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Abstract: Deep learning techniques are crucial in biomedical research, particularly in analyzing 
genomic data. Our research aims to overcome limitations of existing prognostic models for Mantle 
Cell Lymphoma (MCL) by introducing a CNN -based model trained on the entire genomic dataset 
and clinical data. The model is aimed at tissue and mutation specific diagnosis of MCL cancer thus 
resulting into increased diagnostic accuracy of the prognostic estimate obtained, which also 
increases the volume of the data required for correct medical decision making. The work applies 
convolutional neural network to various patient populations and clinical settings by assessing 
robustness and generalization properties. The dialogue with the CNN-based model should be 
explained in a way that is easily understandable. Our work starts with the creation of a genomic 
database through which a CNN-type model is trained, gradually improving the prediction, 
assessing the metrics of model performance, comparing it with what is already in the genomics 
data field, testing the stability and applicability of our models, interpreting the results of model 
validation, and taking the MCL research to the next level by outperforming the previous works in 
accuracy. 
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1. Introduction 
     The use of genomic data and deep learning techniques in predictive detection in MCL gives a clear 
and precise view of the complicated nature of MCL[1]. In this context, it helps to diagnose the disease 
more accurately due to the genetic features as well as clinical information, thus risk assessment can be 
done more precisely. By bringing together genetic data to determine targeted medicines based on the 
molecular profiles of individual cases, the integration of genetic data enables the development of 
personalised treatment plans. [4]. In a nutshell, this reveals novel prognostic markers which advance our 
knowledge about the biology of MCL to suggest the development of new therapeutic approaches The 
gap in MCL prognostic detection is to use DL and genomic data together[5]. To begin with many data 
problems still remain in the standardization and integration of genetic data from different sources. The 
establishment of strong protocols for harmonizing and integrating data from various platforms is a pre-
requisite for the data to be reliable and accurate. Additionally, to facilitate physicians to understand 
model predictions and prompt their use in clinical medicine, the Deep Learning algorithms' 
interpretability and explainability need to be enhanced. Finally, among the aspects that should be 
resolved is using these models in routine clinical practice as well as the external validation of the results 
in sample datasets, and the connection to electronic health records, for example. Closing the gap in 
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research by means of the field of Prognostic Detection in MCL utilising Deep Learning and associated 
Genomic Data can be possible by such means as identification of new diagnoses, personalised treatment 
approaches, and Lastly, this finding offers a great opportunity to uplift MCL patient life and improve the 
development of individualized treatments for other cancers. AI-based Deep Learning algorithms, 
comprehensive integration of multiple genomic datasets, external validation, and clinical implementation 
were seen as distinct features of Prognostic Detection in MCL Using Deep Learning and Genomic Data 
made compared with predecessors. Improvement of prognostic models for MCL by providing more 
accurate and tailored prognostic models contributes to the progress of the discipline.There are some 
issues including data integration and standardization, explanatory power of the model, and the 
validation approach on different datasets and use in the clinical contexts as the main areas of current 
research. These projects join hands to fulfil their aim of positively influencing patient outcomes and 
developing personalised treatment for MCL by enhancing the value of therapeutics, accuracy and 
reliability of prognostic models [8]. Cancer is one of the diseases that have been the most common and 
one of the most complicated to people. This topic has been the subject of extensive investigation in the 
last few decades. Over the period of time, huge advancements in the field of cancer biology have 
happened, and several subtypes of the disease have been identified, and modern-day methods of 
prognosis, treatment, and management have come up. Among the many cryptic cancers medical 
expertise can only guess at, Mantle Cell Lymphoma (MCL) is a formidable and elusive enemy. The 
following brief issues about the MCL and why precise forecasting is necessary in its treatment are 
discussed in this overview [9]. Prognostic identification for cancer, especially Mantle Cell Lymphoma, is 
an extremely cruicial aspect in oncology. Prognosis in the medical context is trying to predict the further 
development of the illness in a particular patient, based on several criteria such as progress of the 
disease, treatment response and overall survival[5]. The provision of precise prognostic tools is the basis 
of personalised medicine since clinicians use them to tailor a treatment plan to the needs of each patient. 
Correct prognostication is one of the most important aspects of managing MCL, which is often diagnosed 
with highly variable clinical behaviour [7, 8]. Prognostic studies of MCL have always been defined by 
clinical and histological factors. These include the patient’s age at diagnosis, the stage of the disease, and 
the type of the tumour.(9). Studies by scientists have shown that these markers have indeed been very 
helpful in formulating treatment strategies and projecting patient outcomes, however they do not always 
meet the standards of precision and uniformity that modern clinical practice requires in order to predict 
a specific outcome[10, 11]. This work tacklesthe hurdles in current machine learning models for 
prognostic modeling are addressed by solving the knowledge gap.The lack of the availability of a narrow 
genomic dataset for MCL, made the creation of accurate prognostic models and their implementation in 
routine diagnostics of patients difficult if not impossible ability for mirroring the intricate genome. In 
addition, diagnostic procedures now in use are not able to consider through clinical data and molecular 
modes, which develops the deprivation of meaningful outcome evaluations.The research they are instead 
formulated to address this problem. These would be sequencing of the entire genome, genetics studies, 
and more complete medical records of individuals related to genetic diseases and/or disorders, training a 
CNN-centered diagnostic model, precision enhancement, assessing clinical relevance exploring the 
robustness, generalizability and interpretability of the model, explaining model decisions and using the 
model for an implementation of further systems. Field of MCL research in a general broad view. An 
orderly flow is presented in the introduction.The second part gives a broad view of the research on 
metastatic castration-resistant cancer (MCL) main features of the writing; Part 3 describes the 
methodology; Part 4 presents the results that are discussed to enlarge understanding implications, and 
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Part 5 is the last one summarizing suggestions for additional research. These tactics assure that we do the 
job well the investigation of the genetic data used for the MCL (Mutational Cancer Landscape) is of great 
help because of the information acquired scientific and medical sectors. 
 
2. Literature Review  
      In the course of the last 20 years, genomics underwent an unforeseen revolution.High-throughput by 
developing sequencing techniques including next-generation sequencing (NGS), the creation of 
comprehensive disease genomes is possible genomic profiles for cancer patients. The expression patterns 
of genes, copy number variations, genetic mutations, and in these profiles epigenetic modifications are 
covered in detail[12].A once-in-a-lifetime opportunity toexplore the subtle molecular scenery of cancer 
and acquire vital clues about its origin the factors of advance, efficacy and progress are arced with this 
flood of genetic data. DL, an AI type, has changed a lot of scientific and technological areas at the same 
time[13].Because of their exceptional performance of tasks involving speech recognition, natural 
language processing, and image classification. CNN’s a kind of deep learning models are ahead in the 
trend.Because of theirability to analyze and distinguish nuanced patterns and features in complicated 
data, the demand for them is growing application in genomics that data is represented in 
multidimensional arrays[14].This study digs into the intersection of cancer prediction, deep learning, 
genetics, and the intriguing realm of mantle cell lymphoma (MCL). Our aim is to introduce a fresh 
method for forecasting outcomes by tapping into the vast genetic datasets and leveraging the 
computational power of convolutional neural networks. Our primary goal is to develop a prognostic tool 
that is dependable, understandable, and of practical value to healthcare providers, aiding them in 
making informed treatment decisions for patients with MCL[15].  
     Finding the missing links in the current prognostic methods is our mission. We utilize novel methods 
that are based on molecular features and deep learning to create highly accurate prognostic models on 
genetic data. We aim to leave our mark in the emerging area of personalized medicine by the means of 
this research. The concept of this method is founded in the necessity to step away from the old concept of 
the universal cancer treatment and to move towards the personalized therapies based on patients' genes 
[16]. As to the better view of the lymphoma, manifold results from the theses will be investigated such as 
methodology, findings, as well as the probable implications in the coming chapters. As we transition 
towards a future where cancer diagnosis changes from just looking at numbers, to knowing the cancer 
Prognosis due to genomic data, and even data-driven treatment strategies that foster hope, and recovery 
we will marvel at the hard work of scientists and engineers. On the way, we will illuminate new 
unknown lands of cell proliferation and the complex emergent nature of leukemia, hence helping with 
the advancement of medicine advances in understanding this multifactorial phenomenon[17]. 
     Remarkable progress has been made in understanding, diagnosing, and treatment of cancer; however, 
the accurate prediction of the patients' prognosis is a quite difficult task for both patients, doctors, and 
researchers. In the case of mantle cell lymphoma (MCL), which is a rare and aggressive subtype of non-
Hodgkin lymphoma, the investigation might help solve an important variable in the cancer prognosis 
puzzle[18]. 
     Despite the important achievements in "understanding", "detecting" and "treating" malignancy, 
correctly forecasting the outcome remains one of the biggest problems that those who suffer from the 
disease did, as well as doctors, researchers. For a subtype of non-Hodgkin lymphoma which is called 
Mantle Cell Lymphoma (MCL) and is a rare and aggressive, exploration of MCL might provide valuable 
hints for understanding the complex puzzle of cancer prognosis.[19]. The understanding of cancer has 
undergone a revolution with genomic data, which is a store of valuable information about the genes of 
cancerous cells. This is a breakthrough which enables more proactive diagnosis and management of the 
disease due to the fact that it becomes easier to detect the particular biological mechanisms of the 
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disease[20]. While the information genetic data offer is priceless, its complexity and the huge amount of it 
form important hurdles[21].We employ imaging data and machine learning algorithms to classify 
different types of neoplasm. 
     This non-invasive method enhances patient outcomes and expands treatment options, while also 
staying abreast of advancements in neuro-oncology and improving diagnostic capabilities[22]. The study 
analyzed imaging data to diagnose glioblastoma using ML approaches based on radiomics. The best 
model had excellent sensitivity, specificity, and accuracy when Distance Correlation and linear 
discriminant evaluation were coupled. Further research is required to confirm findings[23].The biotic 
variation of diffuse large lymphoma B-cell was investigated using the Eco typer ML  framework. This 
resulted in the identification of five distinct cell states with variable correlations to prognosis and degree 
of differentiation, as well as significant diversity across 12 clans within the tumour microenvironment 
[24].  
     The work alters cancer diagnosis and therapy by using RNA sequencing and machine learning to 
recreate the environment surrounding the tumour in a scatter B-cell lymphoma, showing various cell 
states and relations [25]. The tumour ecosystem has a major impact on treatment response, according to a 
research including 168 patients with breast cancer. This finding emphasises the necessity for a 
comprehensive approach to realizing and creating successful treatment plans[26]. In comparison to guide 
model, a machine learning model has demonstrated better predictive ability for the preoperative 
prediction of high general response in persons undergoing treatment[27]. The study tackles the paradox 
of those with higher BMIs demonstrating better cancer outcomes, underscoring the necessity for a 
comprehensive knowledge of cancer kind, stage, and treatment approaches[28].According to a research 
on lymphoma patients gross individuals and those with a 5% rise in BMI had worse lymphoma-specific 
survival. This finding emphasizes the need of weight control techniques after diagnosis[29]. The ML 
system XGBoost (2016) uses an algorithm that takes simplicity into account together with a weighted 
quantile drawing to improve efficiency and scalability. It makes use of data compression, segmentation, 
and storage visitation patterns, for success and scalability in structured prediction ranking , and 
categorization[30]. The work presents XGBoost, a gradient boosting approach that combines regularized 
models, column sampling, and sparsity-aware learning to classify cancer, It performs remarkably well in 
a variety of applications[31]. In order to classify cancer in microarray datasets, the paper presents 
XGBoost-MOGA, a two-stage gene selection approach that performs better than existing algorithms in 
terms of accuracy, F-score, precision, and recall [32]. A non-invasive DMDS employing wristband PPG 
signal and physiological data was made possible by Breiman's CART innovation. The accuracy of the 
Hybrid FS-based XGBoost system is 99.93% [33]. Breiman, Friedman, Stone, and Olshen's monograph 
"Classification and Regression Trees" explores the development of tree approaches in statistical analysis, 
emphasising the influence of computers on tree usage and its theoretical and practical features[34]. 
Hastie is the author of "The Essentials of Statistical Training Information Mining, Deduction, and 
Prediction.", Tibshirani, and Friedman that provides a comprehensive understanding of numerical 
learning methodologies, including data analysis, deduction, and predictive modeling, advancing 
knowledge and practices across various domains[35]. PCNSL is a prevalent brain tumor, affecting 3% of 
primary brain tumors. Diagnosis confirmed through stereotactic biopsy, treatment standardized, with 
polychemotherapy for under 60, chemotherapy for over 60 [36]. The International Conference on 
Machine Learning paper explores Shapley values' application in model explanation, revealing multiple 
values and their implications, contributing to the evolving landscape of model explanation 
techniques[37]. This study reviews deep learning's application in cancer diagnosis, examining 
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methodologies, advancements, and challenges, contributing to ongoing discussions on computational 
techniques for accurate cancer detection[38]. The 2020 AI system for breast cancer detection has shown 
promising results in analyzing diverse datasets, highlighting the importance of international 
collaboration in advancing healthcare technologies[39]. Treasure Island, published in 2022 by StatPearls 
Publishing, offers a comprehensive guide on Quality of diagnostic tests, focusing on probability metrics, 
predict amounts, empathy, and applicability [40].The study on MCL uses a machine learning model, the 
"integrative MIPI" to stratify disease using clinicopathologic, cytogenetic, and genomic factors. It 
highlights prognostic features baseline factors, and interactions between clinical exposome features and 
genomic factors[41]. The research assesses LR as the main therapy for MCL, and the results are 
encouraging, with a maximal continuation period of 64 months, a strong 3-year PFS, and excellent 
response rates[42]. 
 
3. Proposed Methodology 
     With this technology, we use a CNN model to analyse genomic data for predictions of tissue type and 
mutation. The process of feature engineering begins with data preparation, which includes importing the 
genomic dataset and handling some features at initially. To get the data ready for CNN input, we encode 
categorical variables and establish numerical columns. The dataset is then separated into learning, test, 
and assurance sets. Subsequently, a CNN model is constructed using Keras Tuner for hyperparameter 
optimisation throughout the model creation and tuning phase. A Random Search method is used to 
choose the optimal hyperparameters. Next, we build a CNN model with several outputs to predict both 
tissue types and mutations at the same time. Using the training and validation datasets, the model is 
assembled and trained. Evaluation metrics are computed for both mutation and tissue predictions, 
including test loss, accuracy, sensitivity, specificity, and F1 scores. Reports on classification offer more 
insights into the model's functionality. The process culminates in visualisations that offer a thorough 
grasp of the model's predictive abilities. Examples of these visualisations include line plots that showcase 
predictions for mutation and tissue. Furthermore, the feature relevance in mutation type prediction is 
interpreted using SHAP (SHapley Additive exPlanations) values. This all-inclusive method enables a full 
examination and comprehension of genetic data for predictions of tissue type and mutation. Figure 3.1 
showcase the process. 
3.1 Loading and Preprocessing Genomic Dataset 
      Involves resolving missing values, guaranteeing data integrity, and importing the genomic 
information  for preliminary processing. 
3.2 Feature Selection and Encoding 
      Choosing pertinent characteristics for the analysis while removing identifiers such as "Timestamp" 
and "Patient_ID." One-hot encoding is used to transform the input for categorical variables into a format 
appropriate for machine learning models. 
3.3 Normalization and Reshaping for CNN Input 
      Numerical features are normalized using Min-Max Scaling, ensuring that all features contribute 
equally. Data is reshaped to fit the input requirements of Convolutional Neural Networks (CNNs). 
3.4 Target Variable Encoding 
      Encoding the target variables ('Mutation_Type' and 'Tissue_Type') using label encoding, preparing 
them for classification tasks. 
3.5 Hyperparameter Tuning with Keras Tuner 
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      Utilizing the Keras Tuner library to systematically search for the optimal hyperparameters for the 
CNN model, enhancing its performance. 
3.6 Model Architecture and Construction 
      Defining the CNN model structure, specifying the number of layers, filter sizes, and activation 
functions based on the tuned hyperparameters. 
3.7 Compilation and Training 
      Compiling the model with appropriate loss functions and metrics. The model is then trained on the 
training set, with validation data used to monitor its performance and prevent overfitting. 

 

Figure 1. Proposed Methodology 
3.8 Evaluation Metrics 

This section encompasses various metrics providing a comprehensive overview of model 
performance. 
• Test Loss 
• Test Mutation Accuracy 
• Test Tissue Accuracy 
• Train Loss 
• Train Mutation Accuracy 
• Train Tissue Accuracy 
• Mutation Validation Accuracy 
• Tissue Validation Accuracy 
• Sensitivity and Specificity Analysis 
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4 Results and Discussion 
4.1 Overall Model Performance  
     Give a basic performance summary of the model, including metrics like overall accuracy, loss, and any 
other pertinent global indicators.. 
4.1.1 CNN Model Performance 
      We were able to attain both test and training accuracy and test and training loss. As shown in the 
Table 4.1.  

Table 1. CNN Model Results 
Parameters Performance 
Test Loss 1.38 
Test Mutation Accuracy 1.04 
Test Tissue Accuracy 0.33 
Train Loss 0.96 
Train Mutation Accuracy 0.69 
Test Tissue Accuracy 0.27 

     Graphical representation of model performance is shown in Figure 4.1. 

 

Figure 2. CNN Model Performance 
4.1.2 Validation Set Performance 
      The proposed model achieved a mutation and tissue validation accuracy of 93.33%, depicted 
graphically as the highest tissue validation accuracy in Figure 4.2. 

 

Figure 3. Validation Set Performance 
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4.2 Model Evaluation and Analysis 
      The following part of the chapter is a brief review of the different aspects of assessment and analysis of the 
models covered detailed predictions for validation samples, the outcome of mutation prediction, and a deep 
analysisnof metrics related to specificity and sensitivity. It gives a detailed description of the workings of the 
model and the predictive accuracy on tissue and mutation types. 
4.2.1 Tissues Prediction for Validation Samples 
      Ways of identifying tissue types precisely involves a structured approach validation cohort of Mantle Cell 
Lymphoma (MCL). Care is taken while conducting data preparation to match the features of training data with 
validation samples his/her them that undergone proper preprocessing, as shown in Figure 4.3. 
 

 
Figure 4. Tissue Predictions for Validation Samples 

4.2.2 Mutation Prediction for Validation Samples 
       The variant calling of mutations for the validation samples in mantle cell lymphoma (MCL) is a 
multiplexion comprehensive approach acting as a convincing requirement. First of all, making ensure the data 
is prepared carefully with validation is necessary samples are required to be properly pre-processed and 
matched to the features included during the training set,  as shown in Figure 4.4. 

 
Figure 5. Mutation Predictions for Validation Samples 

4.2.3 Specificity and Sensitivity 
      The results of sensitivity and specificity are shown in the Figure 6. 
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Figure 6. Specificity & Sensitivity Results 

The above chart was generated on the basis of the Table 4.2 below. 
Table 2. Specificity & Sensitivity 

Metrics Metric Values 
Sensitivity Mutation 0.4286 
Specificity Mutation 0.1429 
Sensitivity Tissue 0.9375 
Specificity Tissue 0.9286 

4.2.4 Specificity and Sensitivity Comparison 
      The comparison shows a clear difference in the performance of both, as shown in Figure 4.6. 

 
Figure 7. Specificity & Sensitivity Comparison 

4.3 Feature Important Analysis 
      Discuss the insights gained from the SHAP values for feature importance. Identify the key genomic 
features that significantly contribute to the model's decision-making process. 
4.3.1 MCL features 
      Prioritizing key features is crucial for understanding model decisions. The MCL Features Importance 
plot below in Figure 4.7 reveals the significance of each feature as determined by SHAP values, shedding 
light on their impact on the model's predictions. 
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Figure 8. MCL Importance 

4.3.2 SHAP Values 
      The SHAP (SHapley Additive exPlanations) values offer insights into the impact of individual 
features on the model's output. The visualization below in Figure 4.8 illustrates the contributions of 
different features, providing a comprehensive understanding of how they influence the predicted 
outcomes. 
4.4 Classification Report 
      The detailed classification reports for both mutation and tissue types. Identifying where the model 
performs exceptionally well based on training or test set. 
4.4.1 Training Set Classification Report 
      It presents an in-depth evaluation of the way a deep learning or machine learning model performed 
throughout the training phase. This report includes a number of important indicators to evaluate how 
well the model classifies cases from the training dataset show in Table 4.3. 
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Figure 9. SHAP Values 

Table 3. Training Accuracy  
Mutation Type (Train) Tissue Type (Train) 

Precision 0.73 0.99 
Recall 0.75 0.99 
F1 Score 0.74 0.99 
Accuracy 0.78 0.99 

     Graphical representation of training set report is illustrated in Figure 4.9. 
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Figure 10. Training Set Report 

4.4.2 Test Set Classification Report 
     Test set report offers a thorough examination of many measures, including as accuracy, precision, 
recall (sensitivity), F1 score, correctness, and support, in order to evaluate how well the model classified 
instances from the test dataset, as shown in the Table 4.4. 

Table 4.Test Accuracy  
Mutation Type (Test) Tissue Type (Test) 

Precision 0.4 1 
Recall 0.67 1 
F1 Score 0.5 1 
Accuracy 0.5 1 

      Recall quantifies the model's capacity to accurately choose positive occurrences from among all of the 
real positives in the test set, whereas precision shows the accuracy of positive predictions illustrated in 
Figure 4.10. 

 

Figure 11. Test Set Report 
4.5 Comparison with Previous Work 

 
Figure 12.  Comparison Chart 
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5. Conclusions 
      In this study, the combined deployment of CNNs with genomic information enables the betterment of 
prognostic diagnosis in MCL. Using CNNs helps more refined understanding of the illness and its 
predictive markers by revealing of convoluted patterns hidden in genomic datasets. This method not 
only enhances the accuracy of prognostic predictions but also enables the development of personalized 
medical practice based on individual genetic characteristics. The approaches pave the way for 
individualized treatment regimens tailored to individual genetic profiles and provide better accuracy in 
predicting the prognosis. Chromosomal aberrations in a wide range may be processed by the tolerance to 
plasticity, which opens the multiple molecular perspectives for the disease. Complex expertise of this 
completeness is needed to make tailor-made therapies and detecting some peculiar genomic aberrations. 
Nevertheless, some existing problems have to be overcome, such as the necessity of huge datasets, data 
standardisation, as well as interpretability of deep learning models. With genetic data blended with 
CNNs, a personalised and highly focused solution might be given, and the cancer detection method 
might be revolutionised. To enhance the accuracy of MCL in using CNN the genetic data is combined. 
The aims are therapy recommendations tailored to individuals, biomarker discovery, genetic feature 
extraction, and improved diagnosis accuracy. Diverse initiatives that include database extension, multi-
omics data incorporation, and treatment response prediction are currently in the pipeline. The current 
objectives are being widen and progressed by the present activities through standardization and 
coordination.  

  



Journal of Computing & Biomedical Informatics                                                                                                            SICAIET                                               

ID : 013-SI/2024  

References 
1. Jain P, Wang M. Mantle cell lymphoma in 2022 – a comprehensive update on molecular pathogenesis, risk stratification, 

clinical approach, and current and novel treatments. Am J Hematol 2022;97: 638-56. 

2. Wang ML, Jain P, Zhao S, Lee HJ, Nastoupil L, Fayad L, et al. Ibrutinib–rituximab followed by R-HCVAD as frontline 

treatment for young patients (≤65 years) with mantle cell lymphoma (WINDOW-1): a single-arm, phase 2 trial. Lancet Oncol 

2022;23: 406-15. 

3. Halldórsdóttir AM, Lundin A, Murray F, Mansouri L, Knuutila S, Sundström C, et al. Impact of TP53 mutation and 17p 

deletion in mantle cell lymphoma. Leukemia 2011;25: 1904-8. 

4. Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen LB, et al. TP53 mutations identify younger mantle cell 

lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood 2017;130: 1903-10.  

5. Obr A, Procházka V, Jirkuvová A, Urbánková H, Kriegova E, Schneiderová P, et al. TP53 mutation and complex karyotype 

portends a dismal prognosis in patients with mantle cell lymphoma. Clin Lymphoma Myeloma Leuk 2018;18: 762-8.  

6. Mareckova A, Malcikova J, Tom N, Pal K, Radova L, Salek D, et al. ATM and TP53 mutations show mutual exclusivity but 

distinct clinical impact in mantle cell lymphoma patients. Leuk Lymphoma 2019;60: 1420-8.  

7. Jain P, Zhang S, Kanagal-Shamanna R, Ok CY, Nomie K, Gonzalez GN, et al. Genomic profiles and clinical outcomes of de 

novo blastoid/pleomorphic MCL are distinct from those of transformed MCL. Blood Adv 2020;4: 1038-50.  

8.  Simone F, Davide R, Andrea R, Bruscaggin A, Spina V, Eskelund CW, et al. KMT2D mutations and TP53 disruptions are poor 

prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL study. Haematologica 2020;105: 1604-12.  

9.  Malarikova D, Berkova A, Obr A, Blahovcova P, Svaton M, Forsterova K, et al. Concurrent TP53 and CDKN2A gene 

aberrations in newly diagnosed mantle cell lymphoma correlate with chemoresistance and call for innovative upfront therapy. 

Cancers 2020;12: 2120.  

10.  Yi S, Yan Y, Jin M, Bhattacharya S, Wang Y, Wu Y, et al. Genomic and transcriptomic profiling reveals distinct molecular 

subsets associated with outcomes in mantle cell lymphoma. J Clin Invest 2022;132: e153283.  

11.  Freeman CL, Pararajalingam P, Jin L, Balasubramanian S, Jiang A, Xu W, et al. Molecular determinants of outcomes in 

relapsed or refractory mantle cell lymphoma treated with ibrutinib or temsirolimus in the MCL3001 (RAY) trial. Leukemia 

2022;36: 2479-87.  

12. Hoster E, Rosenwald A, Berger F, Bernd H-W, Hartmann S, Loddenkemper C, et al. Prognostic value of Ki-67 index, cytology, 

and growth pattern in mantlecell lymphoma: results from randomized trials of the european mantle cell lymphoma network. J 

Clin Oncol 2016;34: 1386-94. 

13.  Jain P, Tang G, Yin CC, Ok CY, Navsaria L, Badillo M, et al. Complex karyotype is a significant predictor for worst outcomes 

in patients with mantle cell lymphoma (MCL) treated with BTK inhibitors – comprehensive analysis of 396 patients. Blood 

2020;136: 32-3.  

14.  Jain P, Zhao S, Lee HJ, Hill HA, Ok CY, Rashmi KS, et al. Ibrutinib with rituximab in first-line treatment of older patients with 

mantle cell lymphoma. J Clin Oncol 2021;40: 202-12.  

15.  Hill HA, Qi X, Jain P, Nomie K, Wang Y, Zhou S, et al. Genetic mutations and features of mantle cell lymphoma: a systematic 

review and meta-analysis. Blood Adv 2020;4: 2927-38.  

16. Hoster E, Klapper W, Hermine O, Walewski J, van Hoof A, Trneny M, et al. Confirmation of the mantle-cell lymphoma 

international prognostic index in randomized trials of the European Mantle-Cell Lymphoma Network. J Clin Oncol 2014;32: 

1338-46.  

17. Zaccaria GM, Ferrero S, Hoster E, Passera R, Evangelista A, Genuardi E, et al. A clinical prognostic model based on machine 

learning from the fondazione italiana linfomi (FIL) MCL0208 phase III trial. Cancers 2021;14: 188.  

18. Hartmann E, Fernàndez V, Moreno V, Valls J, Hernández L, Bosch F, et al. Five-gene model to predict survival in mantle-cell 

lymphoma using frozen or formalin-fixed, paraffin-embedded tissue. J Clin Oncol 2008;26: 4966-72.  



Journal of Computing & Biomedical Informatics                                                                                                            SICAIET                                               

ID : 013-SI/2024  

19. Sun J, Ke X, Zhang M, Wang Y, An F, Zhao Y, et al. New prognostic models for extranodal natural killer T-cell lymphoma, 

nasal-type using Cox regression and machine learning. Transl Cancer Res 2021;10: 613-26.  

20. Sasaki K, Jabbour EJ, Ravandi F, Konopleva M, Borthakur G, Wierda WG, et al. The LEukemia Artificial Intelligence Program 

(LEAP) in chronic myeloid leukemia in chronic phase: a model to improve patient outcomes. Am J Hematol 2021;96: 241-50. 

21.  Bobée V, Drieux F, Marchand V, Sater V, Veresezan L, Picquenot JM, et al. Combining gene expression profiling and machine 

learning to diagnose B-cell non-Hodgkin lymphoma. Blood Cancer J 2020;10: 59. 

22.  Priya S, Ward C, Locke T, Soni N, Maheshwarappa RP, Monga V, et al. Glioblastoma and primary central nervous system 

lymphoma: differentiation using MRI derived first-order texture analysis – a machine learning study. Neuroradiol J 2021;34: 

320-8.  

23. Chen C, Zheng A, Ou X, Wang J, Ma X. Comparison of radiomics-based machinelearning classifiers in diagnosis of 

glioblastoma from primary central nervous system lymphoma. Front Oncol 2020;10: 1151.  

24. Steen CB, Luca BA, Esfahani MS, Azizi A, Sworder BJ, Nabet BY, et al. The landscape of tumor cell states and ecosystems in 

diffuse large B cell lymphoma. Cancer Cell 2021;39: 1422-37.  

25.  Zaitsev A, Chelushkin M, Dyikanov D, Cheremushkin I, Shpak B, Nomie K, et al. Precise reconstruction of the TME using 

bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes. Cancer Cell 2022;40: 879-94.  

26.  Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma W, et al. Multi-omic machine learning predictor of 

breast cancer therapy response. Nature 2022;601: 623-9.  

27.  Chen X, Wang W, Chen J, Xu L, He X, Lan P, et al. Predicting pathologic complete response in locally advanced rectal cancer 

patients after neoadjuvant therapy: a machine learning model using  XGBoost. Int J Colorectal Dis 2022;37: 1621-34.  

28. Lee DH, Giovannucci EL. The obesity paradox in cancer: epidemiologic insights and perspectives. Curr Nutr Rep 2019;8: 175-

81. 

29. Chihara D, Larson MC, Robinson DP, Thompson CA, Maurer MJ, Casulo C, et al. Body mass index and survival of patients 

with lymphoma. Leuk Lymphoma 2021;62: 2671-8. 

30. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international 

conference on knowledge discovery and data mining, San Francisco, 13-17 August 2016, 785-94.  

31. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, et al. Xgboost: extreme gradient boosting. R package version 04-2. 

2015;1: 1-4.  

32. Deng X, Li M, Deng S, Wang L. Hybrid gene selection approach using XGBoost and multi-objective genetic algorithm for 

cancer classification. Med Biol Eng Comput 2022;60: 663-81.  

33. Prabha A, Yadav J, Rani A, Singh V. Design of intelligent diabetes mellitus detection system using hybrid feature selection 

based XGBoost classifier. Comput Biol Med 2021;136: 104664.  

34. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Taylor & Francis; 1984.  

35. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. New York 

(NY): Springer; 2009.  

36. Schlegel U. Primary CNS lymphoma. Ther Adv Neurol Disord. (2009) 2:93– 104. doi: 10.1177/1756285608101222.  

37.  Sundararajan M, Najmi A. The many Shapley values for model explanation. In Proceedings of the International conference on 

machine learning; 2020.  

38. Munir K, Elahi H, Ayub A, Frezza F, Rizzi A. Cancer diagnosis using deep learning: a bibliographic review. Cancers 2019;11: 

1235 

39. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for 

breast cancer screening. Nature 2020;577: 89-94. 

40.  Shreffler J, Huecker MR. Diagnostic testing accuracy: sensitivity, specificity, predictive values and likelihood ratios. Treasure 

Island (FL): StatPearls Publishing; 2022.  

41. Jain P, Wang M. Blastoid mantle cell lymphoma. Hematol Oncol Clin North Am 2020;34: 941-56.  



Journal of Computing & Biomedical Informatics                                                                                                            SICAIET                                               

ID : 013-SI/2024  

42.  Ruan J, Martin P, Christos P, Cerchietti L, Tam W, Shah B, et al. Five-year followup of lenalidomide plus rituximab as initial 

treatment of mantle cell lymphoma. Blood 2018;132: 2016-25.  

 
 


