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Abstract: Integrating big data analytics into IoT-based robotic manufacturing is essential to optimize 
processes and improve the efficiency of manufacturing environments. This study work describes the 
impact of big data analytics on IoT-based robotic manufacturing with a focus on process optimization 
and product improvement. To comprehensively evaluate the part of huge information analytics in 
process optimization, this consideration included the collection and investigation of different 
information parameters. These parameters are temperature, mugginess, control utilization, voltage, 
engine speed, torque, weight, vibration, stack capacity, operational productivity, generation rate, 
mistake code, and communication status. The information collection preparation was conducted 
utilizing IoT sensors conveyed over the fabricating office, guaranteeing the capture of real-time 
information for an investigation. In the classification of production conditions, three classifications were 
used based on the collected data - bagging, SVC, and decision tree. Each classifier has good advantages 
in analyzing complex data sets and identifying patterns that aid in informed decision-making and 
process optimization. In the context of a study on the use of big data analytics in IoT-based robotic 
manufacturing, the decision tree classifier shows a high accuracy of 97%. The bagging classifier 
achieved 94.39% accuracy, while the Support Vector Classifier (SVC) achieved 96% accuracy. This 
research explores machine learning analysis methods and address ethical issues to maximize the 
benefits of big data analysis in IoT-based robotic manufacturing. 
 
Keywords: Big Data Analytics; IoT-Enabled Robotics Manufacturing; Process Optimization; 
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1.  Introduction 

Manufacturing has been transformed along with many other industries by the confluence of the Internet 
of Things (IoT) and Big Data technology. In robotics manufacturing, automated systems that can carry out 
operations that are typically done by people are created [1]. To increase productivity and optimize the 
production process, these systems make use of innovative robotic technology. Automation manufacturing has 
seen revolutionary changes due to the incorporation of these developments [2]. 

In the process of developing robotics, networked systems, the Internet of Things was created. Real-time 
operational information is provided by a huge amount of data that is gathered from various    manufacturing 
process phases using IoT-enabled sensors and devices [3].  

It was made easier to construct networked   systems in robotics manufacturing with the advent of the 
Internet of Things. Improving processes is one of the primary objectives of using Big Data in IoT-enabled 
robotics production. Robotics manufacturing with IoT-enabled technologies is revolutionizing the industry by 
utilizing big data to optimize operations [4]. By connecting machines and systems through IoT, manufacturers 
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can collect vast amounts of data in real-time, allowing for predictive maintenance, improved efficiency, and 
increased productivity [5]-[6]. Robotics in Industry 4.0 enhances automation systems, leading to the 
manufacturing of quality products while saving costs [7]. Artificial intelligence can be combined with Industry 
4.0 technologies like big data analytics to generate new insights and improve decision-making in 
manufacturing processe [8]. Manufacturers are able to recognize inefficiencies and make targeted 
improvements by examining data pertaining to environmental factors, equipment performance, and 
production workflow The integration of Big Data analytics with IoT in robotics manufacturing offers a 
multitude of benefits, including: (i) Improved operational efficiency (ii) Enhanced predictive maintenance 
capabilities (iii) Reduction in downtime and production costs Enhanced quality control and product 
consistency Despite its potential benefits, the integration of Big Data in IoT-enabled robotics manufacturing 
also presents challenges. These may include: (i) Data security and privacy concerns (ii) Integration complexities 
across heterogeneous systems (iii) Skill gaps in data analytics and IoT technologies. Robotics manufacturing, 
which involves the automation of tasks traditionally performed by humans, has greatly benefited from the 
synergy between IoT and Big Data. Robotics manufacturing is at the early adopters of an industry 
transformation brought about by the convergence of Big Data and Internet of Things (IoT) technologies.  
Manufacturers may gather enormous volumes of real-time data from multiple stages of the production process 
by utilizing IoT-enabled sensors and devices. 

The combination of Big Data and Internet of Things (IoT) technologies has reshaped many industries, and 
at the forefront of this revolution is the development of robotics, which involves the automation of tasks 
normally performed by humans Those who manufacturers can collect large amounts of real-time data from 
various points along the process. By integrating these technologies, manufacturers can identify product defects, 
assess the need for repairs, reduce downtime, and ultimately deliver products welfare and durability have 
improved significantly. But this integration also presents challenges, including data security and privacy 
concerns, complex system integration, and the need for skilled workers with expertise in data analytics and 
IoT all-technology -leading industry players are adopting these technologies to gain competitive advantage 
and lead in the market [9]-[10]. 
This paper is organized as follows. 

Section 1 provides an overview of the integration of Big Data and IoT in the robotics industry. Section 2 
explores Literature review. Section 3 discusses the advantages and challenges of integrating these technologies. 
Section 4 reviews current industry trends and research gaps. Finally, Section 5 concludes the paper with 
recommendations for future research and implications for manufacturers. 

 
2. Literature Review 

Businesses that have effectively incorporated Industry 4.0 technology into their production processes 
and presented the observable outcomes these innovations have produced are known as case studies. 

Daniel and colleagues (2018) explore capacity optimization within the realm of Industry 4.0. Their study 
delves into developing a mathematical model for efficient capacity management, incorporating both Activity-
Based Costing (ABC) and Time-Driven Activity-Based Costing (TDABC) principles. The authors underline the 
delicate balance between maximizing capacity and ensuring operational effectiveness[11]. They introduce a 
mathematical model grounded in various costing methodologies, shedding light on the complexities of 
capacity considerations [12]. Furthermore, their work introduces the integration of big data analytics for IoT-
driven manufacturing operations, leveraging RFID technology for real-time collection of production data. The 
authors stress the pivotal role of RFID technology in augmenting the adaptability and reusability of 
manufacturing processes, thereby enhancing operational efficiencies in Industry 4.0 settings [26]. 

 The integration of robotics and the Internet of Things (IoT) stands as a pivotal aspect in shaping the 
development of smart factory infrastructure within the framework of Industry 4.0. They highlighting the 
transformative benefits of robotics and IoT integration. They describe the importance of robotics addressing 
challenges to fully realize its potential. The work presents and discuss the developing standardized protocols, 
ensuring data security and privacy, and fostering collaboration among stakeholders to innovation and 



Journal of Computing & Biomedical Informatics                                                                                              Volume 07  Issue 01                                                                                         

ID : 482-0701/2024 

adoption [13]. 
Despite the transformative benefits of the integration of robotics and the Internet of Things in 

manufacturing[14]-[5] note that there are numerous challenges that must be addressed. As such, they note that 
the integration of robotics and IoT technologies leads to several improvements, “e.g., automation, efficiency 
and productivity, and automation.” They suggest producers can take advantage of robotics’ accuracy and 
automation skills and combine them with IoT’s connectivity and data analytics functions to ensure real-time 
monitoring, predictive maintenance, and resource optimization [22]. 

The another author work present how artificial intelligence (AI) and machine learning (ML) are 
revolutionizing several parts of industrial labor by increasing accuracy, flexibility, and operational efficiency. 
How the application and mechanical advancements through AI and ML methods divide into important 
dimensions ensured and control are among the crucial topics of investigation [21]. The work describes how 
artificial intelligence (AI)-conditioned sensory technologies enable more precise recognition and manipulation 
by robots. Machine learning offers a predictive maintenance technique that guarantees close to zero error rates 
and longer machinery lifespans. Even in very large spaces, self-governing robots can quickly adapt. It doesn't 
rely on instruction or examples that already exist [20].  

In their recent study, Audu and colleagues (2023) addressed a crucial agricultural need with a 
comprehensive framework geared towards automating the identification of quality traits in yam tubers. Their 
innovative approach introduces a system that automates the assessment of yam tuber quality through the 
integration of IoT and robotics [13]. This framework incorporates specialized computer algorithms for 
extracting image features and classifying tubers into categories like "Good," "Diseased," or "Insect Infected." 
The implementation of machine learning techniques such as tree algorithms, SVMs, and KNN led to impressive 
accuracy rates of over 90%. Moreover, they developed a robotic algorithm featuring an Artificial Neural 
Network (ANN) that achieved a notable accuracy of 92.3%. By leveraging various machine learning algorithms 
like tree algorithms, SVMs, and KNN, the developed algorithms demonstrated exceptional classification 
accuracy of over 90% [15]. 

The following mentioned below table represent the previous study findings. 
                                Table 1. Literature review Previous author work 

Authors Topic                 Key Contributions             Research Gap 
[12] Capacity 

Optimization in 
Industry 4.0 

Mathematical model integrating 
Activity Based Costing (ABC) and 

Time-Driven Activity-Based Costing 
(TDABC) 

Does not specifically address 
the utilization of big data in 

process optimization for IoT-
enabled robotics 
manufacturing 

[18] Robotics and IoT 
Integration in Smart 

Factory 
Infrastructure 

Highlighted transformative benefits of 
robotics and IoT integration 

Does not delve into the 
utilization of big data 
analytics for process 

optimization in 
manufacturing 

[5] Challenges and 
Improvements in 
Robotics and IoT 

Integration 

Suggested leveraging robotics' 
accuracy and automation skills 

combined with IoT's connectivity and 
data analytics for real-time monitoring 

and optimization 

Does not focus on the 
utilization of big data 
analytics for process 

optimization in 
manufacturing 

[20] Revolutionizing 
Industrial Labor 
with AI and ML 

Described AI and ML advancements 
increasing accuracy, flexibility, and 

operational efficiency 

Does not specifically explore 
the utilization of big data in 

IoT-enabled robotics 
manufacturing for process 

optimization 
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[16] Automation in 
Agriculture using 
IoT and Robotics 

Presented framework for automating 
yam tuber quality detection through 

IoT and robotics 

Does not address the 
utilization of big data in 

manufacturing for process 
optimization 

 
3. Methodology 

Mixed-methods approach used to understand big data utilization in IoT-enabled robotics manufacturing. 
Descriptive and exploratory method employed to gather insights. Research conducted in a robotics 
manufacturing facility with IoT integration and big data analytics. Sample size determined based on 
availability of robotics manufacturing companies using IoT and big data. We used Convenience sampling used 
to select participants. Data collected via structured questionnaires and semi-structured interviews. 
Questionnaires distributed electronically; interviews conducted face-to-face or via video conferencing. 
companies utilizing IoT and big data for process optimization. companies not meeting inclusion requirements 
or declining participation. Data analysis includes descriptive statistics, correlations, regressions for 
quantitative data; thematic analysis for qualitative data. Informed consent, confidentiality, anonymity, 
minimizing risks to participants. Data Preprocessing methods we use Cleaning, transforming, preparing raw 
data for analysis to ensure accuracy and suitability for research objectives. For Prediction analysis we used 
machine learning techniques. For results evaluation   we used confusion matrix. 

The following diagram represented our methodology frame work. 

 
                         Figure 1. Methodology Framework 

3.1. Data Preprocessing 
In our work, data preprocessing involved several key steps: 

We cleaned the raw data to eliminate errors, duplicates, and irrelevant information. We changed the data 
into other forms for analysis, including normalization or standardization data transformation methods. The 
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removal of missing values was crucial, and we used   techniques like imputation or deletion. Aggregating or 
disaggregating data to the appropriate granularity level was part of our preprocessing efforts. Feature selection 
or dimensionality reduction techniques were applied by us to streamline the dataset. We encoded categorical 
variables into numerical form for prediction analysis. 
3.2. Data Without Preprocessing 
The data without preprocessing are shown in below figure. 

 
Figure 2. Data without preprocessing 

3.3. Data with Preprocessing 
The Data with Preprocessing are shown in below figure. 

 
Figure 3. Data with preprocessing 
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3.4. Dataset Features 
The dataset features are shown in below   table. 

Table 2. Dataset Features 
Feature Description 

Temperature Low, Medium, High indicating the level of heat 

Humidity Low, Medium, High indicating the level of moisture content in the air 

Power 
Consumption 

Low, Medium, High indicating the level of energy usage 

Voltage Low, Medium, High indicating the electrical potential 

Motor Speed Low, Medium, High indicating the rotational speed 

Torque Low, Medium, High indicating the rotational force 

Pressure Low, Medium, High indicating the compression or force 

Vibration Low, Medium, High indicating the intensity of shaking 

Load Capacity Low, Medium, High indicating the maximum weight the system can handle 

Operational 
Efficiency 

Low, Medium, High indicating the level of effectiveness and productivity 

Production Rate Low, Medium, High indicating the number of units produced per hour 

Error Code Provides information about specific issues or malfunctions in the system or 
equipment being monitored 

Communication 
Status 

Indicates the connectivity or status of the communication system 

Equipment 
Failure 

Indicates whether any equipment failure occurred during the measurement, 

3.5. Machine learning methods 
We used machine learning techniques bagging SVC and Decision tree for prediction analysis. 

3.5.1 Bagging (Bootstrap Aggregating) 
Ensemble learning technique that combines multiple classifiers to improve accuracy and robustness. 

Utilizes bootstrapping to create multiple training datasets by randomly sampling with replacement from the 
original dataset. Trains multiple base classifiers on these bootstrapped datasets independently. Combines 
predictions from base classifiers through averaging or voting to make final predictions [14]. 
3.5.2. SVC (Support Vector Classifier) 

A popular supervised learning method for classification tasks involves creating hyperplanes in high-
dimensional space to effectively distinguish between classes with optimal margins. By utilizing the kernel trick, 
it can convert non-linearly separable data into a higher-dimensional format where separation becomes linear. 
This technique is especially well-suited for datasets with high dimensions and limited sample sizes [23]. 
3.5.3. Decision Tree 

This supervised learning technique is commonly employed for both classification and regression 
assignments. It creates a structure akin to a flowchart where every internal node signifies a decision made 
using a feature, each branch denotes the result of that decision, and each leaf node corresponds to a class label 
or numerical output. At every node, the dataset is divided based on the feature that boosts information gain 
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or reduces impurity the most. While it is susceptible to overfitting, especially with intricate trees, strategies 
like pruning can help alleviate this concern [30]. 
3.5.4.Confusion matrix 

A confusion matrix functions as a pivotal tool for assessing the efficacy of a classification model. It is 
delineated as follows: 

True Positive (TP): Correctly predicted positive instances. 
False Positive (FP): Incorrectly predicted positive instances. 
True Negative (TN): Accurately predicted negative instances. 
False Negative (FN): Erroneously predicted negative instances.  
These components are depicted in a matrix layout, where the actual classes form the rows and the 

predicted classes constitute the columns. 
 

4. Results 
4.1. Classifiers Accuracy 

The classifiers accuracy is represented in below table.  The Decision tree classifier achieved highest 
accuracy 97%. 

Table 3. Classifiers Accuracy 
Classifier Accuracy (%) 

Decision tree classifier 97 

Bagging Classifier 94.39 

SVC 96 

4.2. Precision Recall F1 Score of SVC 
The Precision Recall F1 Score of SVC are shown in below graph. 

 
Fgure 4. SVC score 

4.3. Precision Recall F1 Score of Decision Tree Classifier  
 
 
 
 
 
 
 
 
 
 
 

Figure 5. DT Classifier Score
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4.4. Precision Recall F1 Score of Bagging Classifier 
The Precision Recall F1 Score of bagging Classifier are shown in below graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Bagging Classifier Score 
 

Table 4. Comparitive Analysis 
 

5. Conclusion 
In conclusion we used big data for the analysis of IOT enabled robotics manufacturing for process 

optimization. We conduct survey for data collection. We used prediction techniques for analysis of IOT 
robotics equipment failure. We used supervised machine learning techniques in our work. This research 
helps to the growing field of exploration in field of big data, IoT, and robotics in manufacturing. In future 
researcher can extends this work by using large amount of data and different machine learning and deep 
learning techniques for further analysis. 

 
  

Research Focus Machine 
Learning 

Data 
Analysis 

Comparative 
Analysis 

Framework Enhancement 

Used machine 
learning in 

IoT-enabled 
robotics 

manufacturing 
to optimize 

processes and 
improve 

efficiency. 

Used machine 
learning for real-

time process 
optimization. 

Employs 
machine 

learning for 
data analysis, 

enabling 
predictive 

maintenance. 

Conducts 
comparative 
analysis of 

various 
machine 
learning 

models and 
their 

effectiveness. 

Enhances the existing 
framework by incorporating 
advanced machine learning 

algorithms. 
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