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Abstract: Requirement analysis is the initial and most crucial phase of the software development 
life cycle (SDLC). In this phase, the requirements after gathering from the user and different 
stakeholders are evaluated and abstraction is created in terms of a model. The generation of UML 
class diagrams from requirements is a very time-consuming task and hence demands the 
automation of the process. The researchers have proposed a number of tools and methods for the 
transformation of natural language requirements to UML class diagrams in the last few years. 
Different approaches like Natural Language Processing (NLP) and Rule based approaches were 
used for this purpose, but they have certain limitations. Moreover, these approaches do not extract 
all the relationship types of class diagrams. To resolve this issue machine learning based approaches 
have been used for a few years. Machine learning requires large and precise datasets to train models. 
In this research, a new model is proposed to generate class diagrams from requirements written in 
natural language more accurately using Natural Language Processing as well as the machine 
learning approach. NLP has helped to extract the classes, attributes, and methods while machine 
learning is used to extract the class relationships. To implement machine learning models we have 
created a dataset containing class names and relationship types i.e. aggregation, association, 
composition, and inheritance. The effectiveness of models is analyzed by comparing the results 
using accuracy metrics. 
 
Keywords: UML Class Diagram; Machine Learning; Dataset; Class Relationships; Aggregation; 
Association; Composition; Inheritance. 

 
1. Introduction 

Requirements engineering is a very important yet problematic step as it requires extra time and effort 
for requirements elicitation and verification. Requirements that are elicited in this phase are recorded in a 
document called software requirements specification (SRS) in natural language. These natural language 
requirements can be gathered from several sources like users, existing documents, and notes. Natural 
language is ambiguous and inconsistent in nature and hence the requirements written in natural language 
are also inconsistent, incomplete, and ambiguous in nature. Hence these requirements can be interpreted 
differently by different analysts. Moreover, different factors like psychological, sociological and 
geographical can also affect the understanding of requirements. Hence before developing the system it is 
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the best idea to transform these requirements into less ambiguous formal language. Requirement analysts 
analyze the requirements in order to find and fix inconsistencies and ambiguities. However, a human 
analyst can also miss defects or can interpret a statement differently when he does not have enough domain 
knowledge. One of the main artifacts of object-oriented design is UML class diagrams because many other 
models can be derived from UML class diagrams. Class diagram shows the static view of the system. Figure 
1.1. shows the standard class diagram. 
1.1.1. Class Notation 

A class diagram consists of different classes and a standard class notation consists of three sections: 
1. Upper most section contains the class name. 
2. Middle section consists of attributes of classes. Attributes type is separated by the colon. 
3. Bottom section contains class operations. These are the services provided by the class. 

1.2. Class Relationships 
Every class is related to other classes in some ways. Relationships in class diagram represent the type 

of connection that exist among different classes. Such types of relationship are discussed in Table 1.1. 

 
Figure 1. Standard Class Diagram 

Table 1. Types of Class Relationships 
Relationship Type Purpose 

Inheritance/ Generalization It represents “is a” relationship. 

Simple Association Represents structural link between classes. 
Aggregation Represents “part of” relationship. Special type of 

association 
Composition Special type of aggregation. 

Parts destroys when whole destroy. 
Dependency Represents that changes in definitions of one class 

may change the other too. 
Multiplicity Represents number of instances involved in 

association. 
Transforming natural language requirements to UML class diagram is a challenging task and 

demands for some automation in the process. Different approaches are proposed for the transformation of 
requirements into UML class diagrams. Natural language processing techniques, Rule based techniques 
and machine learning based approaches are remarkable ones. Many researchers have used these 
approaches and developed different tools to support the automation process. These include UMGAAR [1], 



Journal of Computing & Biomedical Informatics                                                                                        Volume 07  Issue 02                                                                                         

ID : 546-0702/2024  

LIDA [2], CM Builder [3], DC Builder [4], GOOAL [5], READ[6], and RAUE [7] etc. These tools use NLP 
technique to evaluate the natural language requirements and transform them into class diagrams. NLP is 
a text processing technique. It involves different phases like parsing, text analysis and entity recognition. 
But it is not competent enough to extract all class diagram components [8]. Experiments show that these 
tools do not generate accurate class diagrams. Besides, most of the approaches do not extract all the 
elements of class diagrams like classes, attributes, methods and particularly advanced relationship types.  

In Rule based approaches different rules and pattern are defined for the extraction of relevant 
information. Designing of rules require adequate domain knowledge and knowledge of software 
engineering concepts [9], [10]. While offering some benefits, Rules based approaches have their own 
limitations too. These approaches lack in flexibility. As rules are predefined hence it is difficult to handle 
variations in requirements. Rules are manually defined and it is time consuming and laborious task to 
define rules. Different interpretations of natural language requirements can lead in inconsistent and 
inaccurate results. Complex relationships can be difficult to capture. Requirements containing associations, 
multiplicity or inheritance can be challenging and may result in incorrect or incomplete class diagrams.  

To resolve these issues machine learning approaches or hybrid approaches are used that combines 
both rule based and machine learning approaches. 
1.3. Motivation and Problem Statement 

The goal of this research study is to develop a system for the generation of class diagram using 
machine learning by identifying the type of relationship among classes as well as with the help of some 
NLP and rule based approaches so that it can help software designers and researchers to generate UML 
class diagrams effectively. 
1.4. Contributions 

This research study enabled us to propose a model to generate class diagrams from textual 
requirements using NLP and machine learning. The main target of the research is to extract relationships 
among classes particularly association, inheritance, aggregation and composition. A dataset is created to 
implement the machine learning models.  

 
2. Related Work 

Many methods and tools have been proposed in literature in the last years for creating UML class 
diagrams from NL requirements. Here the evaluation of some of these approaches is presented.  

Bashir and Bilal [6] proposed a system called Requirements Engineering Analysis and Design (READ) 
to transform natural language requirements to UML class diagrams. They used the technique of NLP as 
well as domain ontology. This system was implemented in Python to generate class diagram by extracting 
classes, attributes and methods successfully. The authors implemented the feature of strong and weak 
threshold to refine the elements.  

Abdelnabi et al. [12] studied and analyzed the existing tools and approaches for efficiency, 
completeness and automation degree. Authors identified the strengths as well as weaknesses of these 
models. All these models used different techniques and rules to extract different elements of class diagram.  

Abdelnabi et al. [9] proposed a process to generate class diagrams from natural language 
requirements with the use of NLP technique and some heuristic rules for transformation process. The 
suggested approach works in five different phases. The methodology uses NLP technique and type 
dependency for parsing the natural language specifications. The approach generates class diagrams by 
extracting a variety of class elements like classes, attributes, methods and different types of relationships 
like associations, aggregations, composition, generalization, and multiplicity. 

Nasiri and Rhazali [11] proposed a model based on transformation from computation independent 
model to platform independent model. For these transformations they created a platform that generates 
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class diagram from requirements written in natural language. For extracting the class elements, they used 
a tool called Stanford CoreNLP [13] the technique got the advantage of treating sentence structure of 
different types. Moreover, it manages the compound nouns for the extraction of classes efficiently.  

Hnatkowska et al. [14] proposed a method to construct conceptual model using data frames. The data 
is analyzed and functional dependencies of data are recorded. This analyzed data helps in identifying 
classes, attributes of classes and their relationships. The explanation of method was given through a case 
study by real data sets processing. The quality of conceptual model depends mainly upon the quality of 
input data. This model facilitates in two perspectives, first it checks data quality and second it finds 
relationships among entities. 

Utama and Jang [15] designed an algorithm that takes natural language problem statement as input 
and generates class diagram out of it. As class diagram comprises of class names, attributes and operations, 
hence this algorithm extracts all the mentioned components. The algorithm was evaluated by taking five 
statements from different context and class diagram was generated. This approach has recall value of 100% 
and precision of 92%. 

Mohanan and Samuel [16] developed a tool called SUCM for the transformation of natural language 
requirement specification document to class diagram. The tool extracts the components of UML diagram 
for the generation of class diagram. But it does not represent all the aspects of system as it only supports 
the generation of class diagram which shows only the static aspect of system. 

Jaiwai and Sammapun [17] proposed in their research an approach for the transformation of 
requirements from Thai language into UML class diagram. Few rules are formulated which are used for 
the extraction of classes and their attributes from requirements written in natural language. There are flaws 
in this model, it was unable to extract the operations and all types of relationships of class diagram. There 
is a need for other rules and pattern able to extract operations and relationships for class diagram 
completion. 

Narawita and Vidanage [18] modified and reconstructed the UML Generator as it faced many 
problems and challenges. At present the UML Generator is intelligent enough to obtain the UML elements 
and is able to generate Use Case diagram as well as class diagram from user input resulting in the less time 
and cost from user and system analyst. Furthermore, as the system generates both the use cases and class 
diagrams, hence it provides both dynamic and static aspect of the system. 

Zhong et al. [19] proposed an approach to automatically generate systems diagrams from natural 
language requirements. The researches proposed open domain and flexible approach. The prosed 
approach consists of six steps which leverage open-access tools and results in the generation of SysML 
diagrams. The approach uses set of five Hyperparameters specified by the user. The researchers used six 
case studies from different sources as input to show the benefits and applicability of the approach. 

Zhang et al. [20] used the SemEval-2010 Task 8 database to evaluate a learning model. This dataset 
has 9 relation types and one “other” type. The nine types are Product-Producer, Cause-Effect, Content-
Container, Instrument-Agency, Entity-Origin, Message-Topic, Component-Whole, Entity-Destination, and 
Member-Collection. Considering active and passive nature, the nine relation types are directed and the 
‘other’ which is non-directional, makes a total of 19 types of relations. SemEval-2010 Task 8 dataset has 
2717 sample test sets and 8000 sample training sets. 

Yang and Sahraoui [21] presented a fully automated approach for the generation of class diagrams 
from natural language requirements. The proposed approach is based on natural language patterns as well 
as machine learning. For the machine learning models, authors have also created a dataset of 62 labeled 
diagrams that contain 624 fragments. The dataset does not contain labels for types of relationships. The 
proposed approach showed low precision and recall but it was a good benchmark for machine learning-
based class diagram generation. 
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Patel and Priya [22] aimed to resolve the issue of ambiguity found in natural language. They aimed 
to take requirement specification as textual information, remove the ambiguity and uncertainty found in 
natural language, and then identify the components required to generate UML diagrams. There are 
different types of ambiguities but in the paper, the authors provided an approach to resolve Referential 
and Coordination ambiguities. Other types of ambiguities still need to be resolved. 

Shweta et al. [23] developed a transformer based model to extract the components of class diagram 
from natural language requirements as these models generate context-dependent embedding. The results 
of this model were compared with the existing procedure and 9-7% enhancement was observed. 

Malik et al. [24] proposed an automated approach to generate use case diagrams independent of the 
formalism. The approach employs a combination of NLP and network science to produce primary and 
external actors. It produces results in three phases, of which two use NLP and the third uses network 
science to generate results. 

Ouaddi et al. [25] explored the advancements in the field and proposed an approach to extract the 
use-case diagram from natural language requirements using a chatbot. They used chatbot for the 
accomplishment of tasks like text summarization and analysis. 

Almazroi et al. [26] proposed a method to present the class diagram according to the defined 
configuration and to extract the relationship between textual instruction and UML class diagram. They 
enabled the developers to analyze the requirements efficiently by utilizing NLP. 

 
3. Methodology 

It is very important to develop a system that can generate class diagrams from requirements 
effectively and accurately. As there exists no such considerable system that incorporate relationship types 
for generating class diagrams using machine learning. Hence we developed a machine learning model for 
the prediction of relationship types so that the class diagrams can be generated more effectively. We used 
hybrid approach for overall class diagram generation task. It includes Rule based NLP approach as well as 
machine learning model. The whole process consists of following modules. Input Acquisition module, NLP 
module, Machine learning module, Knowledge extraction module, and Class diagram generation module.  
3.1. Input Acquisition Module 

As the class diagrams will be generated from textual requirements provided by the user hence the 
very first step of our approach is getting input from user in the form of textual requirements written in 
English language.  Input Acquisition module will enable user to input different case studies or scenarios as 
requirements for class diagram generation. 
3.2. NLP Module 

The input that is provided in Input Acquisition module will then enter in NLP module.  The main 
purpose of NLP is to make computers able to understand and process text. To understand a text means to 
recognize the actual context, to perform semantic, syntactic, and lexical analysis, to create summary and 
extract information. The information extracted by NLP will be used by knowledge extraction module for 
further processing. NLP module performs its task in different steps by using different NLP approaches [9]. 
These approaches are the vital part of NLP module. The preprocessing techniques that are used by our 
NLP module are discussed below. 
3.2.1. Spelling Checking and Correction 

The first and most basic step in NLP is spelling checking and correction. Spell checking system enables 
us to check and find any misspelled words in the user input. If any word is found misspelled, it correct 
that misspelled word. Spell checking system can also suggest list of corrections for the misspelled word. 
For example if the user enters a misspelled word “wlak” instead of “walk”, the spell checking system will 
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correct the mistake and make that word “walk”. We can also get the list of suggested words for correction. 
The list of candidate words will be displayed like {‘walk’, ‘weak’, ‘flak’}.  

For spell checking and correction purpose python package ‘pyspellchecker’ is used. This package 
provides the facility to find and correct misspelled words. The ‘spellchecker’ library uses a pre-built 
dictionary for the identification and correction of errors. The library is specially designed to handle spelling 
correction tasks. It functions independently and does not depends on any external lexical resources like 
WordNet.  
3.2.2. Tokenization 

Tokenization is the process in which the text which is generally in the form of sentence is split in 
sequence of tokens like words. After spelling correction tokenization is the main step in NLP processing 
pipeline. Tokens are considered as atomic units in processing. These can be words or subword units called 
morphemes or even individual characters. For example, if we input the statement “Teacher teaches the 
students” the tokenization module will split this into tokens as <Teacher> <teaches> <the> <students>. 

In the proposed system we have implicitly performed tokenization as part of spaCy processing 
pipeline which is a good approach for solving problems. 
3.2.3. Lemmatization 

Lemmatization groups together different transformed forms of same word. It is widely used in NLP. 
Lemmatization reduces the word to its root form. Another approach ‘stemming is also used for same 
purpose. But stemming is heuristic approach and can result in wrong or nonsensical words. On the other 
hand lemmatization analyzes the contextual meaning, structure and intended POS to generate accurate 
and meaningful results. Therefore lemmatization is often preferred instead of stemming.  

Lemmatization is performed using spaCy. spaCy focuses on lemmatization as it is more advanced 
and accurate technique to reduce words to dictionary forms. For example, in a sentence the word “teach” 
can appear in different forms like “teaches”, “taught” and “teaching”. Lemmatization groups all these 
words as a single word teach.  
3.2.4. POS tagging  

The last step of NLP module is ‘Parts of Speech’ tagging. This phase works on the output of 
lemmatization. It assigns a Part of Speech category to each lemmatized token in a text e.g. noun, verb, 
adjective, preposition etc. The spaCy library is used for POS tagging. The en_core_web_sm model is an 
English Pretrained model. It allows to perform different tasks like POS tagging without need to train own 
model. For example, the POS tagging model will assign tags to statement tokens “Teacher teaches 
students” as “teacher/NN teach/VB student/NN. The description of each tagging symbol is explained in 
Appendix 0-I of APPENDICES Section. Figure 4.1 and 4.2 show result of NLP module. 
3.3. Machine Learning Module 

In the era of digitization, where data is accumulated at an exceptional speed, the capability to extract 
meaningful insights and predictions from this data has become paramount. Machine learning encompasses 
various techniques, including supervised learning (where models learn from labeled data), unsupervised 
learning (where models identify patterns without labeled data), semi-supervised learning (Where models 
learn with some labeled and a lot of unlabeled data) and reinforcement learning (where models learn by 
interacting with an environment). We have used supervised learning method in machine learning module. 
Supervised learning models require the labeled output variable as well as input variable for training 
samples. Hence each training sample consists of a pair of input and output variable values. The dataset 
that we created for machine learning module also consists of input and output pairs. The two class names 
are input for the model while the relationship between those classes is the output value. The model is 
trained for the prediction of relation among classes that are extracted from NLP knowledge extraction 
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module. In machine learning module we have used different algorithms to get a good result. Here we will 
describe the overall steps in machine learning modules as well as the algorithms that we tried and tested. 
3.3.1. Dataset Analysis 

The dataset that we created consists of an Excel file containing three columns: Class 1, Class 2, and 
Relationship. The Class 1 and Class 2 columns represent the names of two classes involved in a 
relationship, while the Relationship column denotes the type of relationship between them. There are four 
relationship types that we collected in dataset. These are association, aggregation, composition, and 
inheritance. Dataset contains 2109 elements containing 482 association, 434 aggregation, 620 composition, 
and 573 inheritance relationships. 
3.3.2. Dataset transformation/preparation 

The next step in machine learning is data transformation / preparation. As mostly machine learning 
models cannot operate on categorical variables. They require numerical variables for their operation. We 
have used a combination of both label encoding and one hot encoding. One hot encoding was used for 
input variables i.e. class1 and class 2.While label encoding was employed for output variable i.e. 
Relationship. The reason why we used one hot encoding for class data is that it efficiently transforms 
categorical data into binary format which allows for distinct representation of each class in a 
multidimensional feature space. On the other hand, our decision to use label encoding for relationship 
labels preserves the inherent order or hierarchy of relationship types, which is particularly relevant in 
scenarios where the relationship types hold a specific ranking or importance. To perform one hot and label 
encoding we used the scikit-learn library. The library is a powerful tool for machine learning as it provides 
a wide range of algorithms for preprocessing as well as for machine learning.   
3.3.3. Dataset splitting 

As in ML module we have created a single dataset, hence the next step is to split the dataset in 2 
smaller parts. These are train and test split. For this purpose we split the dataset that we created into two 
subsets. The division for this purpose was is done in proportions as 80% train data and 20% test data. 
3.3.4. Machine Learning Algorithms Used  

In this section we will explain which have been the three algorithms that have been tried in order to 
solve this problem. Here, the theory and the implementation are discussed, while the results of their 
implementation will be discussed in next chapter. 

● Random Forest Classifier 
� Algorithm 
The Random Forest classifier, a prominent ensemble learning technique, has been adopted as a 

essential component of our methodology. Comprising multiple decision trees, the Random Forest 
algorithm effectively mitigates overfitting and enhances predictive accuracy through the wisdom of the 
crowd. Each decision tree is constructed on a subset of the training data, introducing diversity in the 
model's learning process. Subsequently, predictions from individual trees are integrated using majority 
voting, ultimately yielding a consolidated and reliable prediction [27]. This ensemble approach enables our 
model to capture intricate relationships within the dataset, contributing to its robustness and adaptability 
to complex scenarios. Greater the number of trees in forest higher is the accuracy and lower the problem 
of over fitting. 

The working of Random Forest classifier is explained in figure 3.1 below. 
� Implementation 
In our code implementation, The Random Forest model is trained using the fit method on the encoded 

features (x_enc) and target labels (y_enc). The predict_proba method is used to obtain class probabilities 
for each instance in the training data. We instantiated a Random Forest classifier with hyperparameters 
such as 'n_estimators' and 'max_depth', controlling the number of trees in the forest and the depth of 
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individual trees respectively. By training the Random Forest on our preprocessed class features and 
utilizing its 'predict_proba' function, we obtained class probability estimates for our machine learning 
model. Overall, the integration of Random Forest classifier enhances the accuracy of our classification 
model and contributes to the stability of the results. 

● Multinomial Naïve Bayes Classifier 
� Algorithm 

 
Figure 2. Working of Random Forest Classifier 

The Naive Bayes algorithm, rooted in probabilistic principles, plays a pivotal role in our methodology 
as an elegant solution for multi-class classification. Its foundation lies in Bayes' theorem, a fundamental 
theorem in probability theory. Naive Bayes leverages this theorem to estimate the probability of a certain 
class given the observed feature values, incorporating the assumption of feature independence. 

Mathematically, for a given set of class labels (y) and features (x₁, x₂, ..., xₖ), the Naive Bayes classifier 
calculates the posterior probability of a class given the features as: 

𝑃 " !
	#₁,#₂,…,#ₖ)# =

)*!
"
# +×)*

!$
# +×…×)(

!ₖ	
# )×)(!)

)(#₁,#₂,...,#ₖ)                                                        (1) 

In this equation, P(y | x₁, x₂, ..., xₖ) represents the probability of classy given the feature values, and 
P(xᵢ | y) represents the probability of feature xᵢ given classy. The naive assumption of feature independence 
allows us to factorize the joint probability P(x₁, x₂, ..., xₖ) as a product of individual probabilities [28] [33]. 

� Implementation 
In our implementation, the Multinomial Naive Bayes variant is employed, which is tailored for 

discrete features like word frequencies in text classification. The classifier is initialized, and the fit method 
is used to train the model on the training data. 

The combined methodology utilizes the strengths of both the Random Forest and Multinomial Naive 
Bayes algorithms for relationship prediction. The Random Forest model provides a powerful ensemble 
approach, while the Naive Bayes classifier brings probabilistic modeling capabilities. . The accuracy and 
generalization of the models are assessed using the test data split. This approach aims to accurately predict 
relationships between entities, contributing to the field of machine learning and data analysis. 

● SVM 
� Algorithm 
The second algorithm that we tried is SVM or Support Vector Machine. SVM is a well-known 

Supervised Learning algorithm. It is used to solve classification and also the regression problems. In 
Machine Learning, it is basically used for classification problems. SVM algorithm aims at creating a 
decision boundary or a best line boundary, which can separate n-dimensional space into classes for us to 
place the new data point in the right category easily later on. These best line boundaries are called a 
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hyperplane. SVM selects the vectors/ extreme points which assist in creating the hyperplane. These points 
are known as support vectors, coining the term Support Vector Machine for the algorithm [29] [32]. 

Mathematically, given a set of training examples represented as pairs of feature vectors (xᵢ) and 
corresponding labels (yᵢ), where i = 1, 2, ..., n, and yᵢ ∈ {-1, 1} for binary classification or yᵢ ∈ {1, 2, ..., K} for 
multi-class classification, the SVM aims to solve the optimization problem: 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:	 /

0
||𝑤||0 + 𝐶∑ ⬚⬚

2 	𝜉ᵢ                                                             (2)  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:		𝑦ᵢ(𝑤. 𝑥ᵢ	 − 	𝑏) ≥ 	1	 − 	𝜉ᵢ, ∀ᵢ = 1,2,3, … , 𝑛                    (3) 
𝜉ᵢ	 ≥ 	0, ∀ᵢ = 1,2,3, … , 𝑛                                                                        (4) 

Here, w is the weight vector that defines the hyperplane, b is the bias term, C is a regularization 
parameter controlling the trade-off between maximizing the margin and minimizing the classification 
error, and ξᵢ are slack variables that allow for misclassifications. The SVM aims to minimize the L2-norm 
of w while ensuring that each training example is correctly classified or within a certain margin. The below 
figure 4.9 shows two categories which are classified using a hyperplane. 

 
Figure 3. Classification using Hyperplane 

� Implementation 
In our implementation, SVM was chosen as a robust model to predict the relationship types based on 

the class features. Utilizing libraries such as scikit-learn, we instantiated an SVM classifier and explored 
different kernel functions, such as linear and radial basis function (RBF), to tailor the model to our dataset's 
characteristics. Through feature preprocessing, including one-hot encoding for class features and label 
encoding for relationship types, we prepared the data for SVM training. The SVM's inherent ability to 
capture complex decision boundaries was instrumental in effectively categorizing relationship types based 
on the provided class information. 

● KNN 
� Algorithm 
K-Nearest Neighbors (KNN) is a versatile and intuitive classification algorithm that excels in 

scenarios where data points with similar features tend to share the same labels. At its core, KNN predicts 
the label of a data point by examining the labels of its k-nearest neighbors in the feature space [30]. The 
algorithm's simplicity lies in its reliance on local information to make predictions, making it robust in 
handling complex decision boundaries and non-linear relationships. 

� Implementation 
In our implementation, the KNN algorithm played a pivotal role in predicting relationship types 

based on the provided class features. Following a preparatory step where we split our data into training 
and testing sets, we instantiated the KNeighborsClassifier from scikit-learn. The parameter 'n_neighbors' 
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was set to 100, indicating that the classifier would consider the labels of the 100 nearest neighbors when 
making predictions. 
3.4. Knowledge Extraction Module 

In knowledge extraction module components of class diagram i.e. class names, methods and 
relationship types are identified. This modules takes the output of NLP and machine learning dataset as 
input for the extraction of class components. Knowledge extraction module has three phases. 
3.4.1. Class Extraction 

In the first step of knowledge extraction module, classes are identified. Classes are generally extracted 
from nouns. Hence all the common noun <NN> and proper noun <NNP> (e.g. human, system) tags are 
extracted mapped as classes. 

In a sentence of the form (Sub-Verb-Obj); the subject and object are extracted and mapped as classes. 
In a noun phrase like (Noun +Noun); the first noun is mapped as a class e.g. “Patient Name” 

3.4.2. Methods Extraction 
Methods identified by the system are the verb phrases of the sentence associated with the class in the 

form NP: VP.  
In a verb phrase which consists of a lexical verb associated with a noun, then the verb is mapped as a 

method of the noun which is a class. 
In a verb phrase which consists of an action verb associated with a noun, then the verb is mapped as 

a method of the noun which is a class 
In a sentence of the form (NN + VB + NN + NN + NN) the VB is mapped as candidate method of the 

class.  
Verb phrases of the form (VB + NN) are mapped as candidate methods of the subject as class. 

3.4.3. Attribute Extraction 
All the adjectives in a sentence in the form of <JJ> tag are extracted and mapped as attribute of the 

class.  
In a noun phrase like (Noun +Noun); if first noun is a class then second noun will be mapped as class 

attribute e.g. “Patient Name” Attributes are also identified by common nouns as well as nouns that come 
after possessive pronoun <PP$> tag. 
3.4.4. Relationship types Extraction 

The type of relationship is extracted by machine learning module. The classes that are identified above 
using rules are passed to machine learning module. The classifier that we developed will be applied on 
these classes and based upon the experience it gained through training data, it will predict the type of 
relationship among these classes.  

For example the predicted relationship type between class “Human” and “Heart” is “Composition” 
as predicted by the generated classifier model. Figure 4.10 shows the predicted relationship type among 
“Human” and “Heart” 

3.5. Diagram Generation Module 
The final phase of the proposed system is Class Diagram generation. The knowledge extracted in 

previous phase becomes the input of diagram extraction module. By using class names and relationship 
types, the module generates class diagram in the format of plan UML diagrams. 

The system then shows a success message and asks to save the diagram in system.  On confirmation 
our system generates a file in the format. wsd which can be opened in VS code and diagram can be 
visualized.  
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4. Results and Discussions 
At initial we employed the ML models directly after generating features through encoders and 

implementing train test split model. The models employed in this way did not performed up to the mark. 
The accuracy obtained by different models is presented in Table 4.1. 

Table 2. Results of ML models without using Random Forest Classifier 
Data split 

(Train: Test) 
Multinomial 
Naïve Bayes 

SVM KNN 

90:10 62 63 43 
80:20 61 62 37 
70:30 56 58 40 

As it can be clearly seen through the table that none of the model showed good accuracy while the 
KNN model performed the least. To solve the issue we combined these models with Random Forest 
classifier is particularly designed in a way that it enhances accuracy by using multiple decision trees.  
4.1. Results of ML models without Random Forest Classifier 

 
Figure 4. Bar Graph showing results of ML models without Random Forest Classifier 

4.1.1. Confusion Matrix for SVM: 
The confusion matrix for SVM without applying Random Forest Classifier is as below: 
[[23  5 18  3] 
 [ 5 33  2  7] 
 [10  8 36  2] 
 [ 1 16  0 42]] 

4.1.2. Number of Inaccurately classified records: 
As the accuracy of models without applying random Forest Classifier was low hence the number of 

records that were inaccurately classified by the models was high. The number of inaccurately classified 
records for SVM for 90:10 train test split is 77. 

Number of records inaccurately classified by SVM: 77 
4.2. Results of ML models combined with random forest classifier 

As the accuracy of models was not good at initial employment, hence we combined these models with 
Random Forest classifier. . By training the Random Forest on our preprocessed class features and utilizing 
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its 'predict_proba' function, we obtained class probability estimates for our machine learning model. The 
combined models showed enhanced accuracy as shown in Table 5.2 below. 

Table 3. Results of ML models combined with random forest classifier 
Data split 

(Train: Test) 
Multinomial Naïve Bayes SVM KNN 

90:10 95 96 95 
80:20 95 95 95 
70:30 94 94 93 

 

 
Figure 5. Bar Graph showing results of ML models with Random Forest Classifier 

4.2.1. Confusion Matrix for Naive Bayes 
The confusion matrix for Naïve Bayes after applying Random Forest Classifier is as below: 
[[ 72   0  17   0] 
 [  1  97   0   0] 
 [  0   0 124   0] 
 [  0   0   0 111]] 

4.2.2. Number of Inaccurately classified records 
As the accuracy of models after applying random Forest Classifier was high hence the number of 

records that were inaccurately classified by the models was less. The number of inaccurately classified 
records for Naïve Bayes is 18. 

Number of records inaccurately classified by Naive Bayes: 18. 
4.2.3. Records inaccurately classified by Naive Bayes 

array(['Aircraft', 'Album', 'Assignments', 'Attendees', 'Bank','CameraDemo', 'Canary', 'Catalogs', 
'Check Damage','Checking with Interest', 'Company', 'Composition layer','Crankshaft', 'Degree', 'Display', 
'Elephant','ElevatorButton','Enrollment'], dtype=object). 

4.3. Comparison of MultinomialNB, SVM and KNN models 
There are multiple performance measurement matrices that can be used to evaluate performance of 

ML tools. We used three measures i.e. accuracy, precision and recall. The comparison ML models in terms 
of performance measures is presented in Table 5.3 below. 

Table 4. Comparison of MultinomialNB, SVM and KNN models 
Model Accuracy Precision Recall 

91.5
92

92.5
93

93.5
94

94.5
95

95.5
96

96.5

MultinomialNB SVM KNN

Results of ML models combined with 
Random Forest classifier

(90:10) (80:20) (70:30)
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Multinomial NB 95 95 95 
SVM 95 95 95 
KNN 95 96 95 

 
Figure 6. Comparison of MultinomialNB, SVM and KNN models in terms of performance 

4.4. Summary 
The UML Class diagram plays a vital role in Object Oriented design. It serves as a building block and 

represents the structure of a system. Class diagrams are generated from requirements written in natural 
language. The process of manual class diagram generation can be highly challenging and error-prone. This 
is because generating class diagrams is a time consuming process. Moreover due to ambiguous nature 
different interpretations of natural language requirements can lead in inconsistent and inaccurate class 
diagrams. These challenges demand the automation of this process to mitigate the problems. Automation 
of class diagrams generation has many key benefits. It saves time of the designers, ensures the consistency 
and accuracy and support maintenance. This automation of UML class diagrams is itself very difficult and 
challenging task. However many techniques and approaches have been proposed to resolve the problem. 
Natural language processing techniques, Rule based techniques and machine learning based approaches 
are remarkable ones. In this research work our main focus was to develop a system for the generation of 
class diagram using machine learning as well as with the help of some NLP and rule based approaches. 
Our system takes natural language requirements as input and after applying combination of NLP, Rules 
based and machine learning approaches it generates a class diagram. The salient feature of this research 
study was the creation of dataset to be used in machine learning models to train a classifier that can predict 
the relationship types of class diagram. The identification of the relationship type in a class diagram is 
important as they help users to understand the interaction between different classes. Our system focuses 
on four relationship types. These are association, aggregation, composition and inheritance. The system is 
evaluated using evaluation metrics. 

 
5. Future Work 

The purpose of the proposed system is to generate the class diagram using machine learning that 
incorporate the identification of relationship types. The scope of proposed system is limited to 
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identification of association, aggregation, composition and inheritance. As the created dataset contain these 
four relationship types. If more relationship types include in machine learning dataset they can predict all 
relationship types and can generate more accurate class diagrams.  Furthermore the correctness of class 
diagram produced by our system is limited and it can be explained as we used limited NLP tools and rules 
for identification of classes. By normalizing the input sentence and by adding more patterns to rule based 
part we can improve the work. From a broader perspective our approach work as a baseline for researchers 
to generate more accurate and comprehensive system. The dataset we presented can serve as the 
foundation for researchers and can be used in automatic class diagram generation. 
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