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Abstract: Nowadays, Android malwares are increasingly significantly producing major security 
issues. The complexity and increase of malware threats have made automated malware detection 
research an important component of network security. Traditional malware detection methods 
include manual examination of every malware file present in the application, which consumes a 
significant number of human resources (on the basis of both storage and time). Additionally, 
malware developers have created methods like code obfuscation to get beyond antivirus companies' 
conventional signature-based detection methods. Deep learning (DL) approaches for malware 
detection are now being used to resolve this issue. In this study, Performance comparisons are made 
amongst GCN (Graph Convolutional Network) models for Android malware detection. Using 
graph-based representations of malware of the Android DEX file, a GCN-based model is suggested 
to detect Android malware. GCN extracts the necessary features from the images of malware. The 
static approach is used to extract the essential features. Then, these features train GCN to detect 
malware. We presented a GCNs latest version for modeling more advanced graphical semantics. It 
automatically discovers and understands semantic and ordered patterns based on the previous 
stage's vectors, without requiring additional sophisticated or expert features. The proposed method 
outperformed the compared models in every performance metric, achieving an accuracy of 99.69% 
compared to other approaches. 
 
Keywords: Android Malware Detection; Deep Learning; Graph Convolution Network; Static 
Feature Extraction. 

 
1. Introduction 

Malware detection is becoming a significant concern due to large numbers and malware complexity. 
Malware detection relies on conventional techniques based on heuristics and signatures; sadly, these 
approaches have limited generalization to unknown attacks and are immediately defeated with 
obfuscation approaches. In recent years, by learning valuable representations from data, Machine Learning 
and especially Deep Learning have made remarkable achievements in malware detection and are now 
chosen over conventional approaches[1]. In the past few years, malware has become a much greater threat 
to both humans and businesses. As the complexity and number of malwares increases, detection 
techniques rely on heuristics and signatures have lost their effectiveness. As a major means to understand 
this issue, the machine learning methods used for detecting malware are receiving significant attention. In 
the area of malware research, Graph Neural Network (GNN) is one such machine learning technology that 
gained interest recently as an effective tool for capturing the structural correlations between aspects of 
malware samples[2, 3]. 

In this research, we propose an approach that leverages multiple Graph Convolutional Network 
(GCN), (which is one of the most popular and important GNNs) iterations through program interactions 
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to analyze and predict dangerous or non-malicious files[4]. The main objective is to highlight the benefits 
of GCNs over more traditional methods and demonstrate how they can be used to identify malware more 
effectively and efficiently.  

GNNs are capable of processing graph-based data, where nodes represent individual items and edges show 
connections between the components[5]. They have shown to be effective in a variety of academic disciplines 
where data is represented as a graph, including Natural Language Processing, Computer Vision, and Analysis of 
Social Network. 

A malicious software program is designed to harm computer systems, steal confidential data, or break 
into a network without authorization. Their growing sophistication and complexity make them hard to 
identify and assess, which puts computer systems and networks' security at serious risk. Malicious 
software, sometimes known as malware, is harmful software intended to harm computer equipment and 
secretly collect user information. The most frequent types of malware are viruses, worms, adware, 
ransomware, spyware, and Trojan horses[6, 7]. 

As per the Cyber security Ventures Report 2021, cybercrime would result in losses up to $10.5 trillion 
per year by 2025[8]. A cyber security firm found approximately 5,683,694 malware installation packages 
for mobile devices in 2020; 5,704,599 more malicious installation packages such as mobile malware, adware, 
and risk ware were found in 2023. Figure 1 shows the development of malware from 2020 to 2023. 
Additionally, cybercriminals employ a variety of obfuscation strategies to impede the detection of malware 
by conventional signature-based methods. Furthermore, it's critical to detect new malware strains quickly 
since any delays might result in significant security breaches. 

Android was the most prevalent operating system as of May 2021, with over 3 billion monthly active 
users. According to Forrester Research, it holds approximately 74% mobile market share, with iOS coming 
in second with a market share of 21%. It is projected that smartphone sales would rise by 7.7% in 2020, 
reaching a billion units by 2021. According to the World Retail Banking Report 2020, the COVID-19 
epidemic has increased customer preference for online banking, and a sizable section of those consumers 
choose mobile banking apps. Mobile banking Trojans have increased dramatically in 2019 from 69,777 to 
156,710 in 2020[9]. This information explains why malware detection is essential and why attackers are 
interested in banking data. We must detect malware as soon as possible because it is the most challenging 
work. 

 
Figure 1. Malware attacks all past four years 

Threats and malware are spreading daily, and many major information systems are being 
compromised, causing enormous economic losses. Personal information and data are crucial for every 
person. Everyone wants complete security in this era of hacking and stealing someone's personal 
information. In the current era, many approaches are used for detecting malware. For example, 
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CNN(Convolutional Neural Network), RNN(Recurrent Neural Network), DNN(Deep Neural Network), 
GAN(Generative Adversarial Network) and GCN(Graph Convolutional Network). Any organization will 
have procedures in place to stop and prevent attacks when the threat created by malware is significant. 
One of these preventive methods, which we will be talking about throughout this paper, is malware 
detection[10]. 

In this paper, we use GCN based static approach for malware detection. GCN is semi-supervised 
learning on structured data of Graph. It is based on an effective CNN variant that works directly with 
Graphs. GCN is a generated form of CNN in which the numbers of node interactions vary, and the nodes 
are not ordered. GCN does not share weights between hidden layers. A static approach extracts features 
and trains our GCN model to detect malware easily. GCN captures the behavior of malware adequately. 

To make sure users are not vulnerable to threats, malware detection and mitigation is essential for 
malware detection. In malware analysis, the most popular methodologies are dynamic, static, and hybrid 
analysis methods. The static analysis looks at the files without actually running the application. Static 
analysis offers the best code coverage, fastest virus detection, and least amount of overhead; but, 
obfuscation techniques and dynamic code loading may slow it down. Because it collects data while the 
application is running in a sandbox, dynamic analysis is effective in handling code obfuscation. It does, 
however, come at a higher cost in terms of overhead and longer analytical times. Hybrid uses both static 
and dynamic approaches. It can run the code and also deal with code obfuscation[11, 12]. 

The two primary categories of malware detection techniques are behavior-based detection and 
signature-based detection. The signature- based detection method is used for detecting malware that looks 
for a program’s code for particular signatures or patterns that are linked to malware. The approach 
Behavior-based detection identifies malware by examining its behavior and activities on a system[13]. But 
both approaches have some drawbacks that make them not suitable for the prevention of new malware 
attacks. 

Convolution neural networks are used to detect image-based malware but nowadays graph-based 
malware techniques are used. When we train our CNN model it can extract high features. But direct 
convolution is not applied on graphs and it cannot detect graph-based malware. Even previously unknown 
malware can be detected using machine learning-based approaches, which also produced noticeably better 
detection performance. However, they rely heavily on feature engineering, which takes time and requires 
a special set of skills. 
1.1. Research Question 
Q: Which features are used to classify that application is Benign or not? 
Q: How can we effectively measure the performance of our proposed approach?  
Q: What is the working of higher-level graphical semantics? 
1.2. Research Objective 

The objective of this paper is to detect malware with the help of Deep learning (DL) approaches that 
GCN (a generalized version of CNN) recently took the role of more established methods for detecting 
Android malware. This paper’s contributions are as follows: 
1. We aim to detect malware in graph-based data. Direct convolution is not applied to graphs so we 

proposed a Graph convolution network. 
2. Using GCN with the static approach so it can easily extract features. 
3. These static features are used to detect whether the application is benign or not. 
4. We compare different approaches and present new deep learning methods that detect malware 

efficiently. 
To experimentally assess our framework's performance in distinguishing "Benign" from "malware" 

and locating the malware version, we show the attributes that it has learned. 
1.3. Research Contribution 

The contributions of this paper are mainly described below: 
● We discuss deep learning methods and Graph convolution network that is used in our paper. 
● We proposed GCN, a graph-based malware method that is used to detect malware with the help of 

graphs. 
● The framework introduces the concept of NLP (Natural language Processing) word embedding 

technology. Word embedding technology maps all words, characters, and lexical information of 
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malicious features into vectors. Then these vectors illustrate the syntax and semantic connections 
between words that are situated next to one another in the space of vectors and share common 
information. 

● A GCN model for high-level graphical semantics modeling was presented. Without the need for extra 
complex or expert features, it automatically finds and learns the semantic and ordered patterns 
utilizing vectors from the previous stage. 

 
2. Literature Review  

This section examines many conventional and current malware detection methods and provides a 
detailed explanation of the previous research on this topic. We will also talk about the advantages and 
disadvantages of these methods, as well as current developments in the domain, which will encourage us 
to suggest our graph-based malware detection strategies utilizing GCN and its various forms.  

 A string-matching rough method presented by Boyer Moore for malware detection with signatures. 
The strategy aims to improve detection efficiency by reducing the temporal complexity of signature 
matching[13]. Combine the data section of Android Manifest.xml files and DEX files to produce grayscale 
images. After that, a Temporal Convolutional Network (TCN) is used to scan the images for Android 
malware[14, 15]. 

They utilize the similar methodology here, but they only use the data section of the DEX files to obtain 
the image[16]. CNNs were also used to recognize images of Android malware produced by Hilbert space-
filling curves with native instructions from mobile applications[17]. 

They create models for malware detection that are based on seven different types of static features 
including opcode, string, and API feature[18] [51]. 

Yen et al. employed CNNs to decompile Android APKs into code, then it is subsequently transformed 
to images through the TF-IDF approach[19]. A ResNet was trained on images obtained through the color 
visuals of Android app functions for detecting  malware[20, 21]. 

Some studies have looked into additional deep learning methods to improve the efficiency of Android 
malware detection platforms. Zhang et al. developed a capsule network design, which replaces capsule 
layers with pooling layers in CNNs. Chimera learned features from visuals that are transformed from DEX 
files, data that is static like Android intents and access controls, and dynamic data like system call 
sequences, respectively, using multi-model deep learning that consists of a DNN, CNN, and TN[22, 23]. 

Emotion based reorganization using a graph neural network that is used to detect the emotion of 
anything, using large scale representation learning for Android malware detection[24]. Malware 
classification using CNN to detect android malware[25]. Android malware and group samples that are 
used to find families that are well-known [26]. 

Chen et al. and Darus et al. employed a model XGBoost to categorize the features collected from 
images of Android malware as harmful or non-malicious[27, 28]. Huang et al. introduced MixDroid, which 
uses several characteristics and machine learning classifiers merged via bagging to detect Android 
malware[29, 30]. 

For malware images, Gu et al. suggested using executable adversarial instances for machine learning 
classifiers. Most studies employed CNNs to detect Android malware. The superior performance of 
convolutional neural networks in computer vision applications is widely recognized. They can quickly 
pick up on the traits of malicious images and use them to classify malware that has been packed and 
unpacked[12, 31]. For example, the models that are CNN-based were trained on images retrieved from the 
Dalvik byte-code provided in the classes.Dex files of the android APK to detect android malware[32, 33]. 
They use the DBN method for graph representation[34] [49]. 

DySign thought that dynamic analysis may produce effective fingerprints for malware on Android 
devices. They have suggested a fingerprint method that protects from Android malware assaults by using 
dynamic analysis[35]. They detect malware by using graph representation learning. They take benign and 
malware samples from Drebin datasets and compare with our approach. They have the same accuracy but 
with some point difference as compared to our accuracy[25, 36]. Table 1 data shows how our model is 
giving accurate detection of malware as compared to other detection models. 
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Table 1. Comparing the suggested method with different approaches 
Reference Models Number of 

Features 
Malware 
Dataset 

 

Benign 
Dataset 

Accuracy 

[32] CNN using a 
feature layer 

of higher 
order 

DEX bytecode 
features of 

images 

Drebin dataset Anzhi App 
store 

95.10% 

[37] GCN Graph feature 
extraction 

Drebin, AMD, 
Malgenome 

Google play 
store 

92.30% 

[38] GCN Graph based 
detection 

AMGP, DB, 
AMD 

Google play 
store 

98.99% 

[39] GNN IoT malware 
detection 

CICMal Droid, 
Drebin 

Androzoo(Dr
ebin) 

 

98.33% 

[9] EfficientNet-
B4 CNN 

Image features 
from byte-

code 

R2-D2 + other 
sources 

R2-D2 Hsien-
De Huang 
and Kao 

(2018) 

95.7% 
 
 
 
 

[40] GCN AI based 
malware 
detection 

VirusTotal, 
VirusShare 

System 
program and 

Internet 

98.32% 

[41] Bi-
LSTM+GNN 

Call trace-
based malware 

detection 

VirusShare, 
Drebin, Droid 

Analytics 

Google play 
store 

97.69% 

Proposed 
Approach 

Effective GCN graph-based 
feature 

extraction 

AMD AndroZoo 
 

99.69% 

 
3. Proposed Approach 
3.1. Features Extraction 

In malware detection, feature extraction is the process of locating and picking relevant characteristics, 
properties, or features that are obtained from raw data (such as system calls or binary code) that may be 
utilized to differentiate between malicious and non-malicious software. Then, by feeding the chosen 
characteristics into machine learning techniques, models that accurately categorize unknown data as 
benign or malicious may be trained. Below  

 
 

 

Figure 2 shows the working of feature extraction and feature transformation 
3.1.1. Graph Representation Learning 

To identify Android malware, we offer a unique end-to-end Deep learning solution that builds a non-
linear embedding based on the graph representation provided by static features. An Android application's 
main features are its rights, components, and application programming interfaces (APIs). These 
fundamental components of an Android application are the APIs. Arp et al. (2014) provided the 
methodology used to extract these APIs. 

Every observable string was included in a text database that held all of the static features. 
Furthermore, we extracted several NLP features, words, characters, and lexical features from the text 
database as nodes for a graph using word embedding. We model every application of Android of graphs 
with node properties based on these NLP features. For every node in the network, our objective is to learn 
vector representation that is low-dimensional such that various types of vectors can be used to represent 
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different node attributes. We include joint-feature vectors for a malware sample in the hybrid model and 
assess it using several datasets. We can make complete use of a malware's grammatical and semantic 
information in this way. 
3.1.2. Process for Feature Extraction 

The goal of this research is to create an effective and dependable analysis method for identifying 
Android malware. With this approach, we may avoid the need for intricate code analysis and get optimal 
performance with minimal complexity. We were able to easily analyze the content of programs by 
extracting static features using the open-source technology Androguard2. Different features are extracted 
to find the features that are most suited for the classification algorithm in order to achieve the greatest 
performance. Furthermore, because the same parsing mechanism is used throughout training and testing, 
deep learning-based systems can successfully discover and classify problems. 

Certain patterns and combinations of different traits are frequently indicative of malicious operations. 
The Android operating system is known for having a stringent access right management system. Malware 
usually requests a unique set of rights and frequently requests more access than benign software. In reality, 
the list of permissions requested can be used by some skilled antimalware developers to roughly detect 
malware. The permissions features are therefore essential. Furthermore, reusing code is a popular 
approach in app development. Various malwares within the same family frequently repurpose certain 
parts to carry out comparable malevolent acts. According to inconsistent naming of an app's components 
is one kind of significant attribute that could be helpful in recognizing well-known Android malware 
components.  

Malware differs from innocent programs in the patterns and feature values it distributed. One of the 
most appealing ways to reveal a piece of code's harmful activity is through API call sequences. In order to 
contextualize our results, we have chosen a few dubious API call characteristics from published research 
on Android malware identification which could indicate harmful activity within an application or the 
coding practices of its creators. In actuality, even if their scripts might be obfuscated, various malwares 
from the same family are frequently employed with the same patterns to bring some sensitive APIs. We 
depend on information from suspicious API calls as a result it provides important semantics about the 
operation of the infection. 
3.1.3. Lexical Vector 

We specifically define the lexical aspects to better characterize the virus behavior. We regarded lexical 
knowledge as specifically learned word vectors, or "lexical vectors," designated by the letter L. There are 
two primary components to the lexical characteristics. The statistical data is presented in the first section. 
Upon examination of the previously extracted static properties, we deduced that malicious malware 
exhibits unique context structures distinct from those of benign applications. To determine the quantity of 
unique characters, and quantity of letters, the percentage of unique characters, and percentage of letters, 
we conduct a statistical study. There are 45 traits in all, all of which are combined to form Lexical 1.The 
details of these features that are based on lexical are described in Table 2. The variations in occurrence 
semantic characteristics like embedding of word and n-gram features are analogous to these statistics 
features. 

Table 2. Lexical-based Features in Detail 
Number of Feature Numbers 

Each letter's number, For example, "a," "b," "c," "d," "e," and "z," 26 
The number of each distinct character (like '-', '>', '(', ')', '/', '.', ';', '_') 8 

The percentage of the largest continuous letter length in the static feature string 1 
The proportion of unique characters in the string of static feature 1 

The percentage of all letters that are most continuous letters in length 1 
The largest consecutive unique character size as a proportion is found in the static feature 

string. 1 

The percentage of all unique characters that have the greatest continuous length of any 
unique character 1 

Number of letters 1 
A lengthy letter that has been written consecutively 1 

The quantity of unique characters 1 
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The longest continuous duration of a unique character 1 
The length of the static feature string (including all letters and unique characters) 1 

The portion of the static feature string's total letters 1 
 

The second section discusses the malware's operations. 32 typical malware jobs were selected, as 
indicated in Table 3. For instance, The Context type (Landroid/content/Context) frequently provides 
worldwide application information (including unique assets, types, and resources) (Aafer et al., 2013). 

Table 3. A description of the 32 different kinds of Android malware 
 

 The method start Service (), getPackageManager and openFileOutput() are commonly used by 
malware within this class. To start a programme without communicating with the users we used 
startService(); To get the information related to application we used getPackageManager(), no matter it is 
install or not; and we can used openFileOutput() to write data in a specific private record in the private 
folder of the application. In this sense, we represented the malware activity using the denotation Lexical2, 
and we were able to extract a total of 32 features. Thus, L= Lexical1+ Lexical2 can be used to express the 
lexical vectors. Next, we looked up the matching embedding vector for lexical features identification using 
the word embedding. The features of lexical offer clear information gain for detecting Android malware, 
increasing the detection accuracy of the malware. 

 
 

 

 

 

Figure 2. Overview of feature extraction & feature transformation 
 

3.1.4. Feature Transformation 
All behavioral information is encoded at the word, character, and lexical levels using graph 

convolutional networks. A set of applications is defined as 𝑆 = (𝑥! , 𝑦!)where N is the number of instances 
and xi is an instance of the application.  

1. Androids. Permissions. Vibrate 17. Ljava and lang and Process 
2. Androids. Permissions. Call_Phone 18. Ljava abd util and Timer 
3. Androids. Permissions. READ_LOGS 19. Ljava /lang/ Runtime 
4. Android. Permission. Receive_Boot_Completed 20. Ljava and io and File Output Stream 
5. Android. Permission. ACCESS_NETWORK_STATE 21. Androids .Hardwares .cameras 
6. Androids. Permissions. WAKE_LOCK 22. Ljava /io /DataOutputStream 
7. Landroid and OS  and Bundle 23. Androids. Intents. categorys 
8. Androids.Permissions.Read_Phone_State 24. Landroid /apps /Services 
9. Landroid and Content and pm and PackageManager 25. Androids. Hardwares. telephonys 
10. Landroid and Content and Context 26. Androids. Hardwares. locations.gps 
11. Android.permission.INTERNET   27. Androids. Hardwares. screens.landscape 
12. Landroid and telephony and TelephonyManager 28.Landroid /net /NetworkInfo 

13. Androids. Permissions. Send_Sms 29. Androids. Hardwares. Locations. 
Networks 

14. Landroid and telephony and SmsManager 30. Androids. Intent. Category. HOME 

15. Landroid and content and pm and ApplicationInfo 31. Androids. Hardwares. screens.portraits 

16.Androids .Permissions. Access_Cache_Filesystem 32. Ljava and util and TimerTask 
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In order to embed the graph's nodes, we extracted as many features into a vector space using the 
embedding approach. A collection of hidden variables represents the embedding, and every word is 
symbolized by a particular instance of these variables. Each malware sample is able to be presented by 
three different types of features based on multi-feature extraction technique: representation of word 
(represented by W), representation of character (represented as C), and lexical feature representation 
(represented by L). Then these three features can be fused together to create the combined features. The 
ultimate feature representation, represented as V = W+C+L is the progression of W, C, and L. In order to 
transfer the features from a dictionary of words, characters and lexical through a vector of real numbers in 
embedded vector space, the embeddings for every input example must be calculated. Following training, 
each word is associated with a distinct vector that appears as a column in weight matrix𝐸"×$ . This vector 
is K-dimensional, and in which K equals 200. The final lexical and character representations resemble word 
representations. 
3.2. Proposed Methodology 

Over the last few years, deep learning techniques such as hybrid models, convolution neural 
networks, deep neural networks, and recurrent neural networks (RNN) have performed a variety of critical 
roles in malware detection, which is recognized as an emerging research field. The widely used method to 
detect malware is convolution neural network (CCN) which uses image-based detection techniques. 

After the training of CNN, it can obtain advanced features by learning the weight of train-able filters. 
However, the method of detecting malware through image-based techniques is now old, and graph-based 
methods are widely used to detect malware in Android. However, it is hard to apply convolution directly 
on a graph. So we presented a new technique that is based on an Effective Graph Convolutional Network 
(GCN) that directly works on graph-based malware. An exclusive adjacency matrix was created. Figure 3 
shows the working of our proposed approach. Each node can have a certain number of ordered neighbors 
constructed around it. By using this adjacency matrix, we first represented regular grid data as a graph, 
and GCNs used to collect the characteristics of all nearby nodes for every node. 
3.2.1. Deep Graph-based Convolutional Network 

A variant of GCNs was presented for the purpose of simulating advanced graphical semantics. A set 
of tuples (A, X) is added, containing the fundamental graph structure's adjacency matrix A, and embedded 
matrix X., to facilitate efficient information transmission on the graph. We employ GCN to categorize the 
tuples (A, X) input into the categories of malware and benign. A graph is represented by G (Edg, Ver) with 
vertices set {𝑉𝑒𝑟 = {𝑉𝑒𝑟% ∙∙∙ 𝑉𝑒𝑟&} and edges set 𝐸𝑑𝑔 ∈ 𝑉𝑒𝑟 × 𝑉𝑒𝑟.There is an embedded vector connected to 
every node. As was discussed in the previous section, all static features, including permissions and 
components, are converted into a collection of semantic features. The vectors that are embedded can be 
thought of as characteristics of each node in the network, which in our instance are knowledge of words, 
characters and lexical in a sentence. In reality, these nodes represent the APIs, permissions and 
components. Our objective is to identify the appropriate function∅ for the real-valued feature vector that 
the GCNs encode with pertinent information about its neighborhood. 

By iteratively collecting vectors from its neighboring nodes, we can generate node vectors. An 
embedded matrix X with a size of 𝑅"×$defines all nodes embedded vectors in a network. The matrix of 
adjacency A suggests the structure of the local neighborhood. By learning a map that converts every graph 
into a vector space, we try to learn the graph's representation [51]. The learned vectors' geometric 
relationships in this space represent the structure of graph knowledge, which can be an input for other 
Deep learning activities [48] [52]. 

We created a special adjacency matrix A for building graphs. The neighboring nodes could be 
determined as candidates of the core node based on the relative positions of candidate nodes with regard 
to the middle node. This procedure may involve the use of certain node selection techniques. To acquire 
the ordering indexes, the adjacency matrix is subjected to an order. In order to create a defined number of 
candidates for every node in the graph, we selected the most above n nodes as the possible neighbor nodes 
of the middle node. Similar relative neighbors are determined for the nodes from several graphs. This 
technique can be used to create the adjacency matrix, which lists the connections (edges) between the 
nodes. Then, the adjacency matrix is recreated with the help of normalization operation. The process is 
explained as follows: 

𝑨6 = 𝑨 + 𝑰 
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𝐴: = 𝐷6 %
'
 𝐴	𝐷6= %

'
 

The identity matrix I adds self-loop interactions, while the degree matrix of diagonal node D 
normalizes the generated A. 

GCNs are primarily used to gather data from neighbors and understand how the community is 
represented. The inputs to the GCNs are the adjacency matrix A and the embedding matrix X. This graph 
structure framework uses induction to discover each node's embedding. It's important to note that 
neighborhood data is frequently combined via matrix multiplication >𝐴	?𝐻()%𝑊(B. The method of 
aggregation differs from our own. In our example, the aggregated operation may be defined as follows: 

𝐻?$ = 𝑅𝑒𝐿𝑈( F ⬚
⬚

+∈-(/01)

(𝑍𝑊()) 

𝑍 = 𝐴𝑔𝑔	(𝐴:, 𝐻()%) 

 
Figure 3. Flow diagram of proposed approach 

 
4. Results and Discussion 
4.1. Datasets 

The AMD and Drebin databases are the sources of the datasets used in this work. The dataset used in 
this experiment are summarized in Table 4. 

Table 4. Summary of Datasets 
Datasets Benign Malware Year 
AMD 2100 24,553 2010-16 
Drebin         123,453          5560 2010-12 
The availability of representative data poses a significant challenge in Android virus detection studies. 

AMD[42] is the most recent dataset, containing 24,553 malware files gathered from 2010 - 2016. The samples 
of malware are divided into 135 variations across 71 malware families. 

The Android malware dataset Drebin was gathered between Aug 2010 and Oct 2012. There are 5,560 
malware Android apps in it, categorized into 179 families[43]. 
 4.2. Experimental Setup 

The experiment we conducted in a 64 bit Windows 10 pro OS with Inter (R) Core (TM) i3-4030U CPU 
@ 1.90 GHz with 16 GB RAM. The software used in this paper to run the code is Google Colab. The 
efficiency of malware detection is greatly influenced by the model parameters that are chosen. The 
efficiency of malware detection is greatly influenced by the model parameters that are selected. The hyper 
parameters setting of Effective GCN is described in Table 5. 

After them, the number of convolution layers in the graph is represented by the GCN-layers.The GCN-
filters show how many output channels there are in the Graph Convolution layer. Each node's number of 
neighbors is indicated by the GCN-neighbors. The batch amount is indicated by the batch size. The number 
of repetitions used for model training is shown by the epochs. Moreover, Dropout is a method for 
preventing overfitting that involves randomly eliminating nodes during training. We apply 50% dropout 
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at the GCN in our experiment. We experimented with these parameters and observed that little changes 
had no effect on the outcome. 

Table 5.  Hyper parameter setting 
 
 
 

 
 
 
 
 
 
4.3. Evaluation Metrics 

Evaluation metrics are measurable metrics that are used to evaluate a system's performance in the 
context of machine learning and data analysis. These metrics aid in assessing the model's performance 
about its ability to provide precise predictions or classifications. The particular job at hand and the type of 
data being examined will determine which assessment metrics are employed. 

The quantity of malicious applications that are accurately categorized as malware is known as True 
Positives (TP). In contrast to False Positives (FP), which show how many benign apps are mistakenly 
labeled as malware. True Negatives (TN) show how many benign applications are accurately categorized 
as benign. In contrast, False Negatives (FN) indicates the quantity of malware samples that are mistakenly 
categorized as benign. 

To prove the classifier's performance numerically, we use several different machine learning 
performance metrics: 

Accuracy: The overall amount of samples which are accurately classified as benign or malicious is 
known as accuracy. It is denoted by (Acc). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 3453-
345	3-5	745	7-

 
Precision: The proportion of accurately positively identified occurrences to all positive labeled 

instances is known as precision (P). 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 34

34574
 

Recall: A recall (R) is a proportion of all accurately labeled positive cases to all occurrences that should 
have had a positive label. 

𝑅𝑒𝑐𝑎𝑙𝑙	 = 34
3457-

 
F-Score: The harmonic mean of Precision and Recall is the F-score (F). 

𝐹 − 𝑠𝑐𝑜𝑟𝑒	 = 2 4108!9!:&∗<08=>>
4108!9!:&5<08=>>

 
The result of the experiment in this paper is a generalized version of CNN models for Android 

malware detection which is a GCN-based approach that detects malware on graph-based data. As 
compared with other approaches our proposed model gives accuracy is 99.69% and the other two datasets 
that are compared with our approach gave an accuracy of 99.24% and 99.19%.  

In our proposed approach we used a GCN-based technique for malware detection with the help of a 
static approach. The static approach is used to detect malware by using code segments. Then these binary 
codes are run on python to read the datasets and convert them into vector format. Then we take the graph 
form of the input dataset and extract features. These extracted features train the GCN model for better 
results. GCN is compared with other deep learning models and we get better accuracy and better results 
as compared to other models. 
4.4. Comparison with Different Algorithms 

To verify reliability, a comparison was done using either a single model or a mix of those models. The 
CNN+ Bi-LSTM baseline, whose accuracy and PRF are comparable to our suggested methods, completely 
demonstrates the generalization capabilities of both CNN and Bi-LSTM. The three algorithms (CNN, 
LSTM, and Bi-LSTM) that were tested performed quite similarly overall; however, Bi-LSTM performed 
somewhat better than the other two methods [53] [54]. The rationale is that Bi-LSTM can record information 

Number of Parameters Total Values 
GCN-layers 2 
Embedding 200 
Dropout 50% 
Epochs 40 
Batch-size 128 
GCN-neighbors 25 
GCN-filters   50 
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of context dependency in terms of both forward and future and the others cannot. Below Table 6 shows 
the experimental results of some different algorithm comparisons[44]. 

Table 6. Experimental results of different algorithms comparison 

Figure 4 shows the comparison between CNN and GCN. We compared this model with our suggested 
approach using evaluation metrics to evaluate the performance of our model. In terms of accuracy, 
precision, recall and f-measure the results of CNN with Drebin and AMD datasets are lower than our 
proposed approach. Using the Drebin dataset, the GCN model outperformed the CNN model, which 
achieved accuracy of 99.24%, precision of 99.04%, recall of 99.47%, and F-measure of 99.26%. The GCN 
model achieved greater accuracy was 99.69%, with precision was 99.54%, recall of 99.82%, and F-measure 
of 99.7%. Using the AMD dataset, the GCN model outperformed the CNN model, which scored 98.95% 
accuracy, 98.82% precision, 99.05% recall, and 98.93% F-measure, with a 99.47% accuracy, 99.52% recall, 
and 99.46% F-measure. 

 
Figure 4. Comparison between CNN and GCN 

Figure 5 shows the comparison between LSTM and GCN (proposed approach). We compared this 
model with our suggested approach using evaluation metrics to evaluate the performance of our model. 
In terms of accuracy, precision, recall and f-measure the results of LSTM with Drebin and AMD datasets 
are lower than our proposed approach. Using the Drebin dataset, the GCN model outperformed the LSTM 
approach, which achieved an accuracy of 98.97%, precision at 99.14%, recall of 98.83%, and F-measure of 
98.99%. The GCN model achieved greater accuracy with 99.69%, with precision at 99.54%, recall of 99.82%, 
and F-measure of 99.7%. The GCN model outperformed the LSTM model, which obtained accuracy of 
98.42%, precision with 98.92%, recall of 97.87%, and F-measure of 98.39%, using the AMD dataset, 
achieving 99.47% accuracy, 99.52% precision, 99.4% recall, and F-measure of 99.46%. 

Figure 6 shows the comparison between Bi-LSTM and GCN (proposed approach). We compared this 
model with our suggested approach using evaluation metrics to evaluate the performance of our model. 
In terms of accuracy, precision, recall and f-measure the results of Bi-LSTM with Drebin and AMD datasets 
are lower than our proposed approach. Using the Drebin dataset, the GCN model outperformed the Bi-
LSTM approach, which achieved accuracy of 99.3%, precision at 99.15%, recall of 99.47%, and F-measure 

Models DREBIN datasets AMD datasets 

 Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 

Bi-LSTM 99.3 99.15 99.47 99.31 99.24 98.71 99.76 99.23 
Cnn 99.24 99.04 99.47 99.26 98.95 98.82 99.05 98.93 
LSTM 98.97 99.14 98.83 98.99 98.42 98.92 97.87 98.39 
Cnn+Bi-
LSTM 

99.13 98.94 99.36 99.15 99.24 99.17 99.29 99.23 

CNN+LST
M 

98.92 99.46 98.41 98.93 98.84 98.93 98.7 98.81 

GCN 99.69 99.54 99.82 99.7 99.47 99.52 99.4 99.46 
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of 99.31%. The GCN model achieved greater accuracy at 99.69%, and precision with 99.54%, recall of 
99.82%, and F-measure of 99.7%. Using the AMD dataset, the GCN model outperformed the Bi-LSTM 
model, which obtained accuracy of 99.24% with precision at 98.71%, recall of 99.76%, and F-measure of 
99.23%, with an accuracy of 99.47%, precision at 99.52%, recall of 99.4%, and F-measure of 99.46%. 

 

 
Figure 5. Comparison between LSTM and GCN 

Figure 7 shows the comparison between CNN+LSTM and GCN (Proposed approach). We compared 
this model with our suggested approach using evaluation metrics to evaluate the performance of our 
model. In terms of accuracy, precision, recall and f-measure the results of CNN+LSTM with Drebin and 
AMD datasets are lower than our proposed approach. Using the Drebin dataset, the GCN model 
outperformed the CNN+LSTM approach, which obtained accuracy of 98.92%, precision with 99.46%, recall 
of 98.41%, and F-measure of 98.93%. The GCN model achieved greater accuracy at 99.69%, with precision 
with 99.54%, recall of 99.82%, and F-measure of 99.7%. Compared to the CNN+LSTM model, which 
obtained accuracy of 98.84%, precision with 98.93%, recall of 98.7%, and F-measure of 98.81%, the GCN 
model obtained accuracy with 99.47% with AMD dataset, with precision with 99.52%, recall of 99.4%, and 
F-measure of 99.46%. 

Figure 8 shows the comparison between CNN+Bi-LSTM and GCN (Proposed approach). We compared 
this model with our suggested approach using evaluation metrics to evaluate the performance of our 
model. In terms of accuracy, precision, recall and f-measure the results of CNN+Bi-LSTM with Drebin and 
AMD datasets are lower than our proposed approach. Using the Drebin dataset, the GCN model 
outperformed the CNN+Bi-LSTM approach, which obtained accuracy of 99.13%, precision with 98.94%, 
recall of 99.36%, and F-measure of 99.15%. 

 
Figure 6. Comparison between Bi-LSTM and GCN 

The GCN model achieved greater accuracy with 99.69%, and precision with 99.54%, recall of 99.82%, 
and F-measure of 99.7%. The GCN model outperformed the CNN+Bi-LSTM model, which obtained 
accuracy of 99.29%, precision with 99.17%, recall of 99.29%, and F-measure of 99.23%, with an AMD dataset 
accuracy of 99.47%, precision with 99.52%, recall of 99.4%, and F-measure of 99.46%. 
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Figure 7. Comparison between CNN+LSTM with GCN 

In 2018, Rui used Graph representation learning to detect malware. Training a graph classifier can be 
challenging due to the variety of input graph sizes and shapes available. They devised a batch-training 
approach to address this problem. They used to collect 5560 malware from DREBIN datasets and benign 
software from three different sources. The author did not offer benign datasets and used unequal positive 
or negative samples for testing and training, preventing precise comparison. However, this model of GCN 
is achieving 99% accuracy in detecting Android malware[25] [49]as shown in Table 6. 

 
Figure 8. Comparison between CNN + Bi-LSTM with GCN 

This result (GCNs) closely matches our method in terms of accuracy and PRF. GCNs provide deeper 
semantic information, but lack long-distance relationships between nodes, making them insufficient for 
describing complicated malware. Combining GCNs with LSTM and Bi-LSTM results in lower overall 
performance compared to other GCN-based models due to LSTM and Bi-LSTM's inability to utilize long 
sequence data.  

Marcheggiani (2017) demonstrated the effectiveness of GCNs in Natural Language Processing and 
presented a GCN model to encoding the syntactic data at the level of word. The study found that stacking 
syntax-based GCNs on top of bidirectional Long Short-Term Memory (LSTM) layers enhances their 
modeling capabilities. The author implemented and used the technique (Bi-LSTM+GCNs) in the NLP task. 
The Bi-LSTM+GCNs outperform in terms of comparison with our technique on the basis of two comparable 
datasets[45] [46]. 

Table 7. Experimental results of different feature comparison 
Number of 

Features 
DREBIN datasets AMD datasets 
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 Accuracy Precision Re-call F1-
score 

Accu
racy 

Prec
ision 

Re-call F1-score 

Character 88.01 89.39 85.99 87.65 88.3 91.1 84.16 87.5 
Words 98.92 99.24 98.61 98.93 98.95 99.8

7 
97.98 98.92 

Lexical 89.24 89.94 87.76 88.83 85.66 85.3
5 

85.66 85.5 

GCN 99.69 99.57 99.82 99.7 99.47 99.5
2 

99.4 99.46 

Table 7 indicates experimental results of different feature comparison with character, words and 
lexical with our proposed model [44] [47]. 
 
5. Conclusion 

In this paper, we presented a GCN-based algorithm for detecting Android malware. It is platform-
independent for both packed and unpacked malware. First, we allow the model to click multiple types of 
some semantic information. Then we proposed a Graph Convolutional Network (GCN) that works and 
operates directly on graphs. Then we use a static approach to extract the features. The static approach is 
used to detect malware by using code segments. Then these binary codes are run on python to read the 
datasets and convert them into vector format. Then we take the graph form of the input dataset and extract 
features. These extracted features train the GCN model for better results. Then these extracted features are 
passed through a GCN layer and the same classifier. The classifier obtained accuracy of 99.69% in 
separating benign from malware images. Then we compared our model with pre-trained CNN-based 
models and GCN-based models. We also perform dataset comparisons in combination with GCN models. 
The results show that our proposed methodology outperformed in detecting malware. 
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