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________________________________________________________________________________________________________ 
Abstract: Developing efficient anti-Parkinson medications poses a considerable challenge in the field of 
pharmacology, necessitating sophisticated techniques for assessing and refining potential therapeutic 
agents. This research presents a unified method that merges Quantitative Structure-Property 
Relationship (QSPR) analysis with VIKOR Multi-Criteria decision-making (MCDM) to enhance the 
selection and refinement of anti-Parkinson drug candidates. QSPR analysis aims to elucidate the 
connection between molecular descriptors and the pharmacological characteristics of different anti-
Parkinson compounds. By pinpointing essential molecular elements that influence both drug efficacy 
and safety, QSPR models yield predictive insights that direct the design and choice of new drug 
candidates. Subsequently, the VIKOR method is utilized to prioritize and choose the most promising 
drug candidates according to their anticipated performance. This method incorporates a range of 
pharmacological and safety considerations, enabling a balanced evaluation that weighs therapeutic 
advantages against potential risks. The collaborative QSPR-VIKOR approach facilitates a thorough 
assessment of drug candidates, reconciling conflicting goals and offering a definitive ranking system 
for decision-making. By integrating the benefits of both strategies, this study seeks to identify ideal anti-
Parkinson drug candidates with improved efficacy and safety profiles. The results offer a solid 
groundwork for the systematic assessment and enhancement of new therapeutic agents, potentially 
hastening the creation of more effective treatments for Parkinson’s disease and enhancing patient 
outcomes and their quality of life. 
 
Keywords: Parkinson's Disease; Drugs; Molecular Structure; Topological Index; Linear Regression 
Model; VIKOR Method. 

________________________________________________________________________________________________________ 
1. Introduction 

Parkinson’s is a neurological disorder presented with postural disturbances, resting tremors, and 
problems with balance and coordination [1]. Parkinson's disorder highly affects the central and peripheral 
systems of the human body nervous system [2]. It can be recognized as an age-related disease, with its 
incidence and prevalence rising in tandem with age. The multifactorial interplay between environmental 
factors and genetics, for example, exposure to environmental toxins, is supposed to play a part in the 
development of Parkinson's disorder [3]. Therefore, it is thought that genetics and environment contribute to 
the development of Parkinson's disease [4]. Parkinson's disease is more likely to develop in People having 
family history of Parkinson's disease, as certain genes are recognized as inheritable risk factors [5]. Other 
possibilities that increase the accessibility of Parkinson's disease comprise pesticide exposure and a history of 
head trauma. However, consumption of coffee, tea, or tobacco might reduce the risk of developing Parkinson’s 
[6]. Parkinson's disease typically arises in people above the era of 60, and when it manifests in people under 
50 years of age, it is classified as early-onset PD [7]. As of 2015, Parkinson's disease affected approximately 6.2 
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million individuals and led to roughly 117,400 deaths worldwide [8-9]. The living period of a person after being 
diagnosed with Parkinson’s is 7 to 15 years [10]. The accuracy and precision of early diagnosis of non-physical 
symptoms such as depression, constipation, eye movement, fatigue, dementia and others can be increased [11]. 

Quantitative structural property relationship (QSPR) analysis is energetic in the discovery and 
development of drugs, utilizing mathematical models to forecast properties and activities of molecules based 
on their chemical structures. QSPR has become indispensable for understanding the connections between 
molecular descriptors and drug effectiveness, safety, and physicochemical features. This review summarizes 
recent advancements and research in QSPR analysis for pharmaceuticals, highlighting the newest 
developments and practical uses. A recent study conducted by Abubakar et al. [12] discovered the usage of 
degree-based structural indices in QSPR analysis focused on anti-tuberculosis drugs. The findings 
demonstrated that distance-based indices can accurately predict these properties, revealing insights into the 
molecular aspects that influence drug behavior under different conditions. The study identified significant 
correlations between the topological indices and drug characteristics, providing a useful framework for the 
assessment and improvement of new malaria treatments.  

         The topological index is a mathematical parameter which converts a structural configuration into a 
numeric value. Topological indices serve as a crucial instrument for analyzing the physicochemical 
characteristics of chemical substances, offering insights into their molecular structures. In the following 
research, degree-based topological indices were applied to explore medications used for Parkinson's disease. 
The formulas of these drugs were modelled as graphs, where the elements represented by vertices and the 
bond between elements are signified the bonds. The calculation of these indices enables chemists and 
pharmacists to use graph theory in the process of new drug discoveries. Furthermore, assessing the topological 
indices of a drug’s structure can yield useful insights into its physical and biological properties [13-15].  

The results underscored the effectiveness of linear regression in deciphering the connection between 
molecular structure and these physical characteristics, which assists in pinpointing potential drug candidates.  

Also, Aslam et al. [16], utilized linear regression models in their QSPR assessment to examine hexagonal 
close-packed crystal lattices. Therefore, chemical graph theory emerges as a potent method for determining 
topological indices, acting as a reliable predictor for the physicochemical and biological behaviors of molecular 
compounds [17- 26].  

Multi-criteria decision-making (MCDM) methods can be categorized in several ways, including 
linear/non-linear models and interplanetary decision individualities27.In our research, we use a highly 
compatible technique known as VIKOR. The VIKOR method was established for multi-criteria optimization of 
complex systems. It controls the trade-off list and the trade-off solution achieved with the initial known 
weights. For the best ranking of Parkinson’s targeting drug VIKOR method employs the QSRP study analysis. 
The VIKOR method is used in various fields, such as Engineering and manufacturing for selecting the best 
design or process. Environmental management for evaluating sustainability options. Healthcare for 
prioritizing treatment plans. Business and economics for strategic planning and investment decisions.  

Hui et al. [28] Implement QSPR analysis through multiple regression modelling toward nanotubes. 
Farooq, F. B [29] utilized multi-criteria decision-making for the ranking of treatments for bone cancer. Yali li et 
al. used the VIKOR method for the decision-making of anticancer drugs [30]. 

The recent trend in drug development has seen an increasing reliance on multiple-choice decision-
making frameworks [31-33]. Recent advancements in QSPR analysis have significantly improved the 
technique's predictive capabilities and its application in new pharmaceutical candidates, ultimately aiding in 
the growth of more effective and safer therapeutic cures. The combination of various topological indices with 
sophisticated modelling techniques, such as multigraph representations and linear regression, has deepened 
our insight into the assembly between molecular structure and drug characteristics. For example, Zaman et al. 

[34] explored new medications for treating blood cancer by employing degree-based topological indices and 
regression analysis.  

Similarly, Mahboob et al [35] utilized QSPR methodologies to evaluate the physicochemical traits of anti-
hepatitis drugs through linear regression. Additionally, Zhang et al. [36] conducted a QSPR analysis using 
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topological indices to investigate treatments for schizophrenia. Such methodologies streamline the selection 
process, allowing researchers to assess drug candidates against defined criteria, thus enhancing efficiency and 
promoting informed decision-making. 

In this study, we familiarize readers with several topological indices relevant to understanding the 
physicochemical properties of medications necessary for Parkinson’s disease. In the realm of chemical graph 
theory, drugs are depicted using molecular graphs, with vertices symbolizing atoms and edges representing 
the bonds between them. We can view the drug structure as a graph 𝛩 = 𝛩(V, E), where the degree of vertices 
is represented by du, indicating the number of connections for vertex u, and dv for vertex v. The indices we 
utilized are described by the subsequent formulas, which are based on the degrees of the vertices: 
● First and Second Zagreb [𝑀!(𝛩)	and 𝑀"(𝛩)] indices were proposed by Trinajestic and Gutman [37]: 

𝑀!(𝛩) = ) [𝑑# + 𝑑$]
#$∈&

,	 

													𝑀"(𝛩) = ) [𝑑#𝑑$]
#$∈&

	, 

● Randic index [𝜒(𝛩)]	was the invention of Milan Randič 38: 

					𝜒(𝛩) = )
1

/𝑑#𝑑$#$∈&

, 

● Atom Bond Connectivity index [ABC(𝛩)] was proposed by a mathematician Estrada et al.39: 

) 0
𝑑# + 𝑑$ + 2

𝑑#𝑑$#$∈&

 

● Sum Connectivity index [SCI(𝛩)] introduced by Zhou and Trinjstic40: 

𝑆𝐶𝐼(𝛩) = 	 )
1

/𝑑#+𝑑$#$∈&

, 

● Geometric Arithmetic index [𝐺𝐴(𝛩)] introduced by Vukicevic et al.41: 

𝐺𝐴(𝛩) = )
2/𝑑#𝑑$
𝑑#+𝑑$#$∈&

, 

● Harmonic index [𝐻(𝛩)] proposed by Fajtlowicz42: 

𝐻(𝛩) = )
2

[𝑑#+𝑑$]#$∈&

	, 

● Hyper Zagreb index [HM(𝛩)] was proposed by Shirdel et al.43 : 
𝐻𝑀(𝛩) = 	 ) (𝑑#+𝑑$)"

#$∈&

, 

● Forgotten index [F(𝛩)] proposed by Furtula et al. [44]: 

𝐹(𝛩) = 	 ) 9𝑑#
" + 𝑑$

":
#$∈&

	, 

Topological indices (TIs) were first explored for the coding of alkenes [45]. QSAR and QSPR models play 
a vibrant role in anticipating new ideal compounds' biological activity or properties grounded on their 
chemical arrangements. This predictive capability reduces the necessity for extensive and costly lab 
experiments, enabling researchers to focus their efforts on the most promising candidates. By shedding light 
on the connection between chemical structure and biological activity or physical properties, QSAR and QSPR 
models assist in refining drug candidates to improve effectiveness and reduce side effects. They allow for the 
early evaluation of compound libraries, helping researchers to prioritize those with a greater chance of success, 
thereby speeding up the drug discovery process. Furthermore, regulatory bodies may require QSPR 
assessments to estimate the potential toxicity or environmental effects of drug candidates. QSAR and QSPR 
analyses are essential tools in drug development, enhancing efficiency, lowering costs, and boosting the overall 
success rate of new drug creation. Recent research continues to utilize topological indices and QSPR analysis 
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in drug discovery and development [46-48]. These studies underscore the ongoing consequence and promise 
of QSPR analysis in field of drug development and discovery. 

 
2. Material and Methods 
2.1. QSPR analysis using Linear Regression: 

In this section, we discussed the degree-based topological indices computed for chemical structures of 
treatments for Parkinson’s disease. The discussion centers on QSPR analysis concerning specific topological 
descriptors, which have been found to correlate strongly with the properties of the biochemical compounds 
utilized in Parkinson’s treatment. The current study developed QSPR analysis through linear regression to 
explore the connection between the physicochemical properties of Parkinson’s drugs with topological indices. 
The molecular structures of Parkinson’s drugs were retrieved from the PubChem database.  

The PubChem CID number was used as an identifier to obtain the 2D structure in SDF format from 
PubChem. The SDF files of the molecules were then imported into the ChemBioDraw [49] software to evaluate 
the degree-based topological indices via built-in Topological Indices Calculator.  

For this analysis, we considered the drugs with their drug bank IDs Apomorphine(DB00714), 
Biperiden(DB00810), Carbidopa(DB00190), Entacapone(DB00494), Lergotrile(D04693), levodopa(DB00190), 
Orphenadrine(DB01173), Pergolide(DB01186), Pramipexole(DB00413), Rasagiline(DB01367), Ropinirole(DB00
268), Selegiline(DB01037), Tolcapone(DB00323), and Trihexyphenidyl(DB00376) which are being used for 
Parkinson’s treatment. These drugs with their chemical structure are shown in Figure 1.  

These molecular structures of Parkinson’s drug are considered as a chemical diagram having elements 
taken as vertices and the bonds between elements are taken as edges.Physicochemical properties are vital in 
QSPR modelling for drug design, impacting drug absorption, distribution, metabolism, and toxicity prediction 

[50]. They guide formulation design, affecting bioavailability and stability, and are crucial for regulatory 
compliance and predicting drug interactions [51] QSPR modelling utilizes these properties to optimize drug 
efficacy, safety, and development processes. The physic-chemical properties which are used to build QSPR 
model are Boiling point (BP), Melting point (MP), Flashpoint (FP), Complexity(C), Enthalpy of vaporization 
(EV), Molar refractivity (MR), Refractive index (RI), Molecular weight (MW), Density(D) and Molar volume 
(MV) extracted from ChemSpider [52-26] and PubChem [53] are summarized in Table 1.  

The calculated degree-based topological descriptors were then used as independent variables, while 
physio-chemical attributes of the Parkinson’s drugs were used as the dependent variable in the linear 
regression modelling. The linear regression model was developed by SPSS [54] and validated using the test set 
under the following equation: 

𝑌 = 𝐴 + 𝑏(𝑇𝐼) 
Here Y is the indication of physicochemical property, TI is an abbreviation of topological index, A is 

being a constant with b as regression coefficient. The performance of the model was evaluated using certain 
statistical parameters such as correlation coefficient (r), F-test value (F), significance level (P), number of sample 
(N) and coefficient of determination (r2).   

Table 1. Physical properties associated with treatments for Parkinson’s disease. 

Drug’s name BP 
oC 

MP 
oC 

FP 
oC 

C EV 
kJ/mo
l 

MR 
cm3 

RI MW 
g/mol 

D 
g/cm3 

MV 
cm3 

Apomorphine 473.4 195  268.8 374 76.5  77.9  1.682 267.32 1.3 205.6 
Biperiden 462.1 114  224.5 422 76.2 94.1 1.583 311.5 1.1 281.7 
Carbidopa 528.7 203 273.5 261 84.6  57.5 1.641 226.23 1.4 159.3 

Entacapone 526.6 162 272.3  500 83.1 79.1 1.642 305.286 1.4 219.2 

Lergotrile 528  273.1 458 80.3 85.0 1.637 299.798 1.265 236.9 
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(a) Apomorphine                        (b) Biperiden                            (c) Carbidopa 
 

 
(d)   Entacapone                         (e) Lergotrile                           (f) Levodopa 

 
(g) Orphenadrine                        (h) Pergolide                           (i) Pramipexole 

 

 
(j) Rasagiline                                 (k)  Ropinirole                         (l)  Selegiline 

(m) Tolcapone                          (n) Trihexyphenidyl 
 

Figure 1. Parkinson’s drugs with their chemical structures. 
2.2. MCDM techniques 

The main idea of VIKOR is to identify an ideal closest solution, considering a compromise among the 
criteria. This means finding a solution that provides the best trade-off. VIKOR ranks the alternatives and 

levodopa 448.4 295 225  209 74.5  49.3 1.654 197.19 1.5  134.3 

Orphenadrine 363  132 107.1  260 60.9  84.4 1.549 269.4 1.027 265.5 
Pergolide 491.3 207.5 250.9 388 75.8 97.4 1.614 314.5 1.1  279.6 

Pramipexole 378  288 182.4 188 62.6 60.3  1.583 211.33 1.2 180.5 
Rasagiline 305.5 155 146.8 212 54.6 53.9 1.577 171.24 1.1 162.7 

Ropinirole 410.5 246.5  202.0 287 66.3  78.4  1.539 260.37 1.0 250.2 
Selegiline 272.5 141 108.4 195 51.1 60.5 1.529 187.28 1.0 196.2 
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suggests a compromise solution by considering the distance of each alternative from the ideal and the anti-
ideal solutions. The VIKOR method has following steps for completion. 
• Determine 𝑡'((ideal best) and 𝑡')(ideal worst) values for all function models that we consider as estimation 

tools, where {𝑖 = 𝑃' , 𝑖 = 1,…., 6}. 
▪ 𝑡'(: = {max {𝑡'* , 𝑗 = 1,…., j}, min{𝑡'* , 𝑗 = 1,…., j}:if beneficial is ith function} 
▪ 𝑡'): = {min {𝑡'* , 𝑗 = 1,…., j}, max{𝑡'* , 𝑗 = 1,…., j}:if unbeneficial is ith function} 

• Determine the 𝑆* and 𝑅* values where , 𝑗 = 1,…., j. we have the following parameters. 

● 𝑆*: = ∑ ⬚+
*,! G𝑤' ×

-.!
").!#/

-.!
").!

$/
J 

● 𝑅*: = 𝑚𝑎𝑥 G𝑤' ×
-.!
").!#/

-.!
").!

$/
J 

• Determine the 𝑄* values where , 𝑗 = 1,…., j , through the following formulation. 

▪ 𝑄*: = G𝑣 ×
-0#)0"/
(0$)0")

J + G(1 − 𝑣) ×
-3#)3"/
(3$)3")

J 

Whereas  (1 − 𝑣) is the weight of the distinct regret. This tactic might be demoralized by 𝑣 = 0.5 
Sort the options according to S, R, and Q values., starting from the smallest value. 
Furthermore, Microsoft Excel uses the VIKOR techniques to attain outcomes generated from QSPR 
modelling through regression analysis. 
 
3. Results and Discussion 

We have considered two-dimensional graphs of drugs because they offer a simplified yet informative 
representation of molecular geometry, facilitating the calculation of topological indices. Topological indices 
computed for these drugs are shortened in Table 2. Figure 2 represents the 2D graph of topological indices vs 
the drugs used for Parkinson's.  The models are investigated using fourteen medications and nine topological 
indices. A linear regression model correlation coefficient (R) is attained among these indices and 
physicochemical properties. The model with the maximum correlation coefficient (R) is considered the most 
accurate predictor of the regression model.  

Table 2. Topological indices related to Drugs for Parkinson’s. 
Drug’s name 𝑨𝑩𝑪(𝜣) 𝑹𝑨(𝜣) 𝑴𝟏(𝜣) 𝑴𝟐(𝜣) 𝑯𝑴(𝜣) 𝑯(𝜣) 𝑺𝑪𝑰(𝜣) 𝑭(𝜣) 𝑮𝑨(𝜣) 
Apomorphine 16.268 9.665 116 145 600 9.366 10.343 310 22.436 
Biperiden 18.380 11.254 126 151 630 11.04 11.938 328 25.500 
Carbidopa 11.808  7.386 78 89 396 6.852 7.363 218 14.981 
Entacapone 15.901 10.348 104 120 512 9.767 10.298 272 20.976 
Lergotrile 16.906  10.185 120 149 616 9.9 10.855 318 23.453 
Levodopa 10.365 6.5029 66 73 318 6.067 6.499 172 13.208 
Orphenadrine 15.056 9.682 96 108 450 9.4 9.908 234 20.476 
Pergolide 17.435 10.813 122 150 614 10.63 11.470 314 24.643 
Pramipexole 10.675 6.7920 70 80 334 6.6 7.011 174 14.627 
Rasagiline 9.818  6.415 64 74 302 6.334 6.629 154 13.842 
Ropinirole 14.170 9.2407 92 105 436 9 9.443 226 19.549 
Selegiline 9.8707  6.736 62 67 282 6.5 6.722 148 13.574 
Tolcapone 15.303 9.396 102 119 508 8.867 9.618 270 20.034 
Trihexyphenid
yl 

17.006 10.788 112 130 542 10.60 11.241 282 23.580 

3.1. Regression Models and Computation of Statistical Parameters 
The nine degree-based topological indices are used to model ten physical properties of the fourteen 

drugs for Parkinson’s. The following are the linear regression models of the physical properties of different 
drugs used to treat Parkinson’s. This section uses the QSPR model to establish a connection between the 
statistical parameter for Parkinson's medication computation and its physicochemical characteristics. 
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Topological indices are considered independent variables, while the physicochemical properties are 
dependent. Tables 3-11 include the statistical parameters of the linear regression model of topological indices 
with statistical parameters N, A, b, r, F and P. 

 

                                                               Figure 2. 2D graph of TIs with drug. 
1. Regression model and statistical parameter of Atom Bond Connectivity index [ABC(Θ)]: 

BP=205.161+ 16.331 [ABC(Θ)] 
MP = 270.836-5.478 [ABC(Θ)] 
FP =83.077+8.989 [ABC(Θ)] 
C= -84.189+28.239 [ABC(Θ)] 
EV =43.080+1.989 [ABC(Θ)] 
MR= 6.093+4.803 [ABC(Θ)] 
RI=1.562+0.003 [ABC(Θ)] 

MW= 34.185+15.669 [ABC(Θ)] 
D=1.285-0.006 [ABC(Θ)] 

MV=29.167+13.297 [ABC(Θ)] 
Table 3. Statistical parameters of linear regression model for ABC(Θ) index. 

Physiochemical 
Property 

N A b r r2 F P 

Boiling Point 14 205.161 16.331 .617 .380 7.370 .019 
Melting Point 13 270.836 -5.478 .273 .074 .885 .367 
Flash Point 14 83.077 8.989 .480 .230 3.587 .083 
Complexity 14 -84.189 28.239 .846 .715 30.116 .000 
Enthalpy 14 43.080 1.989 .584 .341 6.202 .028 
Molar Refractivity  14 6.093 4.803 .938 .881 88.536 .000 
Refractive index 14 1.562 .003 .175 .030 .377 .551 
Molecular weight 14 34.185 15.669 .975 .951 230.688 .000 
Density 14 1.285 -.006 .103 .011 .129 .726 
Molar volume 14 29.167 13.297 .814 .662 23.548 .000 

2. Regression model and statistical parameter of Randic index [RA(Θ)]: 
BP =209.013+25.520 [RA(Θ)] 
MP =281.614-9.889 [RA(Θ)] 
FP=92.445+13.236 [RA(Θ)] 

C =-110.740+47.843 [RA(Θ)] 
EV=43.724+3.089 [RA(Θ)] 
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MR= -1.394+8.469 [RA(Θ)] 
RI= 1.585+0.002 [RA(Θ)] 

MW= 13.926+27.164 [RA(Θ)] 
D=1.359-0.018 [RA(Θ)] 

MV=.289+24.358 [RA(Θ)] 
Table 4. Statistical parameters of linear regression model for RA(Θ) index. 

Physiochemical 
Property 

N A b r r2 F P 

Boiling Point 14 209.013 25.520 .559 .313 5.457 .038 
Melting Point 13 281.614 -9.889 .289 .084 1.004 .338 
Flash Point 14 92.445 13.236 .410 .168 2.421 .146 
Complexity 14 -110.740 47.843 .831 .690 26.772 .000 
Enthalpy 14 43.724 3.089 .526 .276 4.584 .053 
Molar Refractivity  14 -1.394 8.469 .960 .921 140.390 .000 
Refractive index 14 1.585 .002 .069 .005 .057 .816 
Molecular weight 14 13.926 27.164 .980 .961 296.561 .000 
Density 14 1.359 -.018 .181 .033 .404 .537 
Molar volume 14 .289 24.358 .865 .748 35.595 .000 

3. Regression model and statistical parameter of Sum connectivity index [SCI(Θ)]: 
BP=230.390+22.390 [SCI(Θ)] 
MP=272.368-8.585 [SCI(Θ)] 
FP =99.381+12.062 [SCI(Θ)] 
C=-75.341+42.482 [SCI(Θ)] 
EV=46.545+2.685 [SCI(Θ)] 
MR=3.320+7.688 [SCI(Θ)] 
RI=1.584+0.002 [SCI(Θ)] 

MW= 33.321+24.197 [SCI(Θ)] 
D =1.365-0.018 [SCI(Θ)] 

MV=14.890+21.999 [SCI(Θ)] 
Table 5. Statistical parameters of linear regression model for SCI(Θ) index. 

Physiochemical 
Property 

N A b r r2 F P 

Boiling Point 14 230.390 22.390 .544 .296 5.057 .044 
Melting Point 13 272.368 -8.585 .277 .076 .911 .360 
Flash Point 14 99.381 12.062 .414 .172 2.489 .141 
Complexity 14 -75.341 42.482 .819 .671 24.448 .000 
Enthalpy 14 46.545 2.685 .507 .257 4.157 .064 
Molar Refractivity  14 3.320 7.688 .967 .935 173.605 .000 
Refractive index 14 1.584 .002 .078 .006 .074 .790 
Molecular weight 14 33.321 24.197 .969 .940 186.515 .000 
Density 14 1.365 -.018 .202 .041 .509 .489 
Molar volume 14 14.890 21.999 .867 .752 36.307 .000 

4. Regression model and statistical parameter of First Zagreb index [M1(Θ)]: 
BP =223.717+2.248 [M1(Θ)] 
MP =259.723-0.705 [M1(Θ)] 
FP = 84.124+1.334 [M1(Θ)] 
C=-42.987+3.791 [M1(Θ)] 

EV = 45.515+0.272 [M1(Θ)] 
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MR=15.268+0.622 [M1(Θ)] 
RI= 1.552+0.001 [M1(Θ)] 

MW= 63.957+2.031 [M1(Θ)] 
D =1.251-0.001 [M1(Θ)] 

MV=59.823+1.666 [M1(Θ)] 
Table 6. Statistical parameters of linear regression model for M1(Θ) index. 

Physiochemical 
Property 

N     A b r r2 F P 

Boiling Point 14 223.717 2.248 .640 .409 8.321 .014 
Melting Point 13 259.723 -.705 .260 .068 .797 .391 
Flash Point 14 84.124 1.334 .536 .288 4.849 .048 
Complexity 14 -42.987 3.791 .856 .732 32.784 .000 
Enthalpy 14 45.515 .272 .601 .362 6.802 .023 
Molar Refractivity  14 15.268 .622 .916 .839 62.468 .000 
Refractive index 14 1.552 .001 .245 .060 .766 .399 
Molecular weight 14 63.957 2.031 .952 .907 116.993 .000 
Density 14 1.251 -.001 .068 .005 .056 .816 
Molar volume 14 59.823 1.666 .769 .591 17.347 .001 
        

5. Regression model and statistical parameter of Second Zagreb index [M2(Θ)]: 
BP =248.777+1.691 [M2(Θ)] 
MP =249.125-0.507 [M2(Θ)] 
FP =93.106+1.056 [M2(Θ)] 
C =2.143+ 2.827 [M2(Θ)] 

EV=48.712+0.203 [M2(Θ)] 
MR=23.968+0.452 [M2(Θ)] 

RI=1.549+0.000 [M2(Θ)] 
MW=92.730+1.473 [M2(Θ)] 

D=1.231+0.000 [M2(Θ)] 
MV=86.538+1.181 [M2(Θ)] 

Table 7. Statistical parameters of linear regression model for M2(Θ) index. 
Physiochemical 

Property 
N A b r r2 F P 

Boiling Point 14 248.777 1.691 .643 .413 8.459 .013 
Melting Point 13 249.125 -.507 .246 .061 .709 .418 
Flash Point 14 93.106 1.056 .567 .322 5.698 .034 
Complexity 14 2.143 2.827 .852 .726 31.774 .000 
Enthalpy 14 48.712 .203 .600 .360 6.750 .023 
Molar Refractivity  14 23.968 .452 .889 .791 45.292 .000 
Refractive index 14 1.549 .000 .292 .085 1.118 .311 
Molecular weight 14 92.730 1.473 .922 .851 68.523 .000 
Density 14 1.231 .000 .047 .002 .026 .874 
Molar volume 14 86.538 1.181 .728 .529 13.497 .003 

6. Regression model and statistical parameter of Forgotten Zagreb index [F(Θ)]: 
BP=212.209+0.921 [F(Θ)] 
MP=253.226-0.248 [F(Θ)] 
FP=72.519+0.566 [F(Θ)] 
C=-27.118+1.409 [F(Θ)] 
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EV=43.670+0.113 [F(Θ)] 
MR=22.753+0.211 [F(Θ)] 

RI=1.533+0.000 [F(Θ)] 
MW=80.297+0.723 [F(Θ)] 

D =1.168+0.000 [F(Θ)] 
MV=87.106+0.536 [F(Θ)] 

Table 8. Statistical parameters of linear regression model for [F(Θ)]. 
Physiochemical 

Property 
N A    b r r2 F P 

Boiling Point 14 212.209 .921 .723 .523 13.179 .003 
Melting Point 13 253.226 -.248 .250 .063 .734 .410 
Flash Point 14 72.519 .566 .628 .395 7.823 .016 
Complexity 14 -27.118 1.409 .877 .770 40.140 .000 
Enthalpy 14 43.670 .113 .691 .478 10.985 .006 
Molar Refractivity  14 22.753 .211 .858 .736 33.498 .000 
Refractive index 14 1.533 .000 .359 .129 1.777 .207 
Molecular weight 14 80.297 .723 .935 .874 83.569 .000 
Density 14 1.168 .000 .052 .003 .032 .861 
Molar volume 14 87.106 .536 .683 .466 10.472 .007 

7. Regression model and statistical parameter of Harmonic Index [H(Θ)]: 
BP =238.035+23.063 [H(Θ)] 
MP =275.771-9.561 [H(Θ)] 

FP = 107.841+11.922 [H(Θ)] 
C =-80.518+46.038 [H(Θ)] 
EV=47.574+2.753 [H(Θ)] 
MR=0.137+8.591 [H(Θ)] 
RI=1.599+0.000 [H(Θ)] 

MW=26.021+26.726 [H(Θ)] 
D=1.410-0.024 [H(Θ)] 

MV=1.084+25.128 [H(Θ)] 
Table 9. Statistical parameters of linear regression model for H(Θ) index. 

Physiochemical 
Property 

N A b r r2 F P 

Boiling Point 14 238.035 23.063 .507 .257 4.142 .065 
Melting Point 13 275.771 -9.561 .280 .079 .937 .354 
Flash Point 14 107.841 11.922 .370 .137 1.903 .193 
Complexity 14 -80.518 46.038 .802 .643 21.582 .001 
Enthalpy 14 47.574 2.753 .470 .221 3.397 .090 
Molar Refractivity  14 .137 8.591 .976 .953 243.350 .000 
Refractive index 14 1.599 .000 .015 .000 .003 .961 
Molecular weight 14 26.021 26.726 .967 .935 172.959 .000 
Density 14 1.410 -.024 .249 .062 .793 .391 
Molar volume 14 1.084 25.128 .894 .800 48.005 .000 

8. Regression model and statistical parameter of Hyper Zagreb index [HM(Θ)]: 
BP =229.544+0.445 [HM(Θ)] 
MP =251.514-0.126 [HM(Θ)] 
FP =82.211+0.275 [HM(Θ)] 
C =-14.197+0.709 [HM(Θ)] 
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EV =46.080+0.054 [HM(Θ)] 
MR=23.074+0.110 [HM(Θ)] 

RI=1.541+0.000 [HM(Θ)] 
MW=85.612+0.367 [HM(Θ)] 
D=1.200+(4.494E-6) [HM(Θ)] 
MV=86.058+0.283 [HM(Θ)] 

Table 10. Statistical parameters of linear regression model for HM(Θ) index. 
Physiochemical 

Property 
N A b r r2 F P 

Boiling Point 14 229.544 .445 .686 .470 10.641 .007 
Melting Point 13 251.514 -.126 .249 .062 .726 .412 
Flash Point 14 82.211 .275 .600 .360 6.742 .023 
Complexity 14 -14.197 .709 .867 .752 36.332 .000 
Enthalpy 14 46.080 .054 .648 .420 8.686 .012 
Molar Refractivity  14 23.074 .110 .875 .766 39.383 .000 
Refractive index 14 1.541 .000 .327 .107 1.435 .254 
Molecular weight 14 85.612 .367 .931 .867 78.284 .000 
Density 14 1.200 4.494E-6 .003 .000 .000 .991 
Molar volume 14 86.058 .283 .706 .499 11.956 .005 

9. Regression model and statistical parameter of Arithmetic Geometric index [GA(Θ)]: 
BP =245.781+9.896 [GA(Θ)] 
MP =264.509-3.698 [GA(Θ)]  
FP =103.532+5.545 [GA(Θ)]  
C=-45.919+18.764 [GA(Θ)]  
EV=48.559+1.178 [GA(Θ)]  
MR=8.456+3.405 [GA(Θ)] 
RI=1.580+0.001 [GA(Θ)]  

MW=51.446+10.617 [GA(Θ)] 
D=1.355-0.008 [GA(Θ)]  

MV=31.441+9.649 [GA(Θ)] 
Table 11. Statistical parameters of linear regression model for GA(Θ) index.𝛩 

Physiochemical 
Property 

N A b r r2 F p 

Boiling Point 14 245.781 9.896 .541 .292 4.954 .046 
Melting Point 13 264.509 -3.698 .265 .070 .834 .381 
Flash Point 14 103.532 5.545 .428 .183 2.691 .127 
Complexity 14 -45.919 18.764 .813 .660 23.325 .000 
Enthalpy 14 48.559 1.178 .500 .250 3.997 .069 
Molar Refractivity  14 8.456 3.405 .962 .926 150.266 .000 
Refractive index 14 1.580 .001 .101 .010 .124 .731 
Molecular weight 14 51.446 10.617 .955 .913 125.459 .000 
Density 14 1.355 -.008 .203 .041 .514 .487 
Molar volume 14 31.441 9.649 .854 .730 32.370 .000 

The correlation coefficients between physicochemical properties and Tis are depicted in table 12 and 
Figure 3 depicts a graph of the correlation coefficient of Parkinson’s drugs. 

Table 12. Correlation coefficient for physical properties of the drugs. 
TIs BP   MP   FP    C   EV MR   RI  MW      D MV 
ABC(Θ) .617 -.273 .480 .846 .584 .938 .175 .975 -.103 .814 



Journal of Computing & Biomedical Informatics                                                                                               Volume 07  Issue 02                                                                                        

ID : 516-0702/2024 

RA(Θ) .559 -.289 .410 .831 .526 .960 .069 .980 -.181 .865 
SCI(Θ) .544 -.277 .414 .819 .507 .967 .078 .969 -.202 .867 
GA(Θ) .541 -.265 .428 .813 .500 .962 .101 .955 -.203 .854 
M1(Θ) .640 -.260 .536 .856 .601 .916 .245 .952 -.068 .769 
M2(Θ) .643 -.246 .567 .852 .600 .889 .292 .922 -.047 .728 
F(Θ) .723 -.250 .628 .877 .691 .858 .359 .935 .052 .683 
H(Θ) .507 -.280 .370 .802 .470 .976 .015 .967 -.249 .894 
HM(Θ) .686 -.249 .600 .867 .648 .875 .327 .931 .003 .706 

3.2. Calculation of Standard Error of Estimation 
As seen in Table 13, a standard error of estimate is an indicator of deviation for an observation computed 

around the computed regression line that evaluates the degree of accuracy of predictions computed around 
the regression line. 

Table 13. Std. error of the estimate for physical properties of the drugs. 
TIs BP      MP FP C EV MR RI  MW D MV 
ABC(Θ) 66.726 62.50

9 
52.647 57.079 8.860 5.662 .05206 11.443 0.179 30.394 

RA(Θ) 70.287 62.19
7 

54.734 59.490 9.282 4.598 .05275 10.148 0.177 26.267 

SCI(Θ) 71.107 62.44
0 

54.606 61.357 9.404 4.166 .05271 12.653 0.176 26.073 

GA(Θ) 71.323 62.64
5 

54.228 62.325 9.451 4.456 .05260 15.205 0.176 27.205 

M1(Θ) 65.146 62.74
1 

50.636 55.353 8.717 6.578 .05126 15.696 0.179 33.451 

M2(Θ) 64.926 62.97
8 

49.406 55.988 8.729 7.499 .05056 19.866 0.180 35.888 

F(Θ) 58.525 62.91
0 

46.684 51.300 7.884 8.416 .04935 18.236 0.179 38.227 

H(Θ) 73.093 62.37
2 

55.743 63.922 9.634 3.552 .05286 13.108 0.174 23.394 

HM(Θ) 61.718 62.93
2 

48.011 53.283 8.311 7.919 .04996 18.762 0.180 37.024 

 
(a)                                      (b)                                      (c)                                 (d) 

 
(e)                             (f)                                  (g)                                 (h)       
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                                          vvvvvvvvvvvvvvvvvv     
                                                                                                            (i)                                          (j)                                     

Figure 3. Correlation coefficient graphs of physiochemical properties: (a) Flash point (b) Molecular weight(c) 
Molar refractivity (d) enthalpy(e) Boiling point (f) Refractive index (i) Complexity (h) Melting point (i) Molar 

volume (j) density with topological indices. 
 
4. Implementation of VIKOR Method 

In this technique of VIKOR, we will utilize the main results obtained from the QSPR model. Here we 
have considered the regression standard error (SE) and correlation coefficients (r) values among the properties 
MW (molecular weight) and MV (molar volume) with all topological indices each numerically representing 
some correlation value shown in Table 1A. if the r value is closer to 1 with a low standard error, then there will 
be a good correlation between chemical indices to envisage targeted properties.  

Table 14. Correlation coefficient(r) and standard error (SE) between Parkinson’s drugs and physical 
property. 

 

 

 

 

 

 

 

 

From Table 14, we will dictate correlation coefficient as weight allocation criteria for molar volume and 
molecular weight in Fig.5(a, b). For both cases standard error criteria as beneficial and non-beneficial 
corresponding to each drug and its chemical indices is shown in Table 15. Beneficial criteria are chosen for 
numerical values that are bold. 
4.1. VIKOR analysis for Molar Weight QSPR extrications 

To extract the correlation and standard error results for QSPR analysis within the molecular weight 
study, we obtained the calculation steps as, step 1 is obtained through topological indices and correlation 
coefficients and Table 16 provides the final computations for steps 2, 3, and 4. Weights are allocated by entropy 
method. 

Topological 
index 

MV 
Correlation  
Coefficient 

MV Standard  
Error 

MW Correlation  
Coefficient 

MW 
Standard  
Error 

ABC(Θ) .814 30.394 .975 11.443 
RA(Θ) .865 26.267 .980 10.148 
SCI(Θ) .867 26.073 .969 12.653 
GA(Θ) .854 27.205 .955 15.205 
M1(Θ) .769 33.451 .952 15.696 
M2(Θ) .728 35.888 .922 19.866 
F(Θ) .683 38.227 .935 18.236 
H(Θ) .894 23.394 .967 13.108 
HM(Θ) .706 37.024 .931 18.762 
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(a) Molar Volume                                                              (b) Molecular weight 

Figure 4. Weight allocation from QSPR extractions for (a) molar volume and (b) molecular weight. 
 

Table 15. Beneficial and non-beneficial criteria for molecular weight and molar volume. 
 
 
 
 
 
 
 
 
 
 

 
 
4.2. VIKOR analysis for Molar Volume QSPR extrications 

 To extract the correlation and standard error results for QSPR analysis within molar volume study, step 
1 is obtained through topological indices and correlation coefficients and table 17 comprises final computations 
for steps 2, 3 and 4. 

 

 

 

 

 

 

 

 

 

Figure 5. Ranking 14 Parkinson’s drugs through VIKOR method keeping in concern with their values for 
Molecular weight and Molar volume. 

 

Topological index MV MW 
ABC(Θ) 30.394 11.443 
RA(Θ) 26.267 10.148 
SCI(Θ) 26.073 12.653 
GA(Θ) 27.205 15.205 
M1(Θ) 33.451 15.696 
M2(Θ) 35.888 19.866 
F(Θ) 38.227 18.236 
H(Θ) 23.394 13.108 
HM(Θ) 37.024 18.762 
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Table 16. Outputs for  𝑆* , 𝑅* , 𝑄*and the rank (Molecular weight case). 
 

 

 

 

 

 

 

 

 

 

 

   
Table 17.  Outputs for 𝑆* , 𝑅* , 𝑄*  and the rank (Molar volume case). 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
5. Conclusions  

The results of our study reveal significant correlations between topological indices (TIs) and various 
physicochemical properties of Parkinson’s drugs. Among the TIs analyzed from Table.3-11, the S (Θ) index 
exhibited a remarkably high correlation with molar refractivity (r = 0.956), while the H index demonstrated the 
strongest correlation with molar volume (r = 0.883). The F (Θ) index displayed the highest correlation 
coefficient with boiling point (r = 0.697), and the harmonic F(Θ) index showed the maximum correlation with 
complexity (r = 0.852). Additionally, the harmonic RA (Θ) index exhibited the highest correlation with 
molecular weight (r = 0.972). However, no significant relationships were found between the TIs and properties 

Parkinson’s drugs 𝑺𝒋 𝑹𝒋 𝑸𝒋 MW QSRP VIKOR rank 
Apomorphine 0.925827 0.24826 0.109149 4 

Biperiden 1.072317 0.269293 0 1 
Carbidopa 0.256087 0.097382 0.724198 10 
Entacapone 0.689371 0.177981 0.362366 6 
Lergotrile 0.990377 0.260992 0.053709 3 
levodopa 0.018904 0.033495 0.96418 12 

Orphenadrine 0.514647 0.130496 0.540048 8 
Pergolide 1.013387 0.264174 0.036821 2 

Pramipexole 0.086603 0.041377 0.917636 11 
Rasagiline -0.01288 0.035781 0.97334 13 
Ropinirole 0.45855 0.120947 0.585014 9 
Selegiline -0.06239 0.035563 0.995615 14 
Tolcapone 0.650624 0.174886 0.386003 7 

Trihexyphenidyl 0.81162 0.201196 0.259272 5 
𝑺(, 𝑹( 
𝑺), 𝑹) 

1.072316 
-0.062385 

0.269293 
0.033494 

  

Parkinsons drugs 𝑺𝒋 𝑹𝒋 𝑸𝒋 MV QSRP VIKOR rank 
Apomorphine 0.868904 0.233155 0.106546 4 

Biperiden 0.970652 0.25109 0 1 
Carbidopa 0.323891 0.091013 0.811809 10 
Entacapone 0.661579 0.165184 0.415424 6 
Lergotrile 0.9171 0.245112 0.045969 3 
levodopa 0.119668 0.090299 0.922618 12 

Orphenadrine 0.500933 0.122556 0.625439 8 
Pergolide 0.921895 0.248101 0.034687 2 

Pramipexole 0.162773 0.079881 0.930096 11 
Rasagiline 0.075167 0.08565 0.959888 13 
Ropinirole 0.456332 0.113589 0.675372 9 
Selegiline 0.031467 0.087618 0.977404 14 
Tolcapone 0.63952 0.162311 0.435557 7 

Trihexyphenidyl 0.744557 0.188318 0.303689 5 
𝑺(, 𝑹( 
𝑺), 𝑹) 

0.970652 
0.031466 

0.251090 
0.079880 
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such as density, melting point, refractive index, enthalpy, and flash point. Our comprehensive analysis 
involved calculating TIs and integrating them with linear QSPR models specifically tailored for Parkinson's 
drugs. The utilization of the Multi-Criteria Decision-Making (MCDM) method, specifically VIKOR, has 
provided valuable insights into the comparative assessment of 14 Parkinson's drugs. Through this thorough 
analytical method, we have successfully assessed the molecular weight and molar volume of each medication, 
leading to a detailed ranking illustrated in Figure 5. Notably, all 14 anti-Parkinson medications received the 
same rankings for both characteristics, demonstrating the reliability of the VIKOR process in decision-making. 
The ranked list of these drugs, which includes ApomorphineRank 4), Biperiden (Rank 1), Carbidopa (Rank 10), 
among others, emphasizes the consistency of evaluations based on molecular weight and molar volume. This 
alignment of rankings highlights the significance of evaluating multiple criteria in drug assessment, ensuring 
a comprehensive view in the quest for effective treatments for Parkinson's disease. The progress of QSPR 
(Quantitative Structure-Property Relationship) analysis marks a notable shift, reflecting the increasing demand 
for chemical products across various fields, from chemical biology to physical sciences. This innovative 
approach provides essential insights into commercial models and enables detailed evaluations through 
different frameworks. It is important to note that QSPR analysis goes beyond simple chemical indices, 
capturing the complex relationship between chemical properties and desired outcomes, as seen in the values 
derived from correlation coefficients and errors produced in QSPR modelling. 

These results carry significant implications for the pharmaceutical sector, offering crucial insights for the 
creation of new drugs targeting diseases. The strong correlation coefficients found within the range of TIs 
indicate their usefulness in estimating and predicting physicochemical properties for new Parkinson's 
treatment drugs, and possibly for other autoimmune diseases as well. These findings pave the way for 
pharmaceutical researchers and present a strategic pathway for advancing medication science and developing 
effective therapies. 
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