compete on a sentence-level medical text categorization exam [25]. For 
broad sentiment analysis, computer scientists have used convolutional neural networks (CNNs) or a 
recurrent neural networks version called Long Short-Term Memory (LSTM) to learn semantic 
representations in texts [26]. Character-level applications of CNN have been developed for a variety of 
text categorization problems [27].  

[28] discussed unsupervised learning jobs across many note types and document sources showed 
promising results when using the clustering technique to discover medical subdomains in a clinical note. 
This was accomplished by representing the data using language and semantic kinds. Experts used a 
support vector machine (SVM) with a bag of words to categorize patients admitted to the hospital for 
treatment of a suspected sickness (UMLS concepts).  

However, few researchers address the medical subdomain categorization issue by comparing and 
assessing the performance of supervised shallow and deep learning algorithms utilizing diverse kinds of 
data. A supervised machine learning classifier trained to identify medical subdomains within clinical 
notes has the potential to enhance clinical downstream applications at the subspecialty level if it is used 
effectively [29]. The medical subdomain classifier has the potential to improve our understanding of 
common syntactic and semantic structures in specialist notes and, more practically, to direct patients 
with unresolved medical difficulties toward the appropriate medical specialist for treatment. Using a 
supervised machine learning-based NLP pipeline, we were able to create classifiers for certain medical 
subdomains that can place clinical notes into appropriate categories [22]. 
 
2. Research Objectives 

This research study aims to provide a framework for predicting therapies from clinical notes. 
• Other goal is to use data-cleaning strategies to eliminate noise from the dataset. 
• Use feature engineering to glean the best characteristics for treatment outcome prediction. 
• We will use a variety of machine learning models for the prediction of possible treatment based on 

the medical notes of patients. 
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3. Materials and Methods  
The proposed methodology describes the detail, from the dataset to the final findings, how to fore-

cast medical therapy by analyzing clinical notes using NLP and ML. These datasets often exist in an un-
structured form and have a great deal of noise embedded within the records. Since the data we are 
working with in this study is textual, there is a high probability that the medical records will include 
spurious information. Data cleansing is essential before using any ML model. If we want better outcomes, 
we need cleaner data. Numerous operations, including normalization, lowercase-to-uppercase conver-
sion, tokenization, and the removal of stop words, are required in the preprocessing of data. The next step, 
after the preprocessing stage, is feature engineering, which involves the extraction of features from text 
data. To train the ML model and make treatment predictions, these characteristics are crucial. When at-
tempting to extract features from text data, feature engineers often resort to tools like TF-IDF and Bag of 
Words.  

The next step is to run ML models, which may be done when feature extraction has been completed. 
In this procedure, data is divided into a training set and a test set at 70:30 ratio. This indicates that the 
model will be trained using 70% of the data and then tested using 30% of the data. The ML models em-
ployed in this study are Naive Bayes, Logistic Regression, Extra Tree Classifier, Light Gradient Boosting, 
Random Forest, and Support Vector Machine. Precision, recall, f1-score, and accuracy score are the four 
metrics used for assessing the performance of the models. The best-performing model in this study will be 
determined when training and testing are complete and compared using assessment parameters. When 
you have a firm grasp of this study framework in its entirety, you'll have a far better grasp of the intricate 
process behind data analysis and treatment prediction. Figure 1 shows the entire framework with the flow 
of data from the dataset to training models. 

 
Figure 1. Research Framework  

3.1 Data Collection 
The dataset was gathered from Kaggle, an open-source machine learning platform. Approximately 

2000 individual medical records are used in the dataset. In the first column of the dataset set is the actual 
text of the medical notes, and in the second is the actual therapy that was administered. Complete 
information about a patient's disease, potential medical features, symptoms, and other characteristics was 
considered. Due to the text's inherent lack of structure and plenty of background noise, it is required to 
clean the dataset before applying feature extraction algorithms to the data. Otherwise, doing so would 
result in inaccurate predictions. 
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3.2 Preprocessing 
Machine learning-trained algorithms may use their knowledge of existing patterns in features to 

predict the value of a certain target variable in previously unknown data. The final trained model may be 
seen as a mathematical function that turns X values (the features) into y predictions accurately (the 
target). Due to their mathematical nature, ML algorithms can only handle numerical data. In addition, 
these numerical representations should reflect how the algorithm understands the data since each 
algorithm runs under a unique set of constraints and assumptions. Now, let's imagine that we have a 
character that represents the colour of a car and that it can take on the values red, blue, and grey. If we 
were to give numerical values to each colour, such as red = 1, blue = 2, and grey = 3, a machine learning 
system unfamiliar with the concept of colour may mistake red for a larger number and assign it a greater 
priority. Preprocessing entails transforming raw features into a form that a machine learning algorithm 
can use to learn. It has been shown that data preparation for machine ML is an art that requires a careful 
evaluation of the raw data in order to choose suitable strategies and preprocessing procedures. 
Data preprocessing is essential to data mining and analysis because it prepares unprocessed data for 
further processing. Data obtained from the real world, whether it's text, images, or videos, is often 
unorganized and disorderly. In addition to the possibility that it contains errors and inconsistencies, it is 
usually incomplete and lacks any discernible structure. Processing information in the form of 1s and 0s is 
the simplest for computers. Thus, calculating structured data, such as whole numbers and percentages, is 
straightforward. Unfortunately, text and image data must be cleaned and processed before analysis. 
3.2.1 Remove Special Characters 

Special characters are symbols that can't be represented by the standard ASCII set of letters and 
numbers. These symbols are often used in remarks, references, monetary figures, etc. The use of these 
symbols causes algorithmic noise and does not improve text comprehension. The good strategy in text 
mining is that these unwanted letters, digits, and symbols may be removed using regular expressions 
(regex). 
3.2.2 Remove Punctuations 

The next step of omitting special characters may be combined with this one. It's simple to get rid of 
punctuation marks. Using string.punctuation, just keep anything that isn't on this list. 
3.2.3 Lower Case 

One could wonder, "How should I handle capitalization when it occurs at the beginning of a phrase 
or in proper nouns?" It's usual practice to write everything in lowercase letters for readability. As a result, 
text mining and (NLP) processes may keep moving along smoothly. Since we have the lower() method, 
it's a breeze. 
3.2.4 Remove stop words 

The removal of stopwords is beneficial since it reduces the dimensional space and a few stopwords 
won't drive your analysis if you're using bag of words based techniques like countVectorizer or TF-IDF, 
which operate on counts and frequency of the words. On the other hand, if you're trying to use the text's 
semantics, like in a seq2seq model, then you'll get unclear results if you remove stopwords. Remove stop 
words is a standard preprocessing technique used in many NLP applications. Removing the phrases that 
are overused across the whole corpus is the core idea.  
3.3 Tokenization 

Tokenization is a simple process that may be used to successfully turn a large, unstructured data 
collection into a manageable string. As well as its more well-known functions in cybersecurity and the 
creation of NFTs, tokenization also plays a crucial part in NLP. Tokenization is a technique used in 
natural language processing to parse text into smaller, more manageable chunks so that semantic labels 
may be more accurately applied. The initial stage in NLP is to collect relevant information (a phrase) and 
parse it into manageable chunks (words). Take the query, "What restaurants are nearby?" as an example 
of a data string. Tokenization has used the string to break it down into distinct components so that a 
computer can understand it.  
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3.4 Feature Engineering 
Feature engineering is the process of determining and changing data into features that can be used 

in supervised learning. Machine learning may need new or enhanced characteristics to be trained on 
before it can perform well on novel tasks. You probably already know that a feature is any quantifiable 
characteristic that may be used in a prediction model. Color, tone of voice, and other such characteristics 
fall within this category. Feature engineering, in its simplest form, is the application of statistical or 
machine learning techniques to raw data in order to extract the characteristics of interest. 
3.5 Features 

The "features" that compose a dataset may be used as a means of explanation or communication. 
This may be done on the basis of size, location, age, time, colour, etc. Features, which are also called traits, 
variables, fields, and characteristics, are often stored in datasets as columns. Knowing what "features" are 
can help you prioritize them during data preparation depending on your organization's goals.  
3.5.1 Bag of Words 

In NLP, BoW is a text modeling technique employed. Feature extraction from text data is a simple 
explanation of the method. This approach is simple to apply and flexible, making it ideal for feature 
extraction from documents. To indicate the frequency with which words appear in a document, a "bag of 
words" might be created. We only count words and pay no attention to spelling, punctuation, or sentence 
structure. The term "bag of words" is used to describe a manuscript in which the order and structure of 
the words have been ignored. The model cares solely about the presence or absence of recognized words, 
not their precise placement. The BoW method enables us to translate texts of different lengths into 
fixed-length vectors, making it simpler for machine learning algorithms to deal with text despite its 
inherent disorder and lack of organization. Machine learning models also function on numerical data 
rather than textual data at a greater resolution. Accurately, we use the BoW technique to convert text into 
a numerical vector. 
3.5.2 TF-IDF 

One mathematical way to figure out how important a word is in a document is to use the term 
frequency-inverse document frequency (TF-IDF) method. We do this by increasing the total number of 
times a word appears in all documents by the opposite of how often it appears in documents. It's useful 
for determining how important words are in a document using machine learning techniques for Natural 
Language Processing, but that's far from where it's most important NLP. If, however, the term "Bug" 
occurs several times in one document but not in others, this is likely to indicate its importance. The word 
"Bug," for instance, would likely be associated with the subject "Reliability" if we were attempting to 
determine which categories certain NPS answers were in. 
3.5.3 Train-Test Split 

The train-test split process can be used to get an idea of how well ML algorithms will do predictions 
using data that wasn't used to train the model. Not long from now, we will be able to get information 
that you can use to compare different machine learning methods to your predictive modeling problem. 
It's simple and easy to understand the method, but you shouldn't always use it. When the dataset isn't 
fair, it takes more factors to work with a small dataset and type it in. 
3.6 Machine Learning Models 

ML model is a mathematical representation of the results of the training procedure. The field of 
research known as machine learning examines algorithms that can learn from past data and experiences 
to refine and perfect themselves automatically. When applied to computers, a machine learning model 
may be thought of as a piece of software that can learn to detect patterns or behaviours by analyzing 
existing data. The training data is analyzed by the learning algorithm, which then produces a machine 
learning (ML) model that represents the observed patterns. 

In this research, Naive Bayes, Random Forest, Logistic Regression, SVM, Light Gradient Boosting, 
and Extra Tree Classifier ML models are applied 
3.6.1 Naïve Bayes 

Naive Bayes classifiers are a kind of "probabilistic classifier" used in statistics. They are based on 
applying Bayes' theorem under the premise of substantial independence between the features. They 
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aren't the most complicated Bayesian network models, but they may give great results when used with 
kernel density estimates. 
3.6.2 Logistic Regression 

Logistic regression is the method of choice when the dependent variable is of the binary kind (binary). 
Prediction is the goal of logistic regression analysis, as it is with other types of regression as well. Logistic 
regression is a statistical technique used to summarise data and provide an explanation for the 
association between a single binary dependent variable and a set of independent variables with nominal, 
ordinal, interval, or ratio levels. In spite of the fact that logistic regressions might be difficult to read, the 
Intellectus Statistics application streamlines research implementation and provides a transparent 
explanation of the results. 
3.6.3 Random Forest 

A random forest is a group of individual decision trees. “A classification is reached by tallying the 
votes of each random forest tree that makes a forecast. Simple but powerful, the wisdom of a large 
number of people is the basis for Random Forest. A large number of significantly uncorrelated models 
(trees) functioning as a committee will exceed any of the individual component models, according to the 
data scientist's reasoning for the success of the random forest model. 

The low degree of agreement amongst models is crucial. If more than one tree is at fault in the same 
way, the others will correct for it. Some trees may be wrong, but the forest as a whole will become better 
since the bulk of the trees are accurate. So, to make use of Random Forest's full potential, we need: 
• To create models that beat random guessing, we must guarantee that our features include a true 

signal. 
• Individual tree predictions (and their corresponding errors) should be uncorrelated. 
3.6.4 Support Vector Machine 

The support vector machine method looks for a hyperplane in N-dimensional space (N minus the 
number of traits) so that each piece of data can be put into a unique category. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Possible Hyperplane 
Any of a plethora of possible hyperplanes might be used to draw a line between the two collections 

of data. The goal is to find a plane in which the gap between the two group’s data points is the largest. 
Maximizing the margin distance improves future data classification accuracy. Decision boundaries, in the 
form of hyperplanes, may be used to organize the points in the data. Data points that are on each side of 
the hyperplane are interpreted differently. The size of the hyperplane is determined by the total number 
of features. When there are just two input characteristics, the hyperplane is a straight line. The 
hyperplane is reduced to two dimensions when there are only three input characteristics. It's hard to see 
more than three features working in tandem. 
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Figure 3. 2D and 3D Hyperplanes 
3.6.5 Light Gradient Boosting 

An open-source tool called Light Gradient Boosted Machine (or LightGBM for short) can be used to 
carry out the gradient boosting process quickly and effectively. In the process of boosting cases, 
LightGBM gives more weight to those with stronger gradients and adds a kind of independent feature 
selection to the gradient-boosting method. This could make the training process go much faster and 
improve the accuracy of the guesses. In machine learning events, LightGBM is now the most popular 
method for jobs that need to use tabular data for regression and classification prediction modeling. Extra 
3.6.6 Tree Classifier 

ExtraTrees is an ensemble ML strategy that, like Random Forests, trains a large number of decision 
trees and then uses the aggregated results from all of these trees to make a single prediction. However, 
Extra Trees and Random Forest are quite similar with just a few minor distinctions. Bagging is used in 
Random Forest to pick out distinct permutations of the training data to guarantee that the decision trees 
are sufficiently dissimilar. However, when it comes to training decision trees, Extra Trees use the 
complete dataset. The values at which a feature is divided to form child nodes are chosen at random, 
guaranteeing adequate variation across individual decision trees. On the other hand, with a Random 
Forest, we employ an algorithm to greedily search for and choose the value at which to divide a feature. 
These two distinctions apart, the similarities between Random Forest and Extra Trees are substantial. In 
what ways, therefore, do these alterations manifest themselves? 
3.7 Evaluation Parameters 

There are four evaluation parameters to measure the performance of machine learning models for 
treatment prediction using clinical notes. Before that, it is important to have an understanding of the 
confusion matrix. 
3.7.1 Confusion Matrix 

We may think of a binary classifier as one that labels occurrences as either "positive" or "negative". 
The classifier concludes that the instance belongs to the target class. A classifier trained to identify 
pictures of cats, for instance, would label such pictures as "positive" (when correct). Not a member of the 
class we are seeking to identify; the classification is negative. So, a classifier trained on cat photographs 
would perform well to label as "negative" any image that also contains canines but no felines. Precision, 
memory, and the F1-Score are all based on the principles of True Positive, True Negative, False Positive, 
and False Negative. These are shown in the following table (where 1 represents a positive prediction).  

Table 1. Explanation of True and false positive and negative 
Prediction Actual Value Type Explanation 
1 1 True Positive Predited Positive and was positive 
0 0 True Negative Predited Negative and was Negative 
1 0 False Positive Predited Positive and was Negative 
0 1 False Negative Predited Negative and was positive 
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Figure 4. Confusion Matrix 
Classifier estimates may be made fairer by considering metrics like Accuracy, Precision, Recall, and 

F1-score, since the significance of different sorts of mistakes varies between uses. 
3.7.2 Precision 

Precision is the percentage of times a model produces an accurate forecast (true positives). This is the 
formula for precision. 

 
 
 
 
 
3.7.3 Recall 

When evaluating a classifier's performance, recall is used to determine how many out of all the 
positive examples in the data it properly predicted. This trait is also known as "sensitivity" at times. 
Formula for Recall is given below.  

 
 
 
 

3.7.4 F1-Score 
An F1-Score combines the value of precision and recall. The harmonic mean is a common way to 

explain this relationship. The harmonic mean is just an alternative to the more common arithmetic mean 
that is said to be more appropriate for ratios (such as precision and recall) than the latter. F1-score in this 
situation is calculated using the following formula: 

 
 

 
3.7.5 Accuracy 

Most of the time, accuracy, which shows how many correct guesses there were compared to the total 
number of predictions, is used as the main way to judge models.  

This is a popular statistic for judging a model's quality since it is easy to understand. Yet, it is 
frequently instructive to dig a little further. 
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4. Results and Discussion 
Bag of Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF) were utilized as 

feature engineering strategies with Naive Bayes in the first trial. Two weights, 1 and 2 grams are utilized 
in conjunction with Naive Bayes and TF-IDF. There are five distinct approaches used throughout the tests. 
Initially, 300 records are used in the studies. Using the BoW approach in conjunction with Naive Bayes 
yields a maximum accuracy of 86.75 percent on a dataset of 300 records. Following the use of these 500 
records, the accuracy with BoW is 87.41%. The maximum improvement in accuracy using BoW while 
utilizing 1000 records is 85.17 percent. After processing 1500 records, we achieved an accuracy of 84.87%. 
Finally, we applied Naïve Bayes to the whole dataset, and as a result, we achieved 85.54% accuracy using 
BoW. The results show that Naïve Bayes achieved the maximum accuracy when combined with BoW. 
The table 2 shows the entire performance of Naïve Bayes. 

Table 2. Evaluation Matrix of Naïve Bayes 
Model Records Feature Engineering Precision Recall F1-Score Accuracy 

Naïve Bayes 

300 

BoW 0.870915 0.86747 0.868056 0.86747 

TF-IDF 1-gram 0.843902 0.771084 0.782879 0.771084 

TF-IDF 2-gram 0.817037 0.722892 0.740801 0.722892 

500 

BoW 0.878322 0.874126 0.875493 0.874126 

TF-IDF 1-gram 0.928956 0.72028 0.785342 0.72028 

TF-IDF 2-gram 0.952488 0.657343 0.769721 0.657343 

1000 

BoW 0.845166 0.851724 0.847774 0.851724 

TF-IDF 1-gram 1 0.834483 0.909774 0.834483 

TF-IDF 2-gram 1 0.834483 0.909774 0.834483 

1500 

BoW 0.857337 0.8487 0.852237 0.8487 

TF-IDF 1-gram 0.989777 0.817967 0.890744 0.817967 

TF-IDF 2-gram 1 0.806147 0.89267 0.806147 

2000 

BoW 0.865796 0.855446 0.860294 0.855446 

TF-IDF 1-gram 0.985766 0.667327 0.788303 0.667327 

TF-IDF 2-gram 1 0.653465 0.790419 0.653465 

The graphical representation of the best results on different quantities of datasets using the Naïve 
Bayes classifier is shown below. 

 
Figure 5. Results by Naive Bayes Classifier 
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4.1 Logistic Regression 
Two feature engineering methods, Bag of Words (BoW) and TF-IDF, were used with Logistic 

Regression in the first trial. As part of Logistic Regression, we use TF-IDF with a 1- and 2-gram weighting 
scheme. There are five methods for carrying out the tests. As a first step, we use 300 data points from past 
trials. Logistic Regression's highest accuracy when combined with the TF-IDF (1-gram) method yields 
85.54 percent when applied to a dataset of 300 records. Once 500 records have been utilized, TF-IDF 
accuracy increases to 85.32 percent (1-gram). The best improvement in accuracy with BoW while utilizing 
1000 records is also 84.83%. After processing 1500 records, we were able to improve accuracy to 85.58%. 
In the end, we applied Logistic Regression on the whole dataset and achieved 86.04% accuracy using 
BoW. The results showed that while using BoW, Logistic Regression yielded the maximum accuracy. 

Table 3. Evaluation Matrix of Logistic Regression 

Model Records 
Feature  

Engineering 
Precision Recall F1-Score Accuracy 

Logistic Regression 

300 
BoW 0.820799 0.81928 0.818962 0.819277 
TF-IDF 1-gram 0.857183 0.85542 0.855804 0.855422 
TF-IDF 2-gram 0.831325 0.83133 0.831325 0.831325 

500 
BoW 0.86772 0.83916 0.846259 0.839161 
TF-IDF 1-gram 0.874173 0.85315 0.858372 0.853147 
TF-IDF 2-gram 0.858241 0.81119 0.823174 0.811189 

1000 
BoW 0.917498 0.84828 0.875364 0.848276 
TF-IDF 1-gram 0.836527 0.82414 0.8298 0.824138 
TF-IDF 2-gram 1 0.83448 0.909774 0.834483 

1500 
BoW 0.893639 0.85579 0.873021 0.855792 
TF-IDF 1-gram 0.842066 0.81797 0.82942 0.817967 
TF-IDF 2-gram 0.843625 0.81797 0.8303 0.817967 

2000 
BoW 0.884931 0.85941 0.870997 0.859406 
TF-IDF 1-gram 0.835467 0.82574 0.829235 0.825743 
TF-IDF 2-gram 0.840804 0.82574 0.831104 0.825743 

 
The graphical representation of the best results on different quantities of datasets using the Logistic 

Regression classifier is shown below. 

 
Figure 6. Graph of results by Logistic Regression  

84.2
84.4
84.6
84.8

85
85.2
85.4
85.6
85.8

86
86.2

300 Records 500 Records 1000 Records 1500 Records 2000 Records

Logistic Regression

Accuracy



Journal of Computing & Biomedical Informatics                                                      SICAIET                                                                                     

ID : 008-SI/2024  

4.2 Light Gradient Boosting 
Bag of Words (BoW) and Term Frequency Inverse Document Frequency (TF-IDF) were utilized as 

feature engineering strategies in the initial experiment with Light GBM. TF-IDF may be used with Light 
GBM at two different weights, 1 and 2 grams. There are five methods for carrying out the tests. As a first 
step, we use 300 data points from past trials. Using the TF-IDF (2-grams) method with Light GBM, the 
highest accuracy achieved was 80.72% on 300 records. By the end of the 500th record, the accuracy with 
TF-IDF was 79.72 percent (2-grams). Similarly, TF-IDF improves accuracy by 82.41% when applied to 
1000 records (1-grams). More than 1,500 records have been used, with the best accuracy of 86.53 percent. 
After training on the whole dataset using Light GBM, we improved accuracy by 83.56% using BoW. This 
study concludes that Light GBM achieved the maximum accuracy when combined with BoW. 

Table 4. Evaluation Matrix of Light GBM 
Model Records Feature Engineering Precision Recall F1-Score Accuracy 

Light 
GBM 

300 
BoW 0.79907 0.79518 0.796086 0.795181 
TF-IDF 1-gram 0.804587 0.79518 0.797003 0.795181 
TF-IDF 2-gram 0.813486 0.80723 0.808482 0.807229 

500 
BoW 0.842525 0.78322 0.799337 0.783217 
TF-IDF 1-gram 0.842525 0.78322 0.799337 0.783217 
TF-IDF 2-gram 0.845416 0.7972 0.810075 0.797203 

1000 
BoW 0.887754 0.82414 0.850781 0.824138 
TF-IDF 1-gram 0.895168 0.82414 0.8539 0.824138 
TF-IDF 2-gram 0.896362 0.82069 0.852703 0.82069 

1500 
BoW 0.910704 0.86525 0.885505 0.865248 
TF-IDF 1-gram 0.89169 0.85579 0.871914 0.855792 
TF-IDF 2-gram 0.900354 0.85816 0.877083 0.858156 

2000 
BoW 0.88223 0.83564 0.854421 0.835644 
TF-IDF 1-gram 0.888914 0.83366 0.856429 0.833663 
TF-IDF 2-gram 0.882199 0.83564 0.854753 0.835644 

The graphical representation of the best results on different quantities of datasets using the Light 
GBM classifier is shown below. 

 
Figure 7. Graph of results by Light GBM 
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methods for carrying out the tests. As a first step, we use 300 data points from past trials. Using the 
TF-IDF (1-gram) method in conjunction with Random Forest, we can get an accuracy of 80.72 percent on 
a dataset of 300 records. Following this, 500 records have been utilized, and the accuracy with BoW is 
77.62%. Using the same 1000-record dataset, BoW can improve accuracy by a maximum of 20%. After 
processing 1500 records, we were able to improve accuracy to 80.85%. At last, Random Forest was 
applied to the whole dataset, and TF-IDF accuracy was improved to 80.99%. (1-gram). It was determined 
that Random Forest produced the maximum accuracy while using TF-IDF (1-gram). 

Table 5. Evaluation Matrix of Random Forest 

Model Records 
Feature  

Engineering 
Precision Recall F1-Score Accuracy 

Random Forest 

300 
BoW 0.761192 0.75904 0.759673 0.759036 
TF-IDF 1-gram 0.807229 0.80723 0.807229 0.807229 
TF-IDF 2-gram 0.775333 0.74699 0.752481 0.746988 

500 
BoW 0.852813 0.77622 0.796891 0.776224 
TF-IDF 1-gram 0.865818 0.76224 0.790724 0.762238 
TF-IDF 2-gram 0.870907 0.73427 0.774599 0.734266 

1000 
BoW 0.857576 0.8 0.825382 0.8 
TF-IDF 1-gram 0.857576 0.8 0.825382 0.8 
TF-IDF 2-gram 0.871567 0.78276 0.823633 0.782759 

1500 
BoW 0.843523 0.80615 0.824352 0.806147 
TF-IDF 1-gram 0.845755 0.80851 0.826585 0.808511 
TF-IDF 2-gram 0.842505 0.80378 0.822682 0.803783 

2000 
BoW 0.835449 0.80594 0.819858 0.805941 
TF-IDF 1-gram 0.839275 0.8099 0.823675 0.809901 
TF-IDF 2-gram 0.835909 0.80396 0.818366 0.80396 

The graphical representation of the best results on different quantities of datasets using the Random 
Forest classifier is shown below. 

 

 
Figure 8. Graph of results by Random Forest 
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4.4 Support Vector Machine 
Two feature engineering methods, Bag of Words (BoW) and TF-IDF, were utilized with Support 

Vector Machine in the first trial. As part of a Support Vector Machine, TF-IDF is applied with a gram 
weight of 1 and a gram weight of 2. There are five methods for carrying out the tests. As a first step, we 
use 300 data points from past trials. When employing the TF-IDF (2-gram) approach with Support Vector 
Machine, the highest accuracy achieved was 84.33% on a dataset of 300 records. Once 500 records have 
been utilized, TF-IDF accuracy increases to 85.32 percent (1-gram). The maximum accuracy improvement 
using TF-IDF while utilizing 1000 records is 81.72 percent (1-gram). Then, TF-IDF was used, and the 
maximum accuracy achieved was 83.69% with 1500 records (1-gram). In the end, we applied Support 
Vector Machine to the whole dataset and improved accuracies using TF-IDF by 84.16 percentage points 
(2-gram). The results show that Support Vector Machine achieved the maximum accuracy when fed 
TF-IDF (2-gram). 

Table 6. Evaluation Matrix of Support Vector Machine 

Model Records 
Feature  

Engineering 
Precision Recall F1-Score Accuracy 

Support Vector 
Machine 

300 
BoW 0.786035 0.78313 0.782754 0.783133 
TF-IDF 1-gram 0.843345 0.84337 0.843236 0.843373 
TF-IDF 2-gram 0.843986 0.84337 0.843557 0.843373 

500 
BoW 0.844472 0.81818 0.825412 0.818182 
TF-IDF 1-gram 0.874173 0.85315 0.858372 0.853147 
TF-IDF 2-gram 0.86772 0.83916 0.846259 0.839161 

1000 
BoW 0.837774 0.82759 0.832278 0.827586 
TF-IDF 1-gram 0.855625 0.81724 0.833805 0.817241 
TF-IDF 2-gram 0.851946 0.7931 0.819361 0.793103 

1500 
BoW 0.820064 0.8156 0.817753 0.815603 
TF-IDF 1-gram 0.864966 0.83688 0.850126 0.836879 
TF-IDF 2-gram 0.85454 0.82033 0.836709 0.820331 

2000 
BoW 0.804134 0.80396 0.803454 0.80396 
TF-IDF 1-gram 0.847226 0.84158 0.843565 0.841584 
TF-IDF 2-gram 0.84612 0.82574 0.833427 0.825743 

The graphical representation of the best results on different quantities of datasets using the Support Vector 
Machine classifier is shown below. 

 
Figure 9. Graph of results by Support Vector Machine 

79

80

81

82

83

84

85

86

300 Records 500 Records 1000 Records 1500 Records 2000 Records

Support Vector Machine

Accuracy



Journal of Computing & Biomedical Informatics                                                      SICAIET                                                                                     

ID : 008-SI/2024  

4.5 Extra Tree Classifier 
The Extra Tree Classifier was tested in conjunction with the Bag of Words (BoW) and TF-IDF feature 

engineering methods. Specifically, Extra Tree Classifier employs TF-IDF with a 2-gram weight and a 
1-gram weight. There are five methods for carrying out the tests. As a first step, we use 300 data points 
from past trials. When employing the TF-IDF (1-gram) method with Extra Tree Classifier, the highest 
accuracy achieved was 78.31% on a dataset of 300 records. Thereafter, when 500 records were utilized, 
the accuracy increased to 80.41 percent using BoW. In a similar vein, the best improvement in accuracy 
with BoW while employing 1000 records is 80.69 percent. Then, TF-IDF was applied to the same set of 
1500 records, and the best accuracy achieved was 80.85%. (1-gram). Ultimately, we applied Extra Tree 
Classifier on the whole dataset and improved accuracy by 81.38% using BoW. The results show that 
when combined with BoW, Extra Tree Classifier produces the maximum accuracy. 

Table 7. Evaluation Matrix of Extra Tree Classifier 

Model Records Feature Engineering Precision Recall F1-Score Accuracy 

Extra Tree 
Classifier 

300 
BoW 0.771845 0.77108 0.771353 0.771084 
TF-IDF 1-gram 0.789586 0.78313 0.784542 0.783133 
TF-IDF 2-gram 0.775333 0.74699 0.752481 0.746988 

500 
BoW 0.856584 0.8042 0.817669 0.804196 
TF-IDF 1-gram 0.854128 0.79021 0.80702 0.79021 
TF-IDF 2-gram 0.870907 0.73427 0.774599 0.734266 

1000 
BoW 0.863205 0.8069 0.831403 0.806897 
TF-IDF 1-gram 0.863969 0.80345 0.829954 0.803448 
TF-IDF 2-gram 0.869942 0.78621 0.824377 0.786207 

1500 
BoW 0.840714 0.80615 0.822922 0.806147 
TF-IDF 1-gram 0.843269 0.80851 0.825379 0.808511 
TF-IDF 2-gram 0.839443 0.80142 0.81999 0.801418 

2000 
BoW 0.838473 0.81386 0.825409 0.813861 
TF-IDF 1-gram 0.833596 0.80792 0.819414 0.807921 
TF-IDF 2-gram 0.826228 0.79604 0.808693 0.79604 

The graphical representation of the best results on different quantities of datasets using the Extra Tree 
Classifier is shown below. 

 
Figure 10. Graph of results by Extra Tree Classifier 
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5. Conclusion 
In the end, we uncovered a number of interesting details about the dataset as well as the effectiveness 

of feature engineering methods and machine learning models. The dataset utilized in this investigation 
contains a total of 2000 individual records with various clinical notes. Different types of textual 
information on patients are included in the various clinical notes, each of which is associated with a 
certain medical specialty. In the second set of columns, we provide therapy options based on the patient's 
medical history as documented in clinical notes. Before analyzing the text, it must be cleaned using 
various Natural Language Processing methods, such as the removal of stop words, punctuation, 
tokenization, etc. After the text has been cleaned, several feature engineering methods have been applied 
to it, including TF-IDF(1-gram and 2-grams) and Bag of Words (BoW). Then, the machine learning 
models' training and testing datasets are divided at 70:30. In order to anticipate therapies based on 
patient's clinical notes, six distinct machine learning models are used. Among these ML models are the 
Naive Bayes, Logistic Regression, Random Forest, Light GBM, Support Vector Machine, and Extra Tree 
Classifiers. Naive Bayes achieved the maximum accuracy, 86.75% with BoW, on a dataset of 300 records. 
Naive Bayes again outperformed all other methods with an accuracy of 87.41% using just 500 records 
from the training set. Naive Bayes again performed best when utilizing 1000 records, this time with an 
accuracy of 85.17 percent using BoW. Once again, after using up to 1500 records, Light GBM comes out 
on top with BoW. With an accuracy of 86.53 percent, Light GBM easily beat out other models. Using the 
BoW feature engineering approach, Logistic Regression performed best at the complete dataset level, 
with an accuracy of 85.94%. For this dataset, it is concluded that machine learning models do well when 
fed a Bag of Words (BoW). 
 

 
 

Figure 11. Overall accuracy scores of machine learning models 
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