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Abstract: Statistics has developed a substantial interest in lifetime models, specifically within the 
domain of statistical inference. Practical domains such as computer science, medicine, engineering, 
biology science, management, and public health make extensive use of these models. Probability 
models find application in various domains, including game-winner prediction, team classification, 
winning margin evaluation, and likelihood of team victory. Recently, the model of mixed 
distribution has gained widespread recognition in the field of statistical data modelling. This paper 
aims a new two-parameter generalization of inverted Topp-Leone distribution. The new model, 
known as the Inverted Topp-Leone Geometric distribution, is created by mixing inverted Topp-
Leone and geometric distributions. The quantile function, incomplete moments, ordinary moments, 
median, mode, mean residual life function, entropy, Shannon entropy, and mean deviation are some 
of the mathematical features of the new distribution that are obtained. Other characteristics include 
the mean deviation. The maximum likelihood approach is used to arrive at an estimate of the 
parameters of the model. Inverted (or inverse) distributions are advantageous for investigating 
further characteristics of the phenomenon. The behaviour of the parameter estimations is 
investigated by a Monte Carlo simulation. A practical computing application is provided to 
illustrate the new model's usefulness. 
 
Keywords: Inverted Topp-Leone Distribution (ITLD); Geometric Distribution (GD); Maximum 
Likelihood Estimation (MLE). 

 
1.  Introduction 

Several lifetime continuous distributions are derived to describe and predict the real-life phenomenon. 
However, there is always room for the development of new mod-els that are more adaptable or more suited 
to certain real-world issues [1-2]. Probability distribution theory has also contributed to sample theory. 
Different Probability models are utilized to tackle social and real-world problems. With limited support, it 
displayed a continuous unimodal Topp-Leone distribution. This model was employed in subse-quent 
statistical analyses as a substitute for the beta distribution when modelling life-time phenomena [3-5]. 

The hazard rate function has a bathtub shape, and the T-L distribution's density function has a J shape. 
When there are two separate causes of failure, mixtures of life-time distributions with the same 
parametrical form of distributions arise [6]. Given the significance of TL dispersion, several writers carried 
out related research. To investigate other aspects of the phenomenon, the inverted (or inverse) distributions 
are useful [7-9]. Studies in the fields of econometrics [10], engineering sciences [11], survey sampling [12], 
medical applications [13], and life testing challenges all make use of inverted dis-tributions [14-17]. The 
right tail of the inverted TL distribution is rather lengthy.  
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The default rate value rises and gets closer to zero in the early stages as x increases. The goal is to 
conclude the proposed lot's acceptance or rejection because the units' ac-tual median lifetime, exceeds the 
required lifetime [18-20]. When conducting a life test, it is customary to end it at a predetermined time and 
record the number of failures. It may also simulate bathtub and inverted J hazards, as well as hazards that 
are growing and diminishing simultaneously [21]. Being able to deal with a highly controllable and simple 
distribution of interest with an accurate closed-form CDF is another benefit [22-25]. This distribution is a 
very good fit for a variety of applications because of its strong requirements. 

 
2.  Materials and Methods 
2.1. Derivation of New Model 

Assume that "N" is a geometric random variable with a probability density function. 
𝑓(𝑛, 𝑝) = 𝑝(𝑁 = 𝑛) = (1 − 𝑢)	𝑢!"#, 𝑛 ∈ 𝑁		, 𝑢 ∈ (0,1) 

Now   
Let 	𝑧 = 𝑀𝑖𝑛{𝑧#, 𝑧$	𝑧&… . . , 𝑧'}	 following a random sample taken from an inverted Topp-leone 

distribution.    

																								𝐺(𝑧) = 1 − 7
(1 + 2𝑦)(

(1 + 𝑦)$(; ; 𝑧 ≥ 0,																																																																																																																							(1)	 

		𝐹(𝑦)')*+
𝐹(𝑦)

1 − 𝑝	(1 − 	𝐹(𝑦)) 

 
The corresponding pdf is  

𝑓(𝑦) =
(1 − 𝑝)	𝑓(𝑦)

[1 − 𝑝	{1 − 𝐹(𝑦)}]$ 

 
By using Eq. (1), In the ITLG distribution, the unconditional CDF is considered to be 

										𝐹	,-./(𝑦; 𝜃, 𝑝) =
1 − B(1 + 2𝑦)

(

(1 + 𝑦)$( C

1 − 𝑝 B(1 + 2𝑦)
(

(1 + 𝑦)$( C
	; 𝑧 ≥ 0, 𝜃

> 0																																																																																																																																																																																																							(2) 
 
For z>0, it is expressed as the probability density function (pdf) that corresponds to this statement. 

	𝑓,-./(𝑦; 𝜃, 𝑝) =
2𝜃(1 − 𝑝)𝑦(1 + 𝑦)"$("#(1 + 2𝑦)("#

E1 − 𝑝 B(1 + 	2𝑦)
	(

(1 + 𝑦	)	$( CF
$ 																																																																																																							(3) 

For the given values of θ and p, some plots of the ITLG distribution are shown in Figures 1 and 2. In 
Figure 2, diagrams illustrate the HR function of ITLG Distribution. 

 
Figure 1. ITLG Distribution's PDF for Specific Parameter Values 
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Figure 2. Shows the HF of the ITLG Distribution Parameter 

2.2. Survival Function 

𝑆(𝑦) =
(1 − 𝑝) B(1 + 2𝑦)

(

(1 + 	𝑦)$(C

1 − 𝑝 B	(1 + 2𝑦)
(

(1 + 	𝑦)$(C
																																																																																																																																																								(4) 

 
Figure 3. Certain parameter values for SF and ITLG Distribution 

 
3. All Statistical Properties of the Proposed Distribution of ITLG 

Linear Depiction for the ITLG Delivery System. We show a linear representation of the ITLG 
distribution and describe how to apply it to give a practical linear representa-tion. This is one way to 
provide a mixed representation of the ITLG. Due to the com-plexity of the precise solution, numerical 
computations of skewness and kurtosis are performed.   

Table 1. Parameter Combination Skewness in the ITLG Distribution 

 θ 
P 

0.1 0.25 0.45 0.5 0.75 0.95 
5 3.5579 3.4799 3.7807 3.9308 5.5042 12.5168 
6 2.7683 2.7189 3.0262 3.1689 4.5945 10.7004 
7 2.3464 2.3152 2.6315 2.7716 4.1269 9.7752 
8 2.7683 2.7189 3.0262 3.1689 4.5945 10.7004 
9 2.3464 2.3152 2.6315 2.7716 4.1269 9.7752 

Mode: As a result of Equation (4), the rth moment of z is calculated. 

𝐸(𝑦0) = K 𝑦0𝑓(	𝑦)𝑑𝑦
1

2

																																																																																																																																																																		(5) 

 
Mean: The formula for calculating the mean of the ITLG distribution is as follows: 
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		µ	′# = 2𝜃(1 − 	𝑝)O 	O∅3,5𝛽(3 + 𝑡, 2𝜃(𝑘 + 1) − 𝜃(𝑘 + 1) − 1)
1

5+2

1

3+2

																																																																															(6) 

Median: The median of the ITLG distribution is given as 
(1 + 𝑧)$((1 − 0.5) + (1 + 2𝑧)((𝑃(0.5) − 1) = 0																																																																																																																(7) 

 
A description of the manner of the ITLG distribution is as follows: 

[1 − 2𝜃𝑦$ − 2𝑦$]W(1 + 	𝑦)$( − 𝑝(1 + 2𝑦)(X = 4𝑝𝜃𝑦$(1 + 2𝑦)(																																																																																				(8) 
 
The definition of the mgf of the ITLG distribution is as follows: 

𝑀	6(𝑡) = 𝐸(	𝑒 	56) = K 𝑒56𝑓(	𝑧)
1

2
𝑑𝑧			 

𝑀	6(𝑡) = 2𝜃(1 − 𝑝)O	O 	O∅3,5,0𝛽(𝑟 + 𝑡 + 2,2𝜃(𝑘 + 1) − 𝜃(𝑘 + 1) − 𝑟)
1

5+2

1

3+2

1

0+2

 

Where     

∅3,5,0 =
𝑡0

𝑟!
G	(2 + 𝑘)

𝑘! 𝑝3 ]𝜃(𝑘 + 1) − 1𝑡 ^	

                                                                                     
Mainly because the computation of variance is challenging and complex. Consequently, to compute 

the variance in Table 3, we make use of a numerical estimation approach. 
Table 2. The Variation of the ITLG Distribution Determined by the Combination of Parameters 

 Θ 
P 

0.1 0.25 0.45 0.5 0.75 0.95 
5 0.5252 0.5081 0.4352 0.4089 0.2346 0.0511 
6 0.3302 0.326 0.284 0.2677 0.1553 0.034 
7 0.2316 0.2321 0.2048 0.1934 0.1131 0.0248 
8 0.1741 0.1766 0.1573 0.1488 0.0876 0.0193 
9 0.1372 0.1406 0.1262 0.1195 0.0706 0.0156 

3.1. Cumulative HRF 

𝐻(𝑦	) = K ℎ(	𝑢)𝑑𝑢
8

"1
= − log 	[1 − 𝐹	(𝑦)] = − logd	𝑆(𝑦)e 

					= log f1 − 𝑝	 7
(1 + 2𝑦)(

(1 + 	𝑦)$(;g −		 log f(1 − 𝑝) 7
(1 + 2𝑦)(

(1 + 	𝑦)$(;g 

3.2. Mean Deviation  

𝑀.𝐷(𝑦) = K |𝑦 − 𝜇	|𝑓(	𝑦)𝑑𝑧
1

2
 

𝑀.𝐷(𝑧) = 2𝜇
1 − B(1 + 2𝑦)

(

	(1 + 	𝑧)$(C

1 − 𝑝 B	(1 + 2𝑦)
(

(1 + 	𝑦)$(C
	− 4𝜃(1 − 𝑝)O 	O∅3,5𝛽 µ

#"µ
(𝑡 + 3	, 2𝜃(𝑘 + 1) − 𝜃(𝑘 + 1) − 1)

1

5+2

1

3+2

 

3.3. Shannon Entropy 
Entropy is an information metric that provides a quantified range of probable outcomes. Shannon 

established it in 1948. It is a measure of the average probable outcomes of a random variable [26-27].  
It represents the mean of all conceivable outcomes for a random variable. Entropy reaches its 

maximum indicating that there isn't any uncertainty in its characterization [28].  
Given an uncontrolled variable Z, a set z serving as its support, and the probability density function 

f(z), the Shannon's entropy of Z is 

𝐻6 = −K 𝑓(	𝑦) 𝑙𝑜𝑔 𝑓(	𝑦) 𝑑𝑧
1

"1
 

Integrals' presence is one of our main requirements. Thus, the ITLG random variable Z's differential 
is Rényi Entropy. 
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3.4. Rényi Entropy 
The Rényi entropy is widely used in computer science, econometrics, statistical inference, 

classification, and identification of statistical problems [29]. Z is given the Rényi entropy as though it 
adhered to the ITLG distribution. 

= (1 − 	𝑝)9(2𝜃)9O	O∅3,5𝛽(𝑣 + 𝑡 + 1, 𝑣(𝜃 + 2) + 𝜃𝑘 − 𝑣 − 1)
1

5+2

1

3+2
 

Let Z be the parameter that corresponds to the observed distribution and let p, (θ) ^z be the dimension of 
the parametric matrix. By [30], the sample LF is computed as follows: 
For each sample size, the tests were run 10,000 times.  
Tables 4, 5, and 6 display the results of the MC simulation. Calculations are made for the variance of 
estimated parameters, biases, mean of estimated characteristics, and mean square error [31]. These results 
are grounded in the predicted first-degree asymptotic theory, which states that bias and MSE decrease to 
zero as the sample size increases.  

Table 3. Absolute Bias, Variance and MSE at  𝑎𝑛𝑑		𝑝 = 0.5, 𝜃 = 0.5 
Random 
Sample 

30 100 300 500 

Parameters   p  Θ  p  θ  P  θ  p θ  

Estimate  0.4939 0.5364 0.4977 0.5109 0.4992 0.5042 0.4994 0.5019 
Bias 0.006 0.0364 0.0022 0.0109 0.0007 0.0042 0.0002 0.0019 

Variance 0.003 0.0226 0.0008 0.0056 0.0002 0.0018 0.0001 0.001 
Mean 

Square Error 
0.003 0.0212 0.0008 0.0057 0.0002 0.0018 0.0001 0.001 

 
Table 4. Absolute Bias, variance and MSE	𝑝 = 0.5, 𝜃 = 2 

Random 
Sample 

30 100 300 500 

Parameters  p θ p θ p θ p θ 

Estimate  0.494 2.1387 0.4986 2.0395 0.4992 2.0139 0.4993 2.0095 
Bias 0.0059 0.1387 0.0031 0.0395 0.0007 0.0139 0.0006 0.0095 
Variance 0.003 0.3483 0.0008 0.088 0.0002 0.0289 0.0001 0.0171 
Mean 
Square 
Error 

0.0031 0.3675 0.0008 0.0895 0.0002 0.0291 0.0001 0.0172 

 
Table 5. Bias, Variance, and MSE p=0.9, =1.9  

Random 
Sample 

30 100 300 500 

Parameters   p  Θ  p  θ  p  θ  p θ  

Estimate  0.8988 2.2729 0.8995 2.0031 0.8998 1.9315 0.8999 1.9179 
Bias 0.0011 0.3729 0.0004 0.1031 0.0001 0.0315 0 0.0179 
Variance 0.0001 1.6123 0 0.2409 0 0.0625 0 0.0347 
Mean 
Square 
Error 

0.0001 1.7514 0 0.2516 0 0.0635 0 0.035 
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4. Practical Application 
If any outliers or medians are present in a data collection, boxplots are typically employed to 

demonstrate them. The boxplot shows that there is good agreement be-tween the data points in the overall 
plot of the breaking stress of carbon fibers. 

3.70,   2.740, 2.730, 3.110, 3.270, 2.870, 4.420, 2.410, 3.190, 3.280, 3.090, 1.870, 3.750, 2.430, 2.950, 2.960,  
2.30, 2.670, 3.390, 2.81000,  4.2000, 3.310,  3.310, 2.850, 3.150, 2.350, 2.550, 2.810, 2.770, 2.170, 1.410,  3.680, 
2.970, 2.760, 4.910, 3.680, 3.190,  1.5700,  0.8010, 1.590, 2.000, 1.220, 2.170, 1.170, 5.080, 3.510,  2.170, 1.690, 
1.8400, 0.390, 3.680, 1.610,  2.790, 4.70, 1.570, 1.080, 2.030000,  1.890, 2.880, 2.820, 2.50,  3.60, 1.4700, 3.110, 
3.220, 1.690, 3.150, 4.90,  2.970, 3.390, 2.930, 3.220, 3.330, 2.550, 2.560, 3.56000,  2.590,  2.380, 2.830, 1.920, 
1.360, 0.980,  1.840, 1.590, 5.560, 1.7300, 1.120, 1.710, 2.480, 1.180, 1.250, 4.380,  2.480, 0.85000,  2.030, 1.80, 
1.610,  2.120, 2.050, 3.650 

 
Table 6: Descriptive Measures 

X- min 𝑸	𝟏 𝑿r 𝑿s Q3 X- max S2 
0.39000 1.83000 2.67500 2.60100 3.19700 5.56000 1.042100 

 
Figure 4. Estimated Densities of Data        

Additionally, Figures 4 and 5 provide plots of fitted densities and empirical curve fits versus the 
MOIW, IPL, IK, and GIL distributions. These figures demonstrate that the ITLG distribution offers the most 
accurate representation of the actual data.                                

Figure 5. Empirical CDF Curves for MOE Distribution. 

Table 7: MLEs of the Dataset 
Model Estimates of  (Standard Deviations) 
ITLG 𝜽 = 71.4130 (3.15030) 𝒑 = 0.66520 (0.15340) - 
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MOIW 𝛼 = 5.74940 (0.79520) 𝛽 = 2.23700 (0.000800) 
𝜃 = 

0.08970 
(0.01160) 

IPL 𝛼 = 1.98740 (0.15660) 𝛽 = 0.23170 (0.00870) 
𝜃 = 

0.52860 
(0.32670) 

IK 𝛼 = 2.75190 (0.21130) 𝛽 = 2.92270 (0.11190) - 
GIL 𝛼 = 0.38420 (0.03840) 𝜃 = 1.26540 (0.24170) - 

 
Table 8. Goodness of Fit Quantities of Dataset 

Model ITLG MOIW IPL IK GIL 
-2logL 285.24 288.23 287.48 286.28 391.12 

AIC 291.24 296.23 293.48 290.28 395.12 
BIC 299.06 306.65 301.29 298.49 400.33 

HQIC 294.41 300.44 296.64 294.91 397.22 
K-S 0.0539 0.0966 0.088 0.0823 0.2521 

MVS 0.0631 0.0841 0.0783 0.0724 0.1934 
AD 0.413 0.612 0.598 0.561 0.92 

p-value 0.9326 0.7981 0.8124 0.8329 0.3691 
Based on an evaluation of all the models mentioned above, it is found that, for the given real-world 

data set, the ITLG distribution outperforms all other inverted distribution 
 

5. Conclusion 
The aforementioned table displays the values of ML estimates along with the six information 

requirements. The ITLG distribution provides the best fit out of MOIW, IPL, IK, and GIL. Compared to the 
distributions of MOIW, IPL, IK, and GIL, ITLG exhibits lower values for the aforementioned criterion. Final 
Thoughts on an Application. We illustrate the application of the inverted TLG distribution using real-
world data and contrast it with MOIW, IPL, IK, and GIL models. The features are predicted using the MLE 
technique. The performance of MLE is assessed by simulation experiments. The comparison is made using 
a range of goodness of fit criteria and graphical analysis.   
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