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Abstract: The Internet of Automobiles (IoA) facilitates the exchange of safety-related messages 
among vehicles, thereby reducing road accidents. Nevertheless, this communication network is 
susceptible to a number of threats, including erroneous alerts and mispositioning of the vehicle. This 
paper addresses challenge of authenticating messages to distinguish normal packets from attack 
packets by proposing an approach to deep learning with binary classification. We utilize Rectified 
Linear Unit (ReLU) activation algorithms in conjunction with SoftMax classifiers for structured deep 
neural network to classify normal and malicious packets. The training dataset, prepared from 
KDD99 and CICIDS 2018 datasets, comprises 120,000 network packets with more than 40 features. 
Initial preprocessing involves using an autoencoder to eliminate irrelevant data, resulting in 22 
valuable features. The Deep Neural Network (DNN) model is trained using Google Colab, utilizing 
TensorFlow, and validated using a simulated dataset produced via network simulation. Accuracy 
of investigational findings is 99.48%, that is higher than current models built using convolutional 
and recurrent neural networks (RNN) and (CNN), respectively. Incorporating sophisticated 
anomaly detection methods with reinforcement learning approaches may present interesting 
directions for future study, improving the flexibility and resilience of car communication safety 
features in ever-changing Internet of Things.The research's primary findings highlight the deep 
learning-based techniques  potential to greatly improve the security and dependability of 
vehicular communication networks, opening the door for more secure and robust transportation 
networks in the age of the Internet of Automobiles. 
 
Keywords: Deep Neural Netwrok (DNN); Internet of Automobile (IoA); Deep learning; Binary 
classification; Cybersecurity. 

1. Introduction 
The Internet of Automobiles (IoA) serves a critical function in relaying protection messages and up-

holding the safety of drivers, passengers, pedestrians, and vehicles. Unlike traditional wired networks, 
which benefit from security measures like gateways and firewalls, wireless networks in vehicles are ex-
posed to safety threats that endanger the overall infrastructure.  

As part of the Internet of Vehicles, Vehicular Ad-hoc Networks, or VANETs, operate in an ad hoc 
fashion and can be the target of many malicious activities, such as impersonation, spamming, message 
tampering, and communication manipulation. One major challenge is enabling implementation of secure 
measures inside the Internet of Automobiles (IoA)[1]: careful implementation of security requirements are 
needed to guard against potential threats from adversaries and malicious automobile networks. An essen-
tial part of Auto Net security is intrusion detection, which refers to the capability for recognizing and stop-
ping inappropriate information flows. A number of techniques exist for intrusion detection and prevention, 
including artificial neural networks, statistical analysis, cluster analysis, and deep learning. Because of its 
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adaptive nature and ability to self-learn, these latter techniques, particularly deep learning, are useful for 
tracking, identifying and stopping invasions. 

It involves communicating with ad hoc vehicle networks, wayside assistance devices, cameras and 
the vehicle node, as well. Most people agree that detecting intruders safely involves using an intrusion 
detection system[2]. Every packet that is sent between vehicle nodes must be carefully inspected by the 
Intrusion Detection System (IDS). This protection system can distinguish between malicious and legitimate 
activity by using test data from the Internet of Automobiles (IoA).  

The basic arrangement of the Internet of Automobiles is depicted in Figure 1 below, where three cars, 
called OBU1 through OBU3, each have an Intrusion Detection System (IDS) neatly built into their On-Board 
Unit (OBU) module. These cars can be identified in the graphic as the designated trespasser vehicle; it is 
the fourth car with the OBU4 label, highlighted in yellow. This system also includes GPS and satellite tech-
nology implanted in every automobile to track the exact location of each vehicle. The complete integration 
of IDS with OBUs ensures continuous monitoring for any attempts at unauthorized access or intrusions 
within the cars, hence fortifying the security and safety measures incorporated into the Internet of Auto-
mobiles architecture.  

 
Figure 1. Internet of Automobile architecture showing various components for improved security. 
Figure 1 above demonstrates the standard Internet of Automobiles architecture, featuring automobiles 

equipped with the Intrusion Detection System which is easily integrated into the On-Board Unit (OBU) 
module. Moreover, Simulation of Urban Mobility simulator, facilitated creation of movement on networks 
and infrastructure on roads[3]. Diverse mockup scenarios encompassing networks with moderate, low, 
and significant high densities were executed, encompassing variations in network parameters such as net-
work size, packet size, transmission limit, routing techniques, etc. 

Within the field of artificial intelligence, deep learning is a subset of machine learning that has a big 
impact[4]. Input, output, and hidden layers are the three stages of a neural network's structure that make 
up the framework of deep learning. By using large datasets for learning, this structure improves efficiency 
in operation and outperforms traditional machine learning techniques. Additionally, deep learning 
demonstrates independent classification of features across datasets, enabling further development. Neural 
network layers contributing to computation and communication in DL include optimization, pooling, con-
volution, and SoftMax layers. The way these levels interact and are arranged is crucial, and in order to keep 
the network stable, weight optimization is required after every epoch, or repetition. 

Differences in faults are assessed at the analysis stage, and following every round, the matching 
weights are modified. Through the use of this flexible technique, networks can acquire knowledge more 
effectively, leading to improved accuracy and precision. The processing capacity required by Deep Neural 
Networks (DNN) is far more than that of traditional CPUs. As a result, a dedicated Graphical Processing 
Unit (GPU) is utilized. To develop and implement machine learning and deep learning applications, 
Google provides Google Collaboratory. Massive datasets may be accessed quickly and easily from remote 
servers using Google Cloud Storage thanks to this system, which supports several Python versions and 
execution environments. Google Collaboratory offers a high-performance computing environment for test-
ing and preserving learning models after the necessary files have been mounted and obtained. 

Network intrusion detection is a critical protection in automotive networks that safeguards onboard 
and wayside equipment. Recently, Deep Neural Networks—a branch of deep learning—have received a 
lot of attention in network intrusion detection research. Numerous research has demonstrated the efficient 
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use of deep learning methods to address challenges in network detection of intrusions. In addition to input 
and output layers, widely used deep neural networks (DNNs) incorporate multiple hidden layers.[5]. With 
improved data from a DNN model, the KDD-CUP 99 dataset showed satisfactory performance, with a 99.1% 
probability of detection and a 0.08 false alarm rate The successful network intrusion detection by the re-
searchers [6] was achieved using accelerated-DNN model, with supervised learning through autoencoders 
and SoftMax layers. Scientists in the survey [7] of this investigation used improved random forests and 
support vector (SVM) models on the NSL-KDD dataset to achieve 96% detection probability with a 4% 
false detection probability. 

Investigators demonstrated a recursive neural network-based network surveillance system with a 3.4% 
false alarm rate and 72.95% accuracy rate on the NSLKDD dataset. The investigators of this work also 
raised a combination approach based on LSTM-RNN that achieved 90% detection with a 16% false alarm 
rate on the ADFA dataset. Also, deep belief networks (DBN) have been used to detect intrusions in network 
systems [8]. 

Using random forests to pick characteristics based on fluctuating significance rankings, the investiga-
tors [9],123] have developed novel machine learning methods for attack prediction. Implementation of 
support vector machines with the chosen features was evaluated by the investigators [33] on KDD 99 data 
set, who demonstrate its effectiveness in comparison to classifiers using entire feature sets. 
In this research our contribution is as follows: 

Proposed novel deep learnig based algorithm for the detection of intrusion.  
Introduced advanced autoencoder based data preprocessing technique to enhance security and effi-

ciency for our detection model. 
Proposed deep learning model achieved a high rate of accuracy as compared to existing neural net-

work models. 
 
2. Materials and Methods 

Effective detection of actions and behaviors in vehicular networks is facilitated through network in-
trusion detection. Google Colab, provided by Google, is accessible to consumers with a Google Mail ac-
count. It provides functionality for both Tensor Processing Units (TPU) and Graphical Processing Units 
(GPU). 

Using captured network traffic, KDD’99[9]creates a dataset with 40 attributes for each network con-
nection. Our research utilizes the KDD'99 dataset to examine how well the suggested classifier separates 
legitimate packets from malicious packets for intrusion detection. The dataset It includes 23 different out-
put classes, with one class representing normal network connections and the remaining 22 classes repre-
senting numerous kinds of malicious networks. Distribution of records includes 97,277 (19.69%) normal 
links, 391,458 (79.24%) Denial-of-Service (DOS) attacks, and 4,107 (0.83%). 

Published in the year 2018 the CICIDS2018 dataset is a Network Intrusion Detection System (NIDS) 
from the Canadian Institute for Cybersecurity[10]. Upon request, it can be accessed publicly on the internet 
and includes both current and benign common assaults that mimic real-world data. From network traffic 
monitoring, the dataset's labelled flows are based on timestamps, source and destination IP addresses, 
source and destination ports, protocols, and threat categories. The dataset consists of numerous samples 
evenly distributed between normal traffic (8,000 samples) and various attacks such as Denial-of-Service 
(DoS)etc. Both of these datasets have been used for training and testing our Deep Neural Network model. 
The total amount of datasets for training, testing, and validation across CICIDS, KDD 99, and simulation 
is summarized in Table 1 below. Based on packet types, the dataset is divided into two categories: No 
Intervention and Intervention. The distribution of data for each type of packet in the training, testing, and 
validation sets is clearly shown by the aggregate findings. 

Table 1. Showcasing training, testing, and validation datasets for CICIDS, KDD 99, and Simulation, categorized by 
packet type 

Dataset CICIDS KDD 99 Simulation 

Packet type Training set Testing set Training set Testing set Validation set 

No Interven-
tion 20300 5000 22279 5000 9500 
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Intervention 20490 4100 24912 4100 7000 

Aggregate Re-
sult 50106 9000 47191 9000 15000 

A brief summary of the training, testing, and validation datasets from KDD 99, Simulation, and CI-
CIDS is given in Table 1 above, which is divided into categories based on the kind of packet. The Network 
Simulator simulates transport using an On-Board Unit and Roadside Unit in a range of dense or large 
systems, from lower-density to higher-density networks, with 40 to 500 automobile nodes and 20 to 40 
trespasser connections. Various assaults are used to produce trespassers, which are then reported in the 
log file alongside regular packets. Packets taken from the other two resources contain some incorporated 
characteristics from the simulation. To standardize the datasets, the log information files have been con-
verted to a single data format. The effectiveness of the deep learning model is evaluated using these simu-
lated datasets, especially for intruder detection in self-driving or self-driving automobiles[11] 
2.1. Proposed Methodology 

Our suggested preventive method for automotive networks is built on Deep Neural Networks (DNN). 
The method of detecting intrusions is split into different steps: the stage of preprocessing, stage of feature 
extraction, and the classification stage. The KDD dataset, which has more than 40 attributes for every net-
work data packet, is the dataset used in the present research. One important step is to identify characteris-
tics that have a high potential for intrusion research. Notable features are regarded as important contribu-
tions to this study since they influence the discovery process and reduce the percentage of expected fea-
tures obtained from the databases. The number of characteristics chosen has a significant impact on execu-
tion accuracy and speed. 

Preparation includes filtering and data normalization. Every packet number is normalized to fall be-
tween 0.0 and 1.0 using equation (1). This normalization of numerical data is assured to yield the best 
predictor for structured data Deep Neural Network (DNN) training. 

to calculate the z-score, which expresses the standard deviation from an observation's departure from 
the mean. The z-score is calculated using the equation that follows: 

𝒛 = 𝒙"𝒖
ó

                                                                                         (1) 
Here 𝒛 is the dataset's 𝒛 − 𝒔𝒄𝒐𝒓𝒆, which runs between 0 to 1, and 𝒙 is the observation's true value. 

The standard deviation is represented by ó, and the mean of all values is represented by µ. The lower and 
upper boundaries of the sigmoid activation function are fitted by these values. The primary characteristics 
are chosen with the goals of increasing detection classifier accuracy and precision and lowering false alarm 
rates. Using the idea of Optimization Selection (POS) approach, mathematical evaluation is utilized to 
choose primary attributes alongside elevated weight and substantial influence during feature selection 
stage. On the other hand, the Intrusion Detection System (IDS) becomes more efficient overall when su-
perfluous characteristics are removed since they increase the detection rate, decrease computation time, 
and demands less memory. The needed time drops by 10% and the memory consumption drops by 25% 
with the inclusion of 15 attributes. The sample of code below shows how to create a neural network, add 
11 nodes to the primary layer, and specify the form of the input characteristics. Figure 2 shows how each 
node functions or makes sense. 
𝑴𝒐𝒅𝒆𝒍	 = 	𝑺𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒂𝒍() 
𝑴𝒐𝒅𝒆𝒍 = 𝒂𝒅𝒅(𝑫𝒆𝒏𝒔𝒆(𝟏𝟎, 𝒊𝒏𝒑𝒖𝒕_𝒅𝒊𝒎 = 𝒙. 𝒔𝒉𝒂𝒑𝒆[𝟏], 𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 = ’𝒓𝒆𝒍𝒖’)) 

𝑺𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒂𝒍	() Initializes a neural network model where layers are added sequentially.𝑫𝒆𝒏𝒔𝒆	(𝟏𝟎) 
Adds a fully connected layer with 10 neurons. 𝒊𝒏𝒑𝒖𝒕_𝒅𝒊𝒎 = 𝒙. 𝒔𝒉𝒂𝒑𝒆[𝟏] specifies the input dimension of 
the layer, which is the number of features in the input data 'x'	𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 = ′𝒓𝒆𝒍𝒖′Sets the activation func-
tion of the layer to Rectified Linear Unit (ReLU), which introduces non-linearity to the model by outputting 
the input directly if it is positive, otherwise outputting zero. 

During the classification phase, the self-learning module's acquired features are used to determine the 
final test results. The classification module uses a SoftMax classifier, whose construction is carried out with 
the help of the subsequent statement. 
𝑴𝒐𝒅𝒆𝒍	 = 	𝒂𝒅𝒅(𝑫𝒆𝒏𝒔𝒆(𝒚. 𝒔𝒉𝒂𝒑𝒆, 𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 = ’𝒔𝒐𝒇𝒕𝒎𝒂𝒙’)) 

Out of the more than 40 features available in dataset, required features that have a high potential to 
identify trespassers are selected. These features include symbolic quantities (e.g., protocol), which need to 
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be changed by conveying each exclusive function a specific number. The node logic shown in Figure 2 
down below, includes the calculation 𝐻1𝑗 = ∑𝑖 = 1𝑛(𝑥𝑖 ⋅ 𝑤1𝑖) + 𝑏1, where 𝐻1𝑗 denotes the node's output. 
The weighted sum of the input values, 𝑥	𝑖 multiplied by their corresponding weights, 𝑤	1	𝑖, plus a bias 
factor, 𝑏%, are the components of this calculation. The resultant value is then subjected to the activation 
function 𝐻	11	 = 	1	 + 	𝑒	 − 𝐻	1𝑗, where 𝐻	11	 = 	1 + 𝑒 1 and using the sigmoid function to limit the result 
to a range between 0 and 1. Neural networks frequently use this kind of node logic to process input data 
and produce an output signal that may be analysed or interpreted further. 

            H11 

𝐻%& ∑ (𝑥' ∗ 𝑤%') + 𝑏%(
')%              𝐻%%

%
%*+!"#$%

        

Figure 2. Neural Network node computation and activation  
Figure 2, shown above, illustrates the computational process and activation function utilized, within 

a node in a neural network. Ten percent of the 493,300-link training collection was used for the dataset, we 
used in this investigation. All of the links in the labelled sequence, or about 4 million connections, make 
up our test set. This lets us use the whole dataset to test the program on unforeseen links. Six states are 
used to develop rules that properly categorize six separate assault categories up to the present execution 
stage. The two attack groups and 10% training dataset, yielded the following top three label distributions 
for attacks: Satan, Ipsweep, and Portsweep. 
										𝒌 = 𝟐 

𝑬𝒓𝒓𝒐𝒓	𝒕𝒐𝒕 = ∑ (𝒕𝒂𝒓𝒈𝒆𝒕 − 𝒐𝒖𝒕𝒑𝒖𝒕)𝟐
𝒌 = 𝟏

𝟏
𝟐                                                             (2) 

𝑬𝒓𝒓𝒐𝒓	𝒕𝒐𝒕 is calculated, along with the target label values and output value. 
𝑾𝒏𝒆𝒘	 = 	𝑾𝒐𝒍𝒅	 −	(𝜼	 ∗ 	𝑬𝒓𝒓𝒐𝒓𝒕𝒐𝒕)                                                           (3) 
Here  𝜼 𝑖𝑠 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒. The reliability of the model, diagnosing behaviors, and learning pace are 

all impacted.  
The use of the KDD and CICIDS datasets for feature extraction to train and test a Deep Neural 

Network (DNN) is demonstrated in Figure 3 below, which demonstrates an enhanced method of intrusion 
detection in vehicular networks. Furthermore, network simulator capabilities are used to improve the 
DNN's functionality and guarantee the creation of strong intrusion prevention system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. DNN-based intrusion detection in vehicle system. 

Figure 3, above shows strengthening DNN-based intrusion detection in vehicle networks by utilizing 
datasets and network simulator features. In the training phase, 80% of each dataset was utilized, while the 
remaining 20% was dedicated to testing the model. Furthermore, the suggested model was validated using 
the data set created by the network simulation. The accuracy of a normal or attack classifier model is 
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determined by classifying all of the analyzed packets using that model. Equation below illustrates the ac-
curacy assessment and computation[12]. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚	 = 	𝑷	(𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚	𝑰𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅	𝒂𝒔	𝑨𝒕𝒕𝒂𝒄𝒌 + 	𝑷	(𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚	𝑰𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅	𝒂𝒔	𝑵𝒐𝒓𝒎𝒂𝒍)	
𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚	 = 	 (𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆	𝑹𝒂𝒕𝒆):	𝑷	(𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚	𝑰𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅	𝒂𝒔	𝑨𝒕𝒕𝒂𝒄𝒌)	
𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚	 = 	 (𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆	𝑹𝒂𝒕𝒆): 𝑷	(𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚	𝑰𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅	𝒂𝒔	𝑵𝒐𝒓𝒎𝒂𝒍) 

It is insufficient to gauge the model's performance only by its accuracy. Confusion matrix provides 
numerous functioning metrics, such as precision and recall, in addition to the F1-Score, which provides a 
balanced evaluation by considering equivalently significant to both actual and predicted true and false 
data. The confusion matrix created to solve the shortcomings of accuracy measurement is displayed in 
Table 2 below. Four important indications are shown in this matrix, which tabulates the results of the model 
predictions: False Attack (FA), False Normal (FN), True Attack (TA), and True Normal (TN). These num-
bers are important corroboration indicators that provide a more nuanced evaluation of accuracy by indi-
cating how the model's predictions vary depending on the circumstances. 

Table 2. A Confusion Matrix illustrating the outcomes of model predictions. 

Datasets 
Model Prediction 

1 0 

 
Values in matrix 

Ajack values True Ajack 
value (TA) 

False Normal 
value (FN) 

Normal value False Ajack 
value (FA) 

True Normal 
value (TN) 

 
Table 2 above shows the four possible outcomes are false attack, false normal, true attack, and false 

normal that deviate from the model predictions and are utilized as various corroborating indicators to 
assess accuracy[13] .Equation (4) and (5) are used in accuracy tests to differentiate between the identifica-
tion of attack and normal packets. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚	 = 	 𝑻𝒐𝒕𝒂𝒍	𝒄𝒐𝒓𝒓𝒆𝒄𝒕	𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔	
𝑻𝒐𝒕𝒂𝒍	𝒊𝒕𝒆𝒎𝒔	𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒆𝒅

		= 			 (𝑻𝑨*𝑻𝑵)
(𝐓𝐀*𝐓𝐍*𝐅𝐀*𝐅𝐍)

                                            (4) 

Equation (4) is used to determine the model's accuracy. It calculates the percentage of each test batch 
sample that can be accurately recognized as threat samples. It expresses, in particular, the proportion of 
accurately anticipated attack packets to all predicted attack packets. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑨𝒄𝒕𝒖𝒂𝒍	𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅	𝑨𝒕𝒕𝒂𝒄𝒌		
𝑻𝒐𝒕𝒂𝒍	𝒂𝒕𝒕𝒂𝒄𝒌	𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

 = 𝑻𝑨
𝑻𝑨*𝑭𝑨																

                                                        (5) 

Recall is one performance indicator of the suggested approach that is evaluated using equation (6). 
Recall, which shows the percentage of accurately labeled assault, a reliability metric for the classifier is the 
number of instances of each assault sample in the test set. It measures the percentage of real attacked pack-
ets that are accurately identified as targeted; it is also known as sensitivity. 

𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅	𝒂𝒕𝒕𝒂𝒄𝒌
𝑻𝒐𝒕𝒂𝒍	𝒂𝒄𝒕𝒖𝒂𝒍	𝒂𝒕𝒕𝒂𝒄𝒌𝒔

= 𝑻𝑨
𝑻𝑨*𝑭𝑵

                                                              (6) 
Equation (7) is used to get the recall and precision scores' harmonic mean, or the F1 score. To put it 

simply, the F1 score offers a thorough evaluation of the model's accuracy by weighing true and false pre-
dictions to help identify the optimal model. 

𝑭𝟏	𝑺𝒄𝒐𝒓𝒆 = 	 𝟐𝑿	𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏	𝑿	𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏*𝑹𝒆𝒄𝒂𝒍𝒍

                                                                  (7) 
3. Results 

Figure 4 compares the findings of multiple methods used to assess the Intrusion Detection System 
model's overall detection capability for intrusion data. Determining the assessment metrics of the Deep 
Neural Network (DNN)-based network intrusion detection model accurately is critical to its efficacy. 
Greater values of accuracy, precision, recall, and F1-score indicate a lesser False Alarm Rate, reflecting 
efficiency of model. In an ideal classification scenario, precision and recall would be 1, and the False Alarm 
Rate would be 0. 

The dataset comprises 120,000 data points and 40 plus characteristics. Amid 22 diverse output classes, 
the non-intrusive class represents legitimate contact links[14], remaining 20 classes depict numerous kinds 
of malicious links. Most of the data points belong to "normal" set called good connections, accounting for 
approximately 62%. The "Neptune" class (35.594%) and "back" class are prevalent among the categories 
representing bad connections (0.650%). Also, some classes have minimal data points, each with lesser than 
10 instances per class, having lowermost amount. Given that unequal distribution of data points, it is 
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essential to develop a model capable of accurately classifying all those points that consist of these diverse 
groups. 

Figure 5 presents a comparative evaluation [15] of suggested model that is based on Deep Neural 
Networks (DNN) regarding F1-score, recall, accuracy, and precision. With a precision score of 99.48% Fig-
ure 4 below illustrates the better performance of our Deep Neural Network (DNN) model that was trained 
on the KDD 99 dataset. This is superior to both the accuracy reported in the literature at 78.24% and the 
Convolutional Neural Network (CNN) model, which achieved 96.62% precision. 

  
Figure 4. Deep Neural Network (DNN) Model Performance Comparison 

with various algorithms. 
Figure 4 above shows a deep neural network model performance comparison with various algo-

rithms. A performance comparison of models, including our suggested Deep Neural Network (DNN), 
Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Convolutional Neural Network 
(CNN), is displayed in Figure 5 below. Evaluation metrics are employed to evaluate the effectiveness of 
each model in terms of intrusion detection inside vehicular networks. These metrics include precision, 
recall, and F1-score. Our DNN model performs better on a variety of criteria, proving that it is useful for 
improving security protocols and guaranteeing strong intrusion detection. 

Figure 5. Contrast of evaluation metrics in various models. 
Figure 5 above shows evaluation matrices like accuracy, F1 score, and recall comparison with various 

models. The accuracy metrics attained by several algorithms, such as the Grated Recurrent Unit (GRU), 
Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and our suggested Deep Neu-
ral Network (DNN), are compared in the Table 3 below. Notably, with an astounding accuracy score of 



Journal of Computing & Biomedical Informatics                                                      SICAIET 

ID : 019-SI/2024   

99.48%, the suggested DNN model beats all other methods. This demonstrates how well our method works 
to provide better intrusion detection performance in automotive networks. 

Table 3. Accuracy comparison of algorithms, highlighting proposed DNN in network intrusion detec-
tion. 

Sr. Algorithm Accuracy 
1 
2 

Grated Recurrent Unit (GRU) 
 Long Short-Term Memory (LSTM) 

88.4% 
91.7% 

3 Convolutional Neural Network (CNN) 96.2% 
4 Proposed Deep Neural Network (DNN) 99.48% 

 
The table 3 above compares accuracy metrics of diverse algorithms, highlighting the proposed Deep 

Neural Network (DNN). The DNN outperforms the other techniques in the table with an accuracy of 
99.48%. In order to demonstrate how well different algorithms perform in accurately recognizing positive 
examples, seizing all positive occurrences, and maintaining an overall balance between precision and re-
call, Metrics for recall, precision, and F1 score are shown for each approach utilized in the classification job 
in Table 4 below. Among the proposed algorithms, the Deep Neural Network (DNN) performs the best 
overall, with an F1 score of 99%, recall of 97%, and precision of 98%, clearly outperforming the others in 
the evaluation criteria. 

Table 4. Evaluation matrices comparison with proposed model 
Sr Recall Precision F1 Score 

GRU-RNN 82% 87%  87% 
LSTM-RNN  83% 85% 85% 

CNN  92% 94%  96% 
Proposed DNN   97% 98% 99% 

 
Metrics for recall, precision and F1 score are shown for each approach utilized in the classification job 

in Table 4 above. 
 
4. Conclusion and Future Work 

The proposal and assessment of a novel intrusion prevention technique created especially for the 
Internet of Automobiles (IoA) are discussed in this paper. Our technology is designed to handle the par-
ticular security difficulties presented by networked automobile systems, guaranteeing the secure and 
dependable transfer of critical information within automobile networks.  

The results of our test represent the robustness and effectiveness of our intrusion prevention system 
on a variety of operating settings, corroborating our rigorous assessment process following extensive 
hands-on with military datasets. Not only do our results show an incredible accuracy of 99.48%, this 
stage of precision demonstrates how well the suggested model is at identifying and mitigating potential 
vulnerabilities in IoT systems. 

Our research roadmap provides a range of potential future paths for enhancing and refining our 
safeguarding system. We are committed to exploring fresh datasets in order to increase the model's train-
ing material and improve its adaptability in real-time. Furthermore, we want to tailor the model to opti-
mize feature selection and reduce model training duration, hence enhancing net performance. To find 
ways to enhance our system's effectiveness across a range of IoA instances, we are also eager to explore 
additional advanced machine learning techniques including ResNet, EfficientNet, and Deep Belief Net-
works (DBNs). In conclusion, our technique for preventing intrusions represents a significant advance-
ment in safeguarding the reliability and safety of car networks connected to the Internet of Cars. 
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