
Journal of Computing & Biomedical Informatics Volume 07 Issue 01
 ISSN: 2710 - 1606 2024

ID : 525-0701/2024

Research Article
https://doi.org/10.56979/701/2024

Hybrid Approach at Cloud Data Center for Improving Makespan and Creating a
Better Energy Enviornment

Noman Hasany1, Waleed Younus2, Fawad Salam Khan3*, Abdul Hameed4, and Raja M. Waqas Ahmed4

1Department of Software Engineering, Karachi Institute of Economics and Technology, Karachi, 75190, Pakistan.

2Director (IT & Procurement), Ministry of Finance, Government of Pakistan.
3Department of Creative Technologies, Faculty of Computing and AI, Air University, 44000, Islamabad, Pakistan.

4Department of Computer Science, Faculty of Computing and AI, Air University, 44000, Islamabad, Pakistan.
*Corresponding Author: Fawad Salam Khan. Email: fawad.salam@au.edu.pk

Received: February 22, 2024 Accepted: May 11, 2024 Published: June 01, 2024

__
Abstract: The field of cloud computing is growing quickly, and in order to achieve maximum
performance and cost savings, effective resource management is required. The goal of this research
is to adopt a hybrid technique to improve makespan in cloud data centers. In order to meet the
increasing demand for cloud services, the main objective is to establish cost-effective and efficient
cloud resource management. This work attempts to create a hybrid method, called HGWCA, by
merging two different algorithms. The algorithms for Grey Wolf and Cat Swarm optimizations. The
makespan, throughput, degree of imbalance, and turnaround time are the evaluation criteria that
are employed. When compared to alternative algorithms, the suggested HGWCA method performs
better in each of these metrics. The outcomes demonstrate that the hybrid strategy greatly enhances
cloud data center performance based on makespan, degree of imbalance, throughput, and
turnaround time. According to the study's findings, there is a lot of room for improvement in cloud
data center performance with the suggested hybrid approach. Subsequent investigations could
examine the suggested methodology in more extensive and intricate cloud data center setups, in
addition to investigating the incorporation of extra optimization methods to enhance overall
efficiency. The makespan improvement attained by the hybrid approach that was suggested was
5.18%. improvement in the result.

Keywords: Virtual machine, makespan, throughput, degree of imbalance, turnaround time.

1. Introduction

Many benefits come with cloud computing, including more collaboration, scalability, dependability,
and affordable solutions. Nevertheless, there are potential drawbacks as well. First of all, accessing cloud
services necessitates a steady internet connection, which can be difficult in places with spotty or
inconsistent service. Second, due to data transmission issues and server congestion, cloud-based web
applications may operate more slowly. Thirdly, because all of its components run online, cloud computing
is susceptible to security lapses and intrusions. Finally, there's a chance that private information will be
stolen or used illegally.

It's critical to take into account these disadvantages and evaluate if cloud computing is appropriate
given the demands for connectivity, performance, and security [1-2]. In cloud computing, load balancing

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

is a technique for effectively allocating cloud environment virtual machine resources. It seeks to provide a
fair distribution of workloads across the available servers or virtual machines in order to maximize the
usage of these resources. Load balancing enables improved performance and resource efficiency in the
cloud by dynamically distributing and reallocating computing resources based on demand, hence
preventing the overflowing of individual servers. The essential technology for ensuring equitable task
distribution and effective resource utilization in a cloud context is load balancing [3-4]. Load balancing is
a crucial component needed to divide dynamic workloads among nodes in a cloud system. In cloud
computing, efficient workload balancing results in higher user satisfaction and more efficient use of
resources. Application in cloud computing According to [5-6] load balancing reduces latency in data
transmission and reception. Static load balancing and dynamic load balancing are its two varieties. Static
load balancing transfers incoming traffic and requests to the server that has the least amount of load
relative to the other servers after first assessing the load on each server. Static load balancing seeks to
minimize communication latency and increase reaction time [7-8].

Dynamic load balancing doesn't require any prior information; it only depends on the system as it is
right now. Workload balancing in the cloud environment does not require any prior knowledge of the
system. During execution, this approach allows for dynamic load distribution among multiple servers and
distributes network traffic among them at runtime.
It may change the load of a server that is overloaded to other servers as it is being executed, which
makes it a more effective method than static load balancing [9-10].

Software known as a virtual machine allows several operating systems to operate on a single
computer system. It is made up of two operating systems: the host OS, which is installed on the actual
computer, and the guest OS, which is installed within the virtual machine [11].

Virtual machines make it possible to install many operating systems at once by sharing system
resources. But the fact that these resources are shared may have an effect on system speed. System virtual
machines and process virtual machines are the two categories of virtual machines. Multiple operating
systems are supported by system virtual machines, each of which runs a separate copy, while The idle
procedure certain programs are run in a regulated environment using virtual machines. In general, running
several operating systems or applications on a single computer system is made flexible and efficient by
virtual machines [12-13].

2. Related Work

The competitive swarm optimizer (CSO) method has a major drawback: premature convergence, or
the tendency to enter local optima. Finding a balance between the exploration and exploitation phases
could help alleviate this issue. Consequently, the dynamic competitive swarm optimizer (DCSO) approach
was developed, which modifies the seeking mode and selection scheme of the prior CSO algorithm. These
modifications added dynamism to the algorithm and—above all—established a healthy equilibrium
between the stages of exploration and exploitation. Additionally, the proportion of these phases was
determined and this balance was further supported by the dimension-wise variety assessment. The
findings show that, in the CSO algorithm, the ratio between the two phases is roughly 75% to 25%, whereas
in the DCSO algorithm, there is a virtually equal fifty percent on average between these two stages. The
experiment evaluated the robustness of the suggested approach against 33 benchmark functions and a real-
world application-related backboard wiring issue [14].After that, the results are compared with three other
popular methods. Consequently, the proposed approach yields highly competitive results and resolves the
premature convergence issue. Still, there's always room for development. For example, the algorithm's

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

efficiency could be greatly increased by combining its seeking mode with a suitable local search
strategy, as Golden Section search [15] [32].

As the power system has developed, the emphasis has switched to low-carbon, green operation,
whereas the current power grid planning is mostly based on operating economics and reliability. This
research suggests a cooperative grid planning method that promotes reliable and ecologically beneficial
power grid operation, based on a modified CSO algorithm. A planning model is created that takes
reliability, cost, and environmental aspects into account while examining the characteristics of carbon
emissions during the building of a power system. Quantum theory and chaotic algorithms are used to
improve the CSO algorithm, which efficiently solves the low-carbon planning model and supports a stable
and sustainable power system [31]. The model experiment, which makes use of IEEE 39 bus technology,
reveals that the suggested collaborative planning method has a construction cost of 23 million yuan and a
carbon emission of 2.28 t/MWh. This approach lowers carbon emissions, maximizes building costs, and
guarantees a stable, low-carbon power system operation [16-18].

3. Methodology

Initially, tasks are assumed to be = {𝑇!+𝑇" + 𝑇#…… . }. These jobs must be submitted to the task
manager via the cloud console. In this setup, the task management module needs to ascertain the relative
importance of each job, and then ascertain the relative importance of each virtual machine in terms of the
power it consumes per unit of time. Figure 1 present the proposed model.

Figure 1. Proposed approach model
This is being tested because the jobs being brought into the cloud platform have many variations, and

it's crucial to map them to the appropriate virtual resources in the cloud. The task scheduler is in charge of
carrying out this task; a task scheduler connected to a resource manager module that keeps track of
resource requests, resource allocations, and resource availability on the corresponding physical hosts.
Within the data centers. This method assumes that n virtual machines (VMs) exist, with names such:
Virtual machines (VMs) 𝑉$ = {𝑉!, 𝑉", 𝑉#, ……𝑉$} must live in physical hosts with name 𝐻% =
{𝐻!, 𝐻", 𝐻#, ……𝐻%} and the datacenters, also known as centers, where these hosts are kept, have
names like𝑑& = {𝑑!, 𝑑", 𝑑#, ……𝑑&}.The architecture as stated assigns tasks to virtual machines (VMs) based

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

on the relative cost of power in the datacenters, as determined by the Task Priority and VM Priority,
respectively. A priority calculation must be performed in order to assign each task to the most appropriate
virtual machine (VM), as each work has different processing requirements. The cloud's priority calculations
for virtual machines (VMs) must take into consideration geographical variations in in electricity expenses
[19-21]. A method that first identifies which tasks are most important, and then assigns those tasks to
virtual machines that are best suited to executing those tasks using the least amount of electricity per unit
of work, is used to reduce the overall power cost and energy consumption in cloud data centers. The
purpose of the scheduler is to allocate jobs to virtual machines in a way that optimizes power consumption
and expenses. The problem can be stated in terms of the tasks, virtual machines, physical hosts, and
datacenters that were previously mentioned. It made a number of assumptions regarding tasks T_K,
virtual machines V_n, physical hosts H_i, and datacenters d_j in order to schedule workloads onto virtual
machines. In this configuration, it has to ascertain the the relative significance of virtual machines and
workloads. These settings are examined and given a single priority when jobs are submitted
to the task manager [22] [30]. The scheduler assigns jobs to the virtual machines (VMs), and in order to
determine priorities, it is necessary to ascertain the VMs' present load. The computation of the load
on every virtual machine is shown in the equation below.

 𝐿' = !"
∑ $%
&
%'(

 All virtual machines' (VMs') current load is represented by the variable 𝐿' the capacity of the physical
hosts must be ascertained after the load on each virtual machine (VM) has been computed,
since every VM is meant to be housed within these hosts.

								𝑇𝑜𝑡𝑎𝑙()*+,-)./ = 𝑔𝑟𝑖𝑑-)./ + 5	𝑑𝑔-)./ ∗ 𝑎017 + 𝑔𝑟𝑒𝑒𝑛-)./	
 Virtual machines comprise L_h, the load on the physical host. In the cloud, a load balancing module is
necessary. computing paradigm since VMs must either go to the next virtual machine on the same physical
host by starting a new request or to the VM that is currently running if there are more tasks than they can
handle. With a load balancer, this is feasible, but only after a specific threshold value is set to identify if the
system is balanced or not.
This is how the system's threshold value is determine [23] [29].

𝑒𝑛𝑒𝑟𝑔𝑦-)$ = ∑𝑒𝑛𝑒𝑟𝑔𝑦-)$(𝑉2)
 Prior to determining whether the system's load is balanced, overloaded, or under loaded, the
threshold value is established. The load balance is computed to arrive at this conclusion.
When a system is overloaded, it is said to be

𝑒𝑛𝑒𝑟𝑔𝑦-)$(𝑉2) = > 𝑒𝑛𝑒𝑟𝑔𝑦-)34-)$ ((𝑉2	𝑡)
2

5
+ 𝑒𝑛𝑒𝑟𝑔𝑦%06+-)$ 	((𝑉2	, 𝑡)𝑑/

 If the system is underloaded, it is said to be the system be Prior to determining whether the system's
load is balanced, overloaded, or under loaded, the threshold value is established. The load balance is
computed to arrive [24]-[28].

4. Results and Discussions

This section presents an analysis of a number of experimental results that were attained by using the
suggested method. Several tests and investigations have been carried out with a variety of datasets and
parameters. A detailed description of the experimental apparatus used in this work is given, offering
important insights into the approach. A series of designated points clarify the overall procedure used in
the tests. A crucial component of the plan's effective implementation is the availability of appropriate

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

datasets, which were obtained for this investigation from the WS. DREAM database. A modified CloudSim
platform was used to construct the HGWCA method, and test datasets with file sizes ranging from 200 to
400 KB were used. The datasets were compliant with the standard workload format (SWF). In order to
assess the HGWCA algorithm's performance, several Virtual machines (VMs) and jobs (200–2000) spread
across many data centers in the cloud-computing environment. The HGWCA algorithm's efficacy was
evaluated in comparison to other well-known algorithms, including ABC, MBat, HHO-ACO, and QMPSO,
with an emphasis on important metrics for load balancing effectiveness, including makespan, throughput,
turnaround time, and degree of imbalance. The comparison study showed that the suggested HGWCA
method outperformed other algorithms with an accuracy rate of 1.25% and a notable makespan reduction
of 0.98%. These results validate the feasibility and efficacy of the HGWCA algorithm in handling load-
balancing issues in cloud computing settings. Table 1 present the complete no. of task of different algorithm
based on no. of task during the testing.

Table 1. Complete No. of Task of Different Algorithm Based on No. of Task

Given No
of Task

PSO ABC PSO-CALBA M-Bat HHO-ACO Proposed
HGWCA

200 160 165 170 175 186 193
400 355 365 372 378 385 390
600 560 570 575 580 588 592
800 750 770 775 780 786 791

Figure 2. Throughput

Table 2. Makespan of Different Algorithm Based on no. of Virtual Machine

No. of
VM

PSO ABC PSO-CALBA M-Bat HHO-ACO Proposed
HGWCA

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

Figure 3. Comparison No. of VM Vs Makespan for Different Algorithms

Table 3. Makespan Based on No. of Task

Algorithm
Name

Complet
e No of
Tasks

Makespan
(In Milli
second)

Complete
No of
Tasks

Makespam
(In Milli
second)

Complete
No of
Tasks

Makespan
(In Milli
second)

No
of

Tas
ks

Makes
pan (In

ms)

PSO 50 50 100 100 150 150 180 170

ABC 50 49 100 98 150 148 180 165

PSO-
CALBA

50 47 100 94 150 147 180 162

M-Bat 50 47 100 92 150 146 180 157

HHO-
ACO

50 45 100 92 150 144 180 155

Proposed
HGWCA

50 43 100 90 150 142 180 152

The "Proposed HGWCA" technique is the best one based on the data in Table 1 to 3 and Figure 2 to 4
since it consistently achieves the lowest makespan values for varying numbers of virtual machines [27].
With consistently greater makespan values than other algorithms, the "PSO" algorithm is the worst. This
suggests that when it comes to minimizing execution time, the "Proposed HGWCA" algorithm performs

10 48 48 47 46 46 45
20 100 98 97 97 97 96
30 198 196 195 194 194 192
40 398 395 393 390 390 388

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

the best, while the "PSO" approach performs the worst [28]. Figure 5 present the proposed algorithm result
with standard algorithm taking different parameters. Based on the given result the proposed algorithm
improve in different section of cloud computing like makespan, throughputs and degree of imbalance.

Figure 4. Makespan Based on No. of Task

Figure 5. Comparison of Makespan with Existing Studies

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

5. Conclusion and Future work
There have been encouraging results from using the Grey Wolf Optimizer (GWO) and Cat Swarm

Optimization (CSO) algorithms to increase makespan and throughput in cloud data centers. Reducing
makespan and increasing throughput can be achieved by optimizing resource allocation and task
scheduling through the integration of these sophisticated algorithms. The study's conclusions demonstrate
how well GWO and CSO explore and utilize the solution space while taking into account a number of
cloud-specific considerations. These algorithms can increase the productivity and customer satisfaction of
cloud data centers by assigning resources and scheduling jobs in an intelligent manner. It is possible that
more study in this field will advance optimization methods and support ongoing development of cloud
datacenters [29] [30].

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

References
1. Bin, N. I. N. G., Qiong, G. U., Zhao, W. U., Lei, Y. U. A. N., & Chun-yang, H. U. (2015). Bats algorithm research in

cloud computing resource scheduling based on membrane computing. Application Research of Computers/Jisuanji
Yingyong Yanjiu, 32(3).

2. Ullah, A., Yasin, S., & Alam, T. (2023). Latency aware smart health care system using edge and fog
computing. Multimedia Tools and Applications, 1-27.

3. Ullah, A., Khan, S. N., & Nawi, N. M. (2023). Review on sentiment analysis for text classification techniques from
2010 to 2021. Multimedia Tools and Applications, 82(6), 8137-8193.

4. Sebai, D., & Shah, A. U. (2023). Semantic-oriented learning-based image compression by Only-Train-Once
quantized autoencoders. Signal, Image and Video Processing, 17(1), 285-293.

5. Ganne, A. (2022). Emerging Business Trends in Cloud Computing. International Research Journal of Modernization
in Engineering Technology, 4(12).

6. Gundu, S. R., Panem, C. A., Thimmapuram, A., & Gad, R. S. (2022). Emerging computational challenges in cloud
computing and RTEAH algorithm based solution. Journal of Ambient Intelligence and Humanized Computing, 1-
15.

7. Alam, T., Gupta, R., Qamar, S., & Ullah, A. (2022). Recent applications of Artificial Intelligence for Sustainable
Development in smart cities. In Recent Innovations in Artificial Intelligence and Smart Applications (pp. 135-154).
Cham: Springer International Publishing.

8. Ullah, A., & Chakir, A. (2022). Improvement for tasks allocation system in VM for cloud datacenter using modified
bat algorithm. Multimedia Tools and Applications, 81(20), 29443-29457.

9. Kumar, R., Bhardwaj, D., & Joshi, R. (2022). Adaptive bat optimization algorithm for efficient load balancing in
cloud computing environment. In Advances in Computational Intelligence and Communication Technology:
Proceedings of CICT 2021 (pp. 357-369). Singapore: Springer Singapore.

10. Li, X., Lu, Y., Fu, X., & Qi, Y. (2021). Building the Internet of Things platform for smart maternal healthcare services
with wearable devices and cloud computing. Future Generation Computer Systems, 118, 282-296.

11. Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering
problems. Expert Systems with Applications, 166, 113917.

12. Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering
problems. Expert Systems with Applications, 166, 113917.

13. Panwar, K., & Deep, K. (2021). Discrete Grey Wolf Optimizer for symmetric travelling salesman problem. Applied
Soft Computing, 105, 107298.

14. Krishnamoorthy, P. (2021). Performance Analysis of Hybrid BAT Algorithm and Cuckoo Search Algorithm [HB-
CSA] for Task Scheduling in Mobile Cloud Computing. Available at SSRN 3997784.

15. Gundu, S. R., Panem, C. A., & Thimmapuram, A. (2020). Hybrid IT and multi cloud an emerging trend and
improved performance in cloud computing. SN Computer Science, 1(5), 256.

16. Ullah, A., Nawi, N. M., & Khan, M. H. (2020). BAT algorithm used for load balancing purpose in cloud computing:
an overview. International Journal of High Performance Computing and Networking, 16(1), 43-54.

17. Ibrahim, L. M., & Saleh, I. A. (2020). A solution of loading balance in cloud computing using optimization of bat
swarm algorithm. Journal of Engineering Science and Technology, 15(3), 2062-2076.

18. Chung, K., & Park, R. C. (2019). Chatbot-based heathcare service with a knowledge base for cloud
computing. Cluster Computing, 22, 1925-1937.

19. Panda, M., & Das, B. (2019). Grey wolf optimizer and its applications: a survey. In Proceedings of the Third
International Conference on Microelectronics, Computing and Communication Systems: MCCS 2018 (pp. 179-194).
Springer Singapore.

Journal of Computing & Biomedical Informatics Volume 07 Issue 01

ID : 525-0701/2024

20. Punitha, A. A. A., & Indumathi, G. (2019). Centralized cloud information accountability with bat key generation
algorithm (CCIA-BKGA) framework in cloud computing environment. Cluster Computing, 22(Suppl 2), 3153-3164.

21. Jian, C., Chen, J., Ping, J., & Zhang, M. (2019). An improved chaotic bat swarm scheduling learning model on edge
computing. IEEE Access, 7, 58602-58610.

22. Patil, R., Dudeja, H., & Modi, C. (2019). Designing an efficient security framework for detecting intrusions in virtual
network of cloud computing. Computers & Security, 85, 402-422.

23. Chauhan, R., & Kumar, A. (2013, November). Cloud computing for improved healthcare: Techniques, potential and
challenges. In 2013 E-health and bioengineering conference (EHB) (pp. 1-4). IEEE.

24. FS. Khan, T Naqash, MI Khatak, RM Larik (2015, Nov). LIGHT AND SECURE COMMUNICATION
ALGORITHM FOR COGNITIVE RADIO NETWORK BY USING LABYRINTHINE AUTHENTICATION. In Jurnal
Teknologi 76 (1)

25. FS Khan, N Hasany, A Altaf, MNA Khan, Arifullah Benchmarking of an Enhanced Grasshopper for Feature Map
Optimization of 3D and Depth Map Hand Gestures . In Journal of Computing & Biomedical Informatics 7 (1), 1-8

26. FS Khan, MNH Mohd, SABM Zulkifli, GE Mustafa, SK Abro, DM Soomro Deep Reinforcement Learning Based
Unmanned Aerial Vehicle (UAV) Control Using 3D Hand Gestures, In CMC-Computers, Material & Continua 72
(3), 5741-5759

27. FS Khan, MNH Mohd, DM Soomro, S Bagchi, MD Khan 3D hand gestures segmentation and optimized
classification using deep learning. In IEEE Access 9, 131614-131624

28. Shaker, B., Ullah, K., Ullah, Z., Ahsan, M., Ibrar, M., & Javed, M. A. (2023, November). Enhancing grid resilience:
Leveraging power from flexible load in modern power systems. In 2023 18th International Conference on Emerging
Technologies (ICET) (pp. 246-251). IEEE.

29. Munir, A., Sumra, I. A., Naveed, R., & Javed, M. A. (2024). Techniques for Authentication and Defense Strategies to
Mitigate IoT Security Risks. Journal of Computing & Biomedical Informatics, 7(01).

30. Ali, H., Iqbal, M., Javed, M. A., Naqvi, S. F. M., Aziz, M. M., & Ahmad, M. (2023, October). Poker Face Defense:
Countering Passive Circuit Fingerprinting Adversaries in Tor Hidden Services. In 2023 International Conference on
IT and Industrial Technologies (ICIT) (pp. 1-7). IEEE.

31. Khan, M. F., Iftikhar, A., Anwar, H., & Ramay, S. A. (2024). Brain Tumor Segmentation and Classification using
Optimized Deep Learning. Journal of Computing & Biomedical Informatics, 7(01), 632-640.

32. Ali, A. S., Iqbal, M. M., Khan, A. H., Hameed, N., & Bibi, S. (2023). Lung Cancer Detection Using Convolutional
Neural Networks from Computed Tomography Images. Journal of Computing & Biomedical Informatics, 6(01),
133-143.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:_OXeSy2IsFwC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:_OXeSy2IsFwC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:e5wmG9Sq2KIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:e5wmG9Sq2KIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:qUcmZB5y_30C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=S16Ere8AAAAJ&citation_for_view=S16Ere8AAAAJ:qUcmZB5y_30C

