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________________________________________________________________________________________________________ 
Abstract: Automation is playing an increasingly important part in today’s professions and in every 
field of life. Remote-sensing based sugarcane yield prediction is more effective than old yield-
prediction techniques. Traditional yield measurement techniques include the time and labor-
intensive destructive sampling of sugarcane fields. Accurate and timely yield forecasts help 
decision-making processes such as crop harvesting plans, milling, marketing, and forward selling 
strategies, which boosts the efficiency and profitability of the global sugar sector. At the moment, 
destructive or visual sampling techniques are used by producers or productivity officers paid for 
by mills to assess production during the growing season. People want to get things done in the 
quickest and most efficient way to solve the problems. The use of machinery for sugarcane 
cultivation has increased significantly over a wide area to lower production costs, decrease farmers' 
labor demands, and improve harvest efficiency. Although they have not been thoroughly compared, 
existing techniques for estimating agricultural output using regression typically rely on a specific 
set of forecasting factors. For monitoring agriculture, which makes use of satellite earth observation 
data, this study illustrate and compare the use and using several sets of object-based predictors to 
estimate sugarcane production. Several regression models compared utilizing a variety of different 
predictor variables. In this study, the yield of the sugarcane measured by using regression models, 
time series of the vegetation index (VI), remote sensing, phenology measurements, and the 
normalized difference vegetation index (NDVI). Artificial intelligence algorithm models (Random 
Forest and Ordinary Least Squares) used to construct the suggested way to accurately relate ground-
measured data. This work presents novel sugarcane yield prediction technique that improves 
forecasting accuracy. 
 
Keywords: Sugarcane; Yield prediction; Predictor variables; Time series vegetation index (VI); 
phenology measurements; normalized difference vegetation index (NDVI). 

 
1. Introduction 

The widely farmed semi-perennial sugarcane plant (Saccharum spp. L.), which yields sugar and other 
goods, is essential to global agriculture. This crop's growing relevance is due to the fact that it is used to 
produce biofuel in addition to being used as a food source [1]. Given the significance of food production 
for individual living standards and national food security, governments, businesses, consumers, and other 
sectors are constantly concerned about it [2]. Around the world, sugarcane is grown on more than 28 
million hectares of agricultural land, producing 1.7 trillion tons of raw sugar annually [3]. How to boost 
crop yields has become one of the major concerns that must be promptly addressed due to the rising 
demand for agricultural products as a result of the expanding global population [4]. 

The profitability and effectiveness of the world's sugar industry are increased when decision-making 
processes including the harvesting of crops plans, milling, advertising, and future selling strategies are 
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supported by timely and accurate production projections. Currently, producers or productivity officers 
funded by mills estimate yield during the growing season utilizing destructive or visual sampling methods. 
This approach requires a lot of labor, and accuracy is affected by a variety of seasonal climate circumstances, 
crop age because of a prolonged agricultural season and human mistake. Devices for monitoring the 
creation of a harvester mounted were in use in several sugarcane-growing regions [5] provide different 
accuracies for yield mapping as well, but access to data only occurs after harvest, making it unable to 
support decision-making during the growing season. A more precise and affordable way of predicting 
sugarcane yield has recently been examined as a replacement: remote sensing technologies [6]. Sugarcane 
is a special multi-year crop that may be harvested every year for up to 6-7 years before needing to be 
replanted. Following an annual harvest, the ratoons—the roots and the lower portions of the plant-grow 
fresh stems that are cut the following year. The majority of farms consistently harvest sugarcane for nine 
months. This is significant because it enables continual crushing. As a result, supervising the harvesting 
and crushing takes place virtually every day. Given the enormous throughput of production, it is 
imperative to regularly estimate crop yields. 

One of the most significant crops on the planet is this one. For farmers to make practical decisions 
regarding storage requirements, crop insurance, cash flow projections, fertilizer and water use, and crop 
output forecasting are all quite practical. Research on sugarcane breeding aims to choose genotypes 
according to yield measurement that are optimal for particular settings [7]. Human senses are susceptible 
to workload and fatigue when they are subjected to various characteristics, like domain knowledge, shape, 
size, color, patterns, etc. The methods for identifying grains become inconsistent, inaccurate, and 
unbelievable [8]. For the sake of crop management and policymaking, forecasting crop yields and their 
variability over space and time in a changing climate is a difficult but necessary task. It is essential for all 
parties involved, including national officials and private landowners, to have access to information on the 
risks related to the consequences of climate change on the outcomes of agricultural activities [9]. 

A range of factors, including climate change, land availability, and water scarcity, are impacting 
modern agriculture and food production systems. A pandemic is adding to this a lot of pressure. To feed 
an ever-growing global population, scientists and engineers need to develop scientific and technological 
innovations. Over the last few decades, genetic tools have made incredible advances, but we haven't been 
able to adequately measure crop status in the field on a large scale. Thanks to developments in artificial 
intelligence (AI) and remote sensing, we can now precisely measure the phenotypic data at the field scale 
and incorporate it into management technologies that are both prescriptive and predictive [10]. In many 
precision agriculture applications, spatial resolution is still an issue despite the benefits because of its 
extensive coverage, and satellite remote sensing data. The worst impact of many prediction models on crop 
yields is only to provide better estimates at the county and above levels, but not at the local or smaller 
scales (for example, on single farmland). A satellite's revisit time is also limited by its ability to be blocked 
by clouds, making accurate information on vegetation everywhere its entire cycle impossible [11]. The 
accuracy of yield prediction using satellite data to calculate rice yields [12], wheat [13], corn [14], soybean 
[4], and other crops. Classification is a technique that has been shown to evaluate remote sensing data and 
can classify the individual pixels in an image’s spectral characteristics [15, 16]. 

Crop yield forecasts for the near future offer useful information on how to manage agricultural 
resources and the potential economic effects of poor yield. Such projections are challenging to make in 
areas with sparse observational data. And large-range of crop yield prediction is also significant for overall 
prediction and that’s kind of predictions are easy to achieve for large-scale area [17]. Many studies have 
shown that data from observations of the earth, particularly publicly accessible satellites data, have been 
widely employed in usages in agriculture, including those that estimate crop yield and biomass [18, 19] 
and forecasting software [7, 20] in strategies for managing farms. The latter estimating method, which is 
used when the season is already over, is the subject of this study. 

A reliable postseason production estimate is essential for a number of reasons, including the 
verification of the declared production, locating low-productivity lands and farms as a starting point for 
developing improved techniques for the upcoming season, the estimation of the necessary number of 
transport vehicles, therefore, to minimize expenses related to the commodity's storage and transportation, 
the verification of the reliability of the post-season yield estimate, and many others [21]. In this instance, 
the Normalized Difference Vegetation Index (NDVI) and other indices composed of various spectral band 
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ratios have been used as empirical models for regression based on the vegetation index (VI) time series to 
estimate the output of the sugarcane crop [22, 23]. 

Other methods, which do not require ground truth data, classify the sugarcane area according to the 
type of crops grown there and estimate the probable yield using statistics for prior season’s yields and the 
resulting acreage. In this study, various regression-based and artificial intelligence methods for estimating 
crop yield will be examined and compared. 
1.1. Production of Sugarcane in Pakistan 

Since the beginning of time, Pakistan has farmed sugarcane, which the huge Indus River and its 
numerous tributaries are attributed with. The area, historically known as the civilization of the Indus 
Valley was aware of how to produce sugarcane and extract brown sugar cakes, which are still made and 
distributed today and are enjoyed by the locals as "Gur." Juice from sugarcane that has been peeled and 
sliced into chewable pieces has been utilized for centuries. The cultivation of sugarcane is appropriate for 
regions between latitudes 24 and 34 degrees north, which are characterized as irrigated subtropical zones 
with mild temperatures. Except for the area above 30º N, which infrequently experiences frosts, the area 
can be considered a frost-free zone. Out of the 22.0 million hectares that are available for cultivation, 
sugarcane takes up almost 1.0 million hectares, or 4.5% of the irrigated land. The total amount of water 
available in the current system and reservoirs is approximately 135 MAF, which is less than the crop's 
estimated need of about 10 MAF (million acre-feet).  

High delta crop's development outside of this ecological zone has been constrained by its propensity 
to be affected by the weather cycle. Currently functioning at about 70% of its capacity, Pakistan's sugar 
industry is well established. When compared to the current industrial capacity, which can harvest at least 
seventy million tons, the yearly yield of cane varies among forty-five million and sixty-five million tons 
based on the availability of irrigation water and rainfall. The production has barely increased during the 
past six decades show in Figure 1. 

 
Figure 1. Sugarcane Area, Production and Yield 

According the annual report of sugarcane in Pakistan from the United States Department of 
Agriculture, due to the anticipated rebound in the area, sugarcane production is predicted to be 83.5 million 
metric tons during 2023–2024, three percent more than the 2022–2023 estimated. The floods during the 
previous year had a negative impact on the harvested area and yield. The assistance price for sugarcane 
growers in 2022–2023 is nearly 32% more than in 202–202, at 300 rupees per 40 kg ($27.28/ton). These prices 
are incentivizing farmers to keep their cane fields rather than introducing other crops. In such a situation, 
it is obvious that managers and decision-makers would benefit from instruments that could continuously 
track the sugarcane's vegetative vigor in Pakistan and deliver immediate information about any potential 
short-term effects of meteorological conditions on yield forecasts.  

Additionally, compared to other crops, sugarcane is more resilient to weather dangers, which is why 
farmers prefer to plant it. Three provinces grow sugarcane, with Punjab producing 68% of the total amount, 
Sindh 24%, and Khyber Pakhtunkhwa (KPK) 8%. More than half of the world's sugarcane land is in the 
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Punjabi division of Bahawalpur and the Sindhi division of Sukkur. There are two planting seasons for cane: 
the spring planting season lasts from February to March, and the autumn planting season lasts from the 
beginning of September to the end of October. Farmers in Punjab, Sindh, and KPK cultivate sugarcane 
throughout the year. In KPK, the majority of cane is grown in the spring. Because there isn't enough high 
producing varieties, water restrictions, and unequal fertilizer delivery, per hectare yields tend to remain 
poor [24]. Overall plan that followed is shown in Figure 2. 

 
Figure 2. Review Protocol 

The objectives of this research will be: 
• To find different sets of predictor factors that can be used to predict yield in the sugarcane crop. 
• To develop an AI-based sustainable yield prediction model for sugarcane using a remote sensing 

dataset. 
1.2. Predictor factors to estimate yield 

I choose various methods for generating predictor variables and assess them based on how well they 
estimate yield. The first technique uses NDVI and time series data from the other vegetation indices (VI). 
Many other studies have used as predictor factors, VI time series [25]. The second technique involves 
calculating metrics for phenology [21, 26]. Different markers, like the beginning and conclusion of the 
growing season, are among these metrics and are using to describe seasonally varying crop ontogenesis 
and crop growth. The overall methodology used with various predictor variable approaches and the cloud 
platform's acknowledgment of functioning as a preprocessing and storage node for satellite data. Based on 
their relationship with sugarcane yield and their significance in reflecting the fundamental mechanisms 
influencing crop growth, the most pertinent predictor variables should be chosen. The most useful 
variables for the prediction model can be found using feature selection approaches like correlation analysis 
or feature importance measures from machine learning models. Illustration of the sugarcane yield 
predictor’s method shown in Figure 3. 

 
Figure 3. Illustration of the Sugarcane Yield Predictor’s Method 
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2. Materials and Methods  
2.1. Study Region 

The district of Punjab Province chosen for this study is Rahim-Yar Khan. It contributes close to 30% 
of Punjab's total sugarcane yield. It is situated at the intersection between Sindh and Punjab. The Rahim 
Yar Khan district is divided into four tehsils: Sadiq Abad, Rahim Yar Khan, Khanpur, and Liaquatpur. In 
southern Punjab, where the majority of the population works in agriculture, it is regarded as an agricultural 
district. It is a fertile region that generates a variety of crops, including wheat, sugarcane, maize, cotton, 
and mangoes. It is one of the significant crops that contribute significantly to agriculture in this area. There 
are six sugar mills located in the district. Gulf Sugar Mills, Rahim Yar Khan Sugar Mills, Hamza Sugar 
Mills, and Jamaluddin Wali Sugar Mills are the major sugar mills in this region. Rahim Yar Khan District 
has a total population of 477,000 people and a 33.1% literacy rate. In Figure 4 map of Rahim Yar Khan 
District has been shows. From 310,000 acres in 2014–15 to 430,000 acres in 2020, more land was planted 
with sugarcane. There are two planting seasons for cane: the spring planting season and the autumn 
planting season as well. 

 
Figure 4. Map of District Rahim Yar Khan [27] 

2.2. Data from Remote Sensing 
It takes many resources to gather accurate on-site crop data (production, the biomass, and other 

biological characteristics), but it is essential for trustworthy crop modeling. We captured the sugarcane 
growing season for the years 2019–2021 using Sentinel-2 Level-2A multi-temporal data from the time of 
ratooning (April 2021) through harvest (December 2021). The growing process of sugarcane took an 
average of 10 to 12 months in Pakistan. Climatic data, such as temperature of the air, evaporation of or 
moisture data, were not included in the analysis due to the very small research region. This was due to the 
data's lack of spatial resolution and little use for the regression models. Using atmospherically adjusted 
Sentinel-2 surface reflectance (Level-2A) data, three different vegetation indices (VIs) were calculated: the 
Normalized Difference Vegetation Index (NDVI), the Normalized Difference Red Edge 1 (NDRE1), and 
the Chlorophyll Index Red Edge (CIRE). The formulas for these indices are shown in Table 1. 

Table 1. Chosen Indices of Vegetation for the Analysis 

Index of Vegetation Description Source 

NDVI 
Normalized Difference Vegetation Index, sensitive for 
green biomass 
NDVI = (Band8-Band4) / (Band8+Band4) 

[28] 

NDRE1 
Normalized Difference Red Edge 1, less likely to become 
saturated in canopies of thick plants 
NDRE1 = (Band6-Band5) / (Band6+Band5) 

[29] 
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CIRE 
Chlorophyll Index Red Edge, water stress-sensitive for 
mesophyll and chlorophyll in plant leaves 
CIRE = (Band7 / Band5) - 1 

[30] 

2.3. Method 
We compared the accuracy of the yield estimation using two alternative methods for the development 

of predictor variables. First, NDVI, NDRE1, and CIRE of the three separate vegetation indicators are used. 
Many other studies have used VI time series as variables for prediction [24], where some use time series 
descriptive statistics [31] in addition to temporal segments or dimensionality reduction strategies for time 
series. The second technique involves computing phonological measures [22]. These metrics include 
phonological indicators, like season start and end dates, which are used to describe agricultural growth 
and seasonal crop ontogenesis. 
2.3.1. Data preparation for Sentinel-2 

Monitoring and evaluating sugarcane crops is one of several uses for the high-resolution 
multispectral imagery provided by the Sentinel-2 satellite program, which is run by the European Space 
Agency (ESA). The data in the Sentinel-2 Level-2 collection have been pre-processed and corrected for 
atmospheric effects, making it suitable for additional processing and analysis. The following are the main 
procedures for handling the Sugarcane Sentinel Level-2 dataset: 
2.3.1.1. Data Acquisition 

The Sentinel-2 Level-2 dataset for the chosen region and time period of interest can be obtained. The 
dataset is accessible via the website (https://eos.com/). 
2.3.1.2. Data Preparation 

The downloaded dataset should be extracted, and it usually consists of compressed files. To make 
the dataset files, including the metadata and individual bands, easier to access during processing, arrange 
them in an organized directory manner. 
2.3.1.3. Band Selection 

Find the appropriate spectral bands for monitoring and predicting sugarcane yield. Several spectral 
bands, including the green, red, blue, shortwave infrared (SWIR) bands, and near infrared (NIR) are 
included in the Sentinel-2 dataset. The analysis's precise goals will choose which bands to use. 
2.3.1.4. Image Registration and Mosaicking 

This involved downloading the satellite photos and then masking them using the SLC cloud mask 
for Level-2A product to only get pixels with the labels "land," "water," and "vegetation". 
2.3.1.5. Vegetation Index Calculation 

With the minimum, maximum, mean, and standard deviation of the value of pixels for every single 
observation date, we generated a number of vegetation indices and spatially grouped them for each unit 
object. 
2.4. Time series calculations for the object-based vegetation index 

As part of the acknowledgment system, every multidimensional Sentinel-2 raster band and the 
resulting spectrum index raster data are trimmed to the parcel limits and stored in a database. To assure 
the use of data points exclusively during the growing season, we constructed time series based on objects 
for every parcel between the indicated months for planting and harvesting based on the multi-temporal 
aggregation of the spectral indices mentioned above. Figure 5 displays the various saturation levels of each 
VI. Although the 10m NDVI becomes saturated sooner than vegetation indices based on the Red Edge 
bands, it collects more detail about the canopy structure. 
 

 
Figure 5. NDVI, NDRE1, and CIRE Visual Representation 

https://eos.com/
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2.5. Parametric metrics 
The development and growth of sugarcane crops may be understood and predicted in large part 

because to phonological characteristics. Phenology is the study of the relationship between environmental 
conditions and the timing of recurrent processes in plants, such as blooming, fruiting, and senescence. The 
following phonological characteristics are important for predicting sugarcane yield: emergence, vegetative 
growth, flowering, ripening, senescence, and phonological timing and duration. 

We computed 12 distinct metrics used as input features according to the metrics for phonetics 
supplied by the USGS [29] and taken from the EO data. As demonstrated by similar study projects [32]. 
NDVI time series are often used to extract phonological indicators and metrics. As NDVI signals become 
saturate with a larger canopy density, they make it possible to monitor vegetation types independently of 
biomass. Utilizing ground observations, historical records, and remote sensing data, it is possible to 
monitor and quantify these phonological traits. Large-scale and regular measurements of phonological 
changes can be taken using remote sensing platforms like satellites or drones. These phonological traits 
can aid in the creation of reliable sugarcane yield prediction models when combined with machine learning 
and statistical modeling techniques. The following definitions apply to the generated phonological metrics: 
(a) Phenotypic indicators: 
• The beginning of the growing season, including the date of crop emergence 
• The day with the highest value recorded in the temporal sequence i.e., Seasonal apex 
• Agricultural harvest date and absence of chlorophyll indicate the end of the season 
• The highest NDVI value recorded throughout time 
(b) Detailed metrics: 
• The sum of the average NDVI readings over the time 
• Total of the highest time NDVI values 
• The NDVI's range from lowest to highest 
(c) Growth indicators: 
• Seasonal duration: the time between start and peak, stated as the quantity of days 
• First duration: the number of days between start and peak where green-up occurred 
• Second duration: the duration in days between senescence's zenith and its end 
• Gradient between start and peak in growth rate 
• Variation between peak and end in growth rate 

The phonological measures were calculated using daily, NDVI time series interpolated linearly as the 
input data. The gradients between start of season and peak and end of season, which are as the growth or 
maturity rates, are the sources of the growth and maturity rates. The NDVI time series local maxima peaks, 
which sugarcane cutting occurrence, are the peaks. Unless dimensionality reduction methods such as 
Principal Component Analysis or temporal aggregation are used, phonological markers are used in 
situations where various NDVI datasets have varying dimensionalities. It has been shown that these 
markers, as opposed to "raw" VI time series, are more suitable for customizing models to suit various 
geographical locations or monitoring intervals. Due to methodological discrepancies in extracting such 
phonological variables, it is vital to stress that satellite-derived phenotype is an apparent, generalized 
depiction of actual plant phenology [33]. 

 
3. Results 
3.1. Develop an AI-based sustainable yield prediction model for sugarcane 

Many approaches are used to forecast yield at the regional and field levels as remote sensing, 
modeling of statistics, surveys in the field, and crop models. Regression methods can be used to forecast 
the yield of sugarcane depending on a variety of input variables when it comes to crop yield estimation.  

Here are some commonly used regression algorithms for crop yield estimation: Linear Regression, 
Multiple Linear Regression, Decision Trees, Random Forest, Support Vector Regression (SVR), Gradient 
Boosting, and Neural Networks. Using historical yield data as the target variable and the pertinent input 
variables indicated earlier, several regression algorithms can be trained. Based on the input data, the 
models are then utilized to forecast the yield for fresh or next seasons. It's crucial to evaluate the 
effectiveness of several algorithms using the right assessment measures and select the one that offers the 
best accuracy and generalization capabilities for sugarcane yield estimation. 
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We experimented with the ordinary least squares (OLS) regression algorithm and the Random Forest 
(RF) regressor to compare linear and non-linear data correlations. The RF approach uses many separate 
decision trees and averages their predictions to minimize the total error and handle more complicated data 
structures with high complexity (such time series) and irregular correlations than OLS. Principal 
Component Analysis (PCA) was used to decrease the feature set's dimensionality to the components that 
accounted for most of the variability and, thus, the majority of the data gains for the combinatorial usage 
of both types of predictor variables.  

By using an orthogonal transformation, the variables are linearly de-correlated, and the final 
components either include signal noise or the most de-correlated information about the variables. Results 
are shown in Figure 6. 

Table 2. Forecast of Sugarcane Production and Yield 
Year Production (000 t) Yield (kg/ha) 
 Forecast 87% Limit Forecast 87% Limit 
 Lower Upper Lower Upper 
2023 65571 59815 71327 57845 52731 62595 
2022 64727 58971 70483 57450 52336 62564 
2021 63872 58971 69628 57065 51951 62179 
2020 62995 57239 68751 56691 51577 61805 
2019 62073 56317 67829 56332 51218 61445 
2018 61060 55305 66816 55989 50875 61103 

Forecast of Sugarcane Production and Yield from 2018-2023 with 87% confidence interval is discussed 
through the following table 2. 

 

 
Figure 6. Validation for RF-based regression 

  Corresponding graph of last five years is shown in Figure 7. 

 
Figure 7. Corresponding graph of last five years 
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4. Discussion 
4.1. Examining time series variables 

Because the CIRE (Canopy Index Recovery) features performed better than other vegetative indices 
(VIs) at forecasting sugarcane yield, we specifically focused on them in our study. We used linear 
regression analysis, more specifically the ordinary least squares (OLS) method, for each time step of the 
CIRE to determine the ideal dates for sugarcane yield estimation. According to the findings, the most useful 
times for yield estimation were just before and during the season's peak, which corresponded to the time 
from the beginning of the season (or ratooning) to the point at which the canopy is fully closed (or NDVI 
saturation). 

We produce multitemporal images to visualize the R2 (coefficient of determination) and RMSE (root 
mean square error) scores of the regression model performance employing different predictor variables. 
We utilized these values to determine the optimal satellite observation dates, which produced the best 
model performance and were associated with the highest R2 scores and lowest RMSE values. By examining 
the multitemporal R2 visualization and RMSE scores, we identified the precise times within the growing 
season that yielded the most accurate and reliable predictions. These dates, which highlighted the times 
with the highest R2 scores, demonstrated the strongest correlations between the observed CIRE and 
sugarcane yield. The regression model supported these optimal dates as shown by the lowest RMSE values, 
representing smaller prediction errors. 

It is essential to identify the best satellite observation dates in order to concentrate our data collection 
efforts during the most informative time periods. The accuracy and precision of our sugarcane yield 
forecasts may be improved by collecting remote sensing data during these specific dates. Specifically, our 
analysis showed how the CIRE characteristics outperformed other VIs for predicting sugarcane yield. 
These are the times, during less and around peak season, in which our data suggested to make yield 
predictions. We further validated our model by confirming that these dates were associated with the 
strongest model performance, as indicated by the highest R2 scores, and the smallest prediction errors, as 
indicated by the lowest RMSE values. These yield predictions, based on CIRE measurements, allowed us 
to reduce data collection efforts and improve the accuracy of our regression model. 

It will be essential to explore the integration of more variables and utilize advanced modeling 
techniques to further optimize the selection of ideal satellite observation dates to improve the forecasting 
capabilities of the sugarcane yield prediction model. 

We observed that the linear model stabilized once the CIRE time series data was fused with the 
regression model. This suggests that the model’s ability to capture the general trade and dynamics of 
sugarcane growth is strengthened by including multiple observations from different stages of the growing 
season. A more comprehensive description of the crop phenological changes is made possible by the 
collective use of the CIRE time series, which enhances model performance and thus improves R2 scores. 

Indeed, the regression models yielded lower R2 scores as they proceeded from individual CIRE data 
points to sugarcane yield, when relying on single observations alone. This suggests that the intricacy and 
diversity of sugarcane growth patterns, and in turn, their correlation with yield cannot be fully addressed 
by resorting simply to isolated observations. It is the time series analysis which allows for a comprehensive 
appreciation of these growth dynamics and therefore more accurate predictions of cane production. 

In conclusion, the study of the CIRE time series showed that R2 scores rise iteratively as the green-up 
phase advances towards the maximum canopy closure of the season, and then begins to gradually decline 
during the senescence period. Single observation alone yield poorer R2 scores, whereas merging the CIRE 
time series yield in a stabilized linear model with enhanced performance. This underscores the need of 
considering the entire time series and growth dynamics of sugarcane if we are to ever predict cane output 
accurately. 
4.2. Exploring the Distinct Factors 

 The mean CIRE (averaged over the entire CIRE time series), the maximum CIRE (aggregated over the 
full CIRE time series), and the mean gradient between the peak of the season and harvest were the three 
independent variables that we looked at in our study to determine how they were distributed. The data 
was sorted into three groups based on quartiles and these variables were investigated in relation to 
sugarcane yield. 



Journal of Computing & Biomedical Informatics                                           Volume 06  Issue 02                                                                                         

ID : GI05-0602/2024  

 The analysis showed clear trends between the predictor factors and sugarcane yield volume. For 
instance, a favorable association between sugarcane yield and the mean CIRE values was found. This 
suggests a correlation between higher mean CIRE values, which indicate better photosynthetic activity and 
healthier vegetation, and higher sugarcane yield levels. According to this research, locations with a more 
active and fruitful development pattern, as shown by higher mean CIRE values—tend to produce larger 
amounts of sugarcane biomass. In contrast, it was discovered that the senescence rate, the gradient between 
the peak of the season and the end of the season, and sugarcane production all exhibited negative 
associations. Lower sugarcane production amounts were correlated with a higher senescence rate, which 
signifies a more rapid loss in vegetation vigor and health. Similar to this, decreased sugarcane output was 
associated with a greater decline in vegetation growth between the peak of the season and the end of the 
season. According to these associations, regions that demonstrate higher yield amounts typically have 
slower rates of senescence and a more gradual reduction in growth as the season progresses. 
4.3. Regression model performance 

 The early estimation capabilities of the suggested framework should be improved and validated 
through additional research that employs state-of-the-art machine learning techniques, remote sensing 
technology, and extensive field observations. We can pave the way for more effective and efficient 
sugarcane production and support overall food security and agricultural sustainability by continually 
improving our understanding of and capacity to predict sugarcane yield dynamics. The OLS regressor 
consistently produced the best R2 scores, which indicate a better fit between the predicted and observed 
values—and the lowest root mean squared error (RMSE), which indicates smaller discrepancies between 
the anticipated and observed values. This shows that, based on the chosen feature sets, the OLS regression 
model delivers the most exact and accurate prediction of both sugarcane production and sugar quantity. 

The Random Forest (RF) regression model, which showed the highest R2 scores for the phonological 
indicators in sugarcane yield and sugar quantity estimates, respectively, was also put up against the 
performance of the OLS regressor in our comparison. The ability of the RF regression model to handle the 
data's non-linearity and provide accurate estimates of the dependent variables demonstrated promise. A 
cross-validation strategy was not used when fitting the data, which resulted in over fitting, which was 
particularly noticeable in the RF regressor's R2 scores above 0.9. A model is considered over fit if it exhibits 
exceptional performance on data used for training but has trouble generalizing to new data. 

We stress the value of using cross-validation methods and model evaluation on a separate test dataset 
to reduce over fitting. This guarantees that the model's performance is not biased towards the training data 
and that it can make accurate predictions for data that has not yet been observed. 
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