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Abstract: The Maintaining large volumes of data in SQL and NoSql databases depends on 
programming architecture. NoSql databases excel in horizontal scalability and handling 
unstructured data, while SQL databases are designed for data organization and horizontal 
scalability. Choosing between SQL and NoSql databases can be challenging due to differences in 
database design and hierarchical needs. NoSql databases use a mixed-model strategy, complicating 
data movement between cloud storage providers, as different platforms experiment with various 
concepts. Systematic literature reviews (SLRs) analyze papers on NoSql and SQL database designs, 
interoperability, and cloud data portability. Recent research comparing Oracle RDBMS and 
MongoDB suggests that NoSql databases are better for big data analytics due to their customized 
architectures, whereas SQL databases are more suitable for online transaction processing (OTP). 
 
Keywords: MapReduce; DBaaS; ACID; NoSql Database and Sql Databases; BASE; Big Data; 
Aggregation. 

 
1. Introduction 

An application's architecture includes non-functional elements like data sharding, interoperability, 
scalability, performance, dependability, and usability. A software architect must balance these quality 
attributes. Distributed systems, often big data systems, face challenges with data availability and 
consistency due to sharding and replication. Database systems have evolved with the rise of data 
applications. Over the past decade, NoSQL databases have rapidly developed, offering more flexible 
models compared to traditional databases, which struggle with scalability due to rigid schema structures. 
Key features of NoSQL database designs include:  

• Permitting the efficient and dynamic growth of data representations 
• Structure without Schema  
• Horizontal scaling over large clusters with sharding and data replication collections. 
In recent years, businesses have gathered large amounts of data that relational databases struggle to 

handle. Software architects must balance constant quality attributes. Relational databases have been 
widely used for over forty years, ensuring availability, isolation, consistency, and durability through ACID 
principles. "Big data" involves scalable techniques to manage vast amounts of data, defined by the five Vs: 
variety, value, veracity, velocity, and volume. This encompasses a wide range of unstructured and 
heterogeneous data. Frameworks like Spark, Flink, Hadoop/MapReduce, and Samza process these massive 
datasets [1]. 

Recently, there has been a growing interest in enterprise, production, parallel databases, big data, and 
SQL query optimization. Inefficient searches can waste system resources and cause database locking and 
data loss. Data mining goes beyond simple data analysis by uncovering correlation patterns in datasets. 
Query optimization, which determines the most efficient query execution strategy, is crucial. Data mining 
methods are essential for extracting patterns and knowledge from large datasets, requiring complex and 
resource-intensive searches [2]. 
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Over the last decade, the one-size-fits-all approach to data storage has been questioned, especially in 
scientific and online retail sectors. NoSQL ("Not only SQL") emerged to address these concerns. The term 
NoSQL appeared in 1998 and gained popularity at a San Francisco conference on non-relational databases. 
NoSQL databases, primarily used by web developers, differ from traditional relational databases [3]. 
Figure 1 summarizes their main traits. 

 
Figure 1. Essential features of database of NoSql 

The data consistency, the availability of data, and Partition Tolerance (CAP) hypothesis was 
introduced by Eric Brewer [4]. Table 1 lists the primary features of THEORY of CAP. 

Table 1. Theory of CAP 
Consistency of data Availability of data Partition tolerance 

• The term of consistency 
refers to fact that after an 
operation is completed, in 
database the data is stays 
consistent. 

• For example, after an update 
transaction, the identical 
data is visible to every client. 

• Availability guarantees 
100% service uptime, 
meaning there won't be 
any downtime for the 
system. 

• Every node always does 
the query, assuming 
nothing goes wrong. 

• Partition tolerance refers 
to the system's ability to 
keep running even in the 
event that server 
connection is unstable. 

• It's possible to divide the 
servers up into several 
groups that aren't able to 
speak to each other. 

Achieving all three requirements at the same time is considered theoretically impossible. As a result, 
a distributed system must give two of the three components priority according to CAP theory. In Figure 2 
as a result, all current NoSQL databases support different partition tolerance (P), availability (A), and 
consistency (C) combinations according to the CAP. 

 
Figure 2. CAP Diagram 

Database of NoSql advantages are as follows:  
• Volume: Existing information that needs to be processed, ranging from terabytes to  
exabytes.  
• Velocity: Data in motion; streaming data; reaction times ranging from milliseconds to seconds.  
• Variability: Data can be textual, unstructured, structured, or in other formats.  
• Veracity: Uncertainty resulting from delays, deceit, etc.  
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• Not based on tables and doesn't use SQL for data manipulation.  
• Columnar, graphs, Key-values, documents, etc. are all included in a schema.  
• An alternative to relational databases as they are known.  
• Database to manage disorderly, unexpected, and unstructured data. 
• Useful when handling huge distributed data sets. 
Relational databases and NoSql databases have different architectures and models, therefore when 

implementing NoSQL databases in the cloud, interoperability, portability, and security must be carefully 
taken into account. Because NoSQL databases are heterogeneous, even though cloud service providers 
(CSPs) offer scalability, availability, and privacy features [5, 6]. 

The following are this Systematic Literature Review primary contributions: 
• The analysis of performance, scalability, and architecture evaluations of NoSql databases and 

Sql databases—specifically, RDBMS Oracle and the Document of NoSql DB (MongoDB)—is covered in this 
systematic literature review (SLR). The evaluation also looks at data migration procedures from one 
database to another that is housed on a different cloud platform. 

• The aforementioned study objectives have been achieved through the analysis of 33 
publications in total. 

• This article identifies the underlying causes of gaps of research within related architectures. 
1.1. Current Problem Situation 

The growth of big data has increased the need for scalable systems to manage large volumes of 
information. While relational databases using SQL can handle semi-structured, unstructured, and 
structured data, they have scaling issues. NoSQL databases excel with massive datasets and adapting to 
changing data types due to their horizontal scalability and BASE principle. 

There are several types of NoSQL databases: document, column, graph, and key-value. Graph 
databases, for instance, are optimized for relationships between nodes, making them ideal for managing 
densely interrelated data. 

MongoDB is a NoSQL database known for its scalability, effectively handling large data volumes. 
However, migrating from OLTP databases to MongoDB can lead to issues like distinct indices, combined 
keys, inconsistent data, and duplicates. 

A significant concern when transferring to cloud storage is the security of personal data. Developing 
a unified cloud solution for NoSQL models is challenging due to interoperability and portability issues in 
current cloud service provider designs. This SLR includes a thorough analysis of modern security methods 
and guidelines for NoSQL databases. 
1.2. Method 

This systematic literature review follows PRISMA guidelines, integrating top primary studies related 
to specific research questions. SLRs are widely used in software engineering research; our work focuses on 
data portability and interoperability across cloud platforms, and performance evaluations of SQL and 
NoSQL databases. Our study is notable for its systematic data collection, comprehensive study coverage, 
focused investigation, and detailed classification and analysis of selected studies. The following sections 
of this document are organized as follows: 

• The study topics, search terms, inclusion/exclusion criteria, data extraction procedure, and 
classification methods are all described in depth in Sec 2. 

• The conclusions drawn from the chosen papers are presented in Sec 3. 
• Research gaps are identified and talks are held in Sec 4. 
• In conclusion, Sec 5 shows a synopsis of the findings and suggests next directions. 
 

2. The Objectives and Questions for Research  
The current SLR's goals, focus, and purpose are as follows: 
1. Examine the current methodologies and strategies for handling SQL and NoSql documents 

while taking big data processing into account. 
2. Conduct a thorough review of the literature on NoSql and SQL databases. 
3. Examine a few chosen study subsets in detail. 
4. Based on the data gathered and examined from these research, evaluate the merits and demerits 

of NoSql and Sql databases. 
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5. Emphasize the gaps in the field's research. 
6. Determine the directions for further research. 
7. Create the following research inquiries in order to fulfill our study's primary goal: 

• Why is NoSql necessary when dealing with big data sets, including both structured and unstructured 
data? 

• Why does the BASE property apply to NoSql databases whereas the ACID property applies to SQL 
databases? 

• Does DBaaS effectively address data portability and interoperability across different databases of 
NoSql? 

2.1. Search Requirements 
The major study research requirements entail the identification and gathering of literature that 

satisfies all exclusion and all inclusion criteria. Many search strategies were employed to achieve this, 
including manual, electronic database, snowballing, and searches of related publications and conference 
proceedings. We adhered to the methodology suggested by [7] and the four phases examined in [8] for our 
SLR. Figure 3 shows the studies that were chosen for association. 

 
Figure 3. SLR Flow Diagram 

First, we performed the database search that [9] suggested. Tools, techniques, and frameworks were 
categorized and classified using the search strings covered in the section on search strategies. 
2.1.1. Resources for Searching 

For database searches, we came up with a list of pertinent search phrases. We then used these search 
terms to find relevant documents. To guarantee comprehensive investigation, we employed significant 
databases like: 

• springerlink.com web link of (Springer) 
• dl.acm.org web link of (Digital Libraries ACM on Google Scholar) 
• ieeexplore.ieee.org web link of (Digital Libraries DBLP for IeeeXplore) 
• onlinelibrary.wiley.com web link of (Web Library at Wiley) 
• sciencedirect.com web link of (Elsevier) 

2.2. Selection Procedure and Criteria 
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By using inclusion/exclusion criteria, we were able to include all related papers. Database search 
involved finalizing the selected list after evaluating the papers' qualities and features in light of our 
research topics. The sources used in our research article are arranged as below: 

Step1: All number of papers determined by: 
1. Titles of Papers. 
Abstract of Papers. 
a. Full reading of Associated papers  
(1)  Check the attached papers' effect and quality. 

ü Examine the paper in the catalog for possible repetition. 
ü Add the product to the catalogue of finished article. 

(2) Snowballing and Manual search  
(3) Completely repeat the procedure; return to Step 1 
The number of related publications to the previously indicated points following each steps filtering is 

shown in Table 2. 
Table 2. Criteria and Paper selection articles 

Search Source Based on removed 
after duplicates Based on Abstract Total Papers for SLR 

Total No. of 
Articles 60 35 33 

The Table 2 demonstrates that 46 articles were first chosen based on the elimination of duplicates. The 
first author picked 36 publications after looking over their abstracts; 33 of those were chosen for full reading 
for SLR. After reading the 33 articles of different researchers, we collected the required data from those 
papers and described it in literature view with references. The majority of the publications drew from 
empirical studies, such as the following: 

• Research purposes 
• Related research and substantiated theories 
• Measurement of hypotheses 
• Method, design, strategy, dimension, and data gathering that are suggested 
• Analysis of data results 
• Conclusion 

2.2.1. Criteria for Inclusion 
The questions we were investigating led us to include the following categories of papers:  
• CI1: survey papers and related SLRs  
• CI2: newly suggested methods and strategies pertinent to our suggested SLR  
• CI3: the suggested study's presentation of efficient research techniques 
             The related author analyzed and considered the methodology and effects of the included 

papers to improve the SLR's dependability and effectiveness. 
2.2.2. Criteria for Exclusion 

The following criteria were used to exclude the research papers: 
• CE1: articles unrelated to the specified domain 
• CE2: unrelated papers 
• CE3: a few papers selected from the abstract and title 
• Non-peer reviewed articles and materials (CE4) 
• CE4: duplicate articles and articles not written in English 
The second and third co-authors reviewed the omitted papers in accordance with the exclusion criteria 

checklist in an effort to lessen the risk to the SLR's dependability. 
When the proposed SLR is presented at a conference or published in a journal, the most recent version 

will be utilized. The co-authors and corresponding authors reviewed the document quality. 
2.3. Data Collection and Extraction 

Two reviewers examined the 33 related papers once they had been gathered, extracting important 
information that addressed the questions of research [10]. The following information was taken from every 
chosen paper: 
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• Paper of Title  
• Paper of Abstract  
• Source of Paper (journal or conference) 
• Year of Publication  
• Classification of Paper (type, scope) 
• SLR proposed to the Relatedness  
• Research question issues and Proposed SLR objectives 
• Method and Paper summary  
We selected a large number of empirical papers with an emphasis on reviews, experiments, 

discussions, and evaluations of state-of-the-art methods (NoSql and Sql). These empirical studies served 
as the foundation for our study. 
2.4. Data Collection and Extraction 

Additionally, the following arrangement and tabulation of data was made for each retrieved data set 
based on the study research questions. After categorizing all of the collected strategies throughout analysis, 
we assembled our results into three groups: research methodologies, phases of the evaluation and research 
process. 
2.5. Data Collection and Extraction 

According to [11], threats to the SLR process ought to be regularly assessed. These risks were divided 
into several categories, such as repeatability, generalizability, theoretical validity, interpretive validity, and 
descriptive validity. Anhui University's Professor Zhang Cheng examined the SLR validity checks, and we 
changed the technique to reflect his recommendations. 

 
3. Method Results  

This section provides an overview of the research we have selected, broken down by publication year, 
paper type, and the total number of papers we have selected from a certain digital library. The majority of 
the empirical research articles were picked in accordance with the selection process and criteria. The 
researcher used both kinds of databases for their suggested procedures and investigations, according to 
the research literature. Apart from empirical research, we also found survey articles related to NoSql and 
SQL databases. We divided the chosen research and publications into three primary groups after 
completing the related review selection process. The studies' category pie chart is shown in Figure 4. 

 
Figure 4. Articles Categorized According to Selected Studies 

The chosen research on NoSQL and SQL databases covers the period from 2000 to 2024. The 
distribution of published articles by year is shown in Figure 5, which also shows a noticeable uptick in 
interest in NoSQ databases after 2008. 
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Figure 5. Articles According to Publication Year 

The number of articles on NoSQL and relational databases from various digital libraries is shown in 
Figure 6. Many of the pertinent articles are available in the libraries of digital of IEEE and Springer. Figure 
6 also covers a variety of additional sources from publishers like MIT, Oracle, SciTePress, Academic 
Journal, IJACSA, and IOPScience, including technical reports, book chapters, and white papers. 

 
Figure 6. Count of Papers across Digital Libraries 

The features and performance of databases such as Sql Server, HBase, MySql, MongoDB and 
PostgreSql have been compared in several research papers. As shown in Figure 7, the chosen research 
usually included one or more of these databases. 
3.1. Analysis of Empirical Studies: 

Empirical studies and publications are classified as evaluations, experiments, categorizations, 
dialogues, surveys, and comparisons. We evaluated articles based on our selection criteria and hypotheses 
after selecting them from the literature that we thought would be pertinent to our study themes. 
RQ1: Why is NoSql necessary when dealing with big data sets, including both structured and unstructured 
data? 
RQ2: Why does the BASE property apply to NoSql databases whereas the ACID property applies to SQL 
databases? 

NoSQL ("Not only SQL") is a DBM strategy adept at handling large volumes of unstructured data and 
analysis. Unlike relational databases that use SQL, NoSQL databases offer flexibility with various query 
languages and dynamic schema structures. Document-oriented NoSQL databases like MongoDB and 
CouchDB store and retrieve documents in formats such as XML, PDF, JSON, and BSON. Both are open-
source, but MongoDB excels with JSON and in distributed environments, using a dynamic schema for 
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faster and more accurate data analysis. MongoDB, powered by C++, also features strong security, backup, 
and recovery tools. Figure 8 shows NoSQL and SQL databases with their data storage systems [12]. 

 
Figure  7. Selected studies used in Databases 

 
Figure 8. Sql database and NoSql Database 

Numerous studies have focused on the structure, design, and performance of NoSQL (e.g., MongoDB, 
Neo4j) and SQL (e.g., Oracle, MySQL, SQL Server) databases. These studies examined the application of 
suggested methods to SQL and NoSQL scenarios. NoSQL databases offer unique functionalities and use 
cases, with horizontal scalability, though they can't maintain the ACID property. Neo4j, a graph database, 
efficiently organizes and stores complex dependency data. MongoDB focuses on documents, using the 
BSON format, a JSON variant [13]. 

MongoDB has proven superior for managing large datasets compared to other databases. A study 
comparing PostgreSQL and MongoDB for social network services and streaming sensor data found 
MongoDB performed better. MongoDB excels at handling large, diverse datasets and is more efficient in 
cluster contexts than traditional RDBMS like MySQL. Another study showed MongoDB managed vast 
amounts of unstructured data more effectively than MySQL. Detailed analyses confirmed MongoDB's 
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superiority over MySQL for unstructured data. While MongoDB often outperforms relational databases 
like MySQL and Oracle, a study cautioned against viewing NoSQL as a simple substitute for SQL 
databases, advising businesses to consider their specific needs when choosing a DBMS [14]. 

Many studies and publications address the transition from RDB to NoSQL databases, emphasizing 
data availability, high performance, and scalability. MongoDB is favored for handling large data volumes 
due to its scalability, security, integrity, and customizable designs. It stores data in BSON format, efficiently 
managing organized, semi-structured, and unstructured data without the need for joins. 

Despite Oracle's RDBMS performing better than MongoDB's MapReduce for specific aggregation 
tasks, MongoDB is ranked higher in popularity and usage. However, it is important to note that some 
studies used datasets not suitable for large-scale analytics [15]. Figure 9 illustrates the process SQL 
statement command flow in the Oracle RDBMS. 

 
Figure 9. Select query of SQL flow diagram 

Because of its sub-document structure, data retrieval in MongoDB is simple and does not involve 
Verifying limitations or any conditions, unlike the SELECT query Sql of the Oracle 11g RDBMS. The 
INSERT query of Sql flow is shown in Figure 10. 

MongoDB insertion is quicker than Oracle RDBMS since it doesn't need to confirm the actions 
indicated in Figure 10 of the SQL Insert statement. 

MapReduce is a programming model that excels in distributed environments, making it suitable for 
big data processing compared to simple aggregation. MapReduce consists of "Map" and "Reduce" stages, 
where documents are processed and sorted, then combined and stored. The MapReduce-Merge framework 
and MRShare framework have improved MapReduce efficiency and query performance on clusters. 
Despite these advancements, Oracle RDBMS still outperforms MongoDB in aggregation tasks. Over the 
past decade, businesses have widely adopted Oracle RDBMS, though its architecture struggles with 
unstructured data. Studies have examined NoSQL databases on Hadoop, categorizing them by scalability 
and data type. Table 3 compares the main features of MongoDB and Oracle RDBMS [16]. 

The volume of geospatial and geolocated data has significantly increased, necessitating robust DBMS 
to process this data efficiently. NoSQL databases are preferred over SQL for online applications handling 
large data volumes, including geospatial data. Studies have shown that NoSQL databases efficiently 
process massive volumes of unstructured data and manage location and geospatial data effectively. 
Traditional SQL optimization techniques struggle with geographic queries, highlighting the need for well-
established methods to handle extensive geographic data. 
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Figure 10. Flow diagram of SQL Insert statement process 

Table 3. SQL Database Characteristics and MongoDB Database 
SQL Mongo DB 

• Column • Flexible schema 
• Tables • Collection 
• Rows • Documents 
• Rigid schema • Field 

• SQL (Structured Query Language) 
• MongoDB Query Language 

(MQL) 
• Manual indexing for optimal 

performance 
• Automatic indexing on _id 

field 
• Full ACID compliance across 

transactions 
• ACID transactions limited to 

single document operations 
• Supports relational algebra • Supports relational algebra 

 
Table 4. Select query of SQL and MongoDB 
SQL Mongo DB 

Select * from students db.students.find() 
 

Table 5. Insert query of SQL and MongoDB 
SQL Mongo DB 

INSERT INTO students 
VALUES("ali","355","BSCS") 

db.students.insert(name : "ali", Roll: "355", 
degree: "BSCS") 

 
Table 6. Create query of SQL and MongoDB 
SQL Mongo DB 

Create Table students(id int,name 
varchar(21),roll-no int) db.createCollection("students") 
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Table 7. Drop query of SQL and MongoDB 
SQL Mongo DB 

DROP TABLE students db.students.drop() 
MongoDB has been shown to outperform PostGIS in processing geospatial data. NoSQL databases 

like Azure DocumentDB and MongoDB provide geographic capabilities, while SQL Server 2016 and Azure 
SQL Database offer similar functions in the cloud. PostgreSQL, with its PostGIS plugin, handles geospatial 
data as a spatial database. Azure DocumentDB, developed by Microsoft, supports MongoDB's features and 
geographic operations using the GeoJSON standard format. Performance studies indicate that Azure 
DocumentDB performs faster than Azure SQL Database but is less scalable. Table 4 lists the main 
geographical attributes of popular NoSQL and SQL databases [17]. 

Table 8. Geospatial characteristics of NoSQL and SQL databases 

Database PostGIS Oracle MongoDB Azure SQL Document
DB 

Supporte
d 
Geometri
es 
Objects: 

Polygon, 
LineString, 
MultiPoint, 
MultiPolygon, 
Point, 
MultiLinePoin
t, 
GeometryColl
ection 

LineString, 
MultiPolygon, 
Polygon,MultiPoi
nt, 
MultiLinePoint,  
GeometryCollecti
on, 
Point, 

Polygon, 
Point, 
MultiLinePoin, 
GeometryColle
ction, 
MultiPoint, 
MultiPolygon, 
LineString, 

MultiPolygon, 
Point, 
MultiLinePoint, 
MultiPoint, 
GeometryColle
ction, 
LineString, 
Polygon, 

LineString
, 
Polygon, 
Point, 
MultiPoly
gon, 
Geometry
Collection, 
MultiLine
Point, 
MultiPoin
t, 

Geometr
y 
Function
alities 
Supporte
d 

Oracle 
supports Open 
Geospatial 
Consortium 
(OGC) for 
handling 
geometry 
instances. 

Oracle supports 
Open Geospatial 
Consortium 
(OGC) for 
handling 
geometry 
instances. 

Inclusion, 
Intersection, 
and 
Distance/Proxi
mity are key 
operations 

Oracle handles 
geometry 
objects via 
supporting 
Open 
Geospatial 
Consortium 
(OGC). 

Inclusion, 
Intersectio
n, and 
Distance/P
roximity 
are key 
operations 

Spatial 
Indexes 
Supporte
d 

R-Tree indexes 
GiST indexes, 
B-Tree 
indexes, 
 

B-Tree and 
parallel indexes 
build are utilized 
for spatial R-trees 
indexe/indexes 

2D sphere 
indexes, 2D 
indexes 

B-Trees, 2D 
plane indexes 

Quadtree, 
Plane 2D 
indexes, 

DBaaS û ü ü ü ü 
GeoServe
r 
Compati
bility  

ü ü ü ü ü 

Horizont
al 
Scalabilit
y 

û û ü û ü 

3.2. MongoDB Data Modeling in NoSql 
The routing servers, configuration servers, and shard nodes (sometimes referred to as "mongos") that 

make up architecture of the MongoDB are depicted in Figure 11 and further explained in [18]. 
In a MongoDB cluster, data is stored in shards, each with replicas on different nodes to ensure 

availability in case of failure. Read/write transactions select the appropriate shard, with a primary server 
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mirrored by secondary nodes. If the primary server fails, a backup takes over. Configuration servers 
manage metadata, identifying and broadcasting shard data. User tasks are routed by MongoDB, grouped 
by type, allocated to relevant shards, and combined before client confirmation. Mongos can be used in a 
distributed environment as they are stateless. 

 

 
Figure 11. Architecture of MongoDB 

RQ3: Does DBaaS effectively address interoperability and data portability across different NoSql 
databases? 

A thorough literature review of DBaaS architecture revealed that cloud DBaaS designed for RDB is 
not optimal for NoSQL databases. Standard APIs eliminate the need to re-engineer applications for 
different CSPs. The main challenges are interoperability and data portability between cloud providers. 
Interoperability is defined differently across PaaS, SaaS, and IaaS paradigms, with our focus on the IaaS 
layer. Unified APIs are required for data transfers across cloud providers, as not all use the same data 
storage model. Figure 12 shows the high-level architecture for data exchange during CSP migration [19]. 

Efficient management and consistent databases are crucial in today's IT landscape. Declarative query 
capabilities ensure data independence from physical storage in database systems, supporting various data 
models like relational, XML, and NoSQL, which handle large data volumes with the BASE characteristic. 
Cloud services providers offer new capabilities efficiently and cost-effectively but use different 
implementations, leading to portability and interoperability issues [20]. 

 
Figure 12. CSPs inside Data Movement 

Interoperability across PaaS, SaaS, and IaaS paradigms is challenging, and switching cloud services 
providers can be driven by various factors like outages or cost. Vendor lock-in and security risks complicate 
this further. Open standards like OVF and CIMI aim to address these issues, along with initiatives like 
MOSAIC, MODACLOUDS, and Cloud4SOA. However, unique PaaS APIs limit their effectiveness. 
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Migration tools, cloud infrastructures, and SDCPs facilitate data transfers but don't fully resolve portability 
issues [21,22]. Major cloud services providers like Microsoft Azure, Google App Engine, and AWS help 
develop cloud applications but require standardized APIs for seamless data transfers [23]. 

Unified API frameworks for SQL and NoSQL databases, like CdPort and Se-cloudDB, enhance data 
portability, security, and interoperability. These frameworks protect user data and convert requests into 
compatible models for different databases, ensuring secure and authorized data access [24]. 

 
4. Discussion 

The debate between SQL and NoSQL databases isn't about relational versus non-relational models 
but their transaction models. SQL databases adhere to the ACID properties—Atomism, Consistency, 
Isolation, and Durability—for every transaction. In contrast, NoSQL databases, seeing ACID as a barrier, 
adopted Eric Brewer's CAP theorem principles: Consistency, Availability, and Partition tolerance. This 
theorem allows developers to design partition-tolerant databases that can ensure either availability or 
consistency. Table 5 outlines the primary functionalities of each database type. 

Table 9. Features of Database Management Systems 
Features of Database Management Systems 

DB
MSs The Data The 

Schema 
The 

Scalability 
The 

Compliance 
The 

Architecture 
The 

Consistency 

The 
Perfor
mance 

NoS
ql 

Structured
,Un 

Structured
, semi 

Structured 

Dynamic Horizontal BASE Distributed Eventual Fast 

RDB
MS Structured Fixed Vertical ACID Centralized Strict Slow 

The classification of DBMSs has multiple subcategories, with the relational data model being key to 
many modern systems. NoSQL databases differ from traditional SQL-based systems in their data model 
and querying techniques, often requiring developers to handle query execution, data verification, and 
consistency tasks. Brewer's CAP theorem outlines requirements for distributed databases: in the presence 
of network partitions, consistency (C) must take precedence over availability (A), while the reverse is true 
in their absence. NoSQL databases excel in handling large, unstructured data due to their scalability, real-
time access, flexible schemas, and storage capacity, following the BASE characteristics [25]. They prioritize 
read/write performance over data consistency, making them ideal for big datasets without strict data-level 
constraints. 

This study reviewed approximately 33 previous studies comparing the productivity, reliability, and 
utility of NoSQL and SQL databases. Our research shows that NoSQL databases offer more scalability, 
better handling of diverse datasets, and require fewer resources for data integrity and consistency 
compared to SQL databases. However, SQL databases like MySQL and Oracle, built on rigorous theoretical 
models such as relational algebra, are more suitable for transactional applications and require more 
maintenance. NoSQL databases prioritize data accessibility and excel in cluster environments, making 
them ideal for parallel computing with the MapReduce programming module. Ultimately, the choice 
between NoSQL and SQL depends on an organization's specific needs [26,27]. 

Relational databases rely on a fixed schema (tabular format), while NoSQL databases use a more 
flexible and dynamic schema. For example, relational databases require predefined fields like StdRegNo, 
StdName, and StdAddress for student data, adhering to strict integrity and domain rules. 

Both SQL and NoSQL databases use various models, each with different underlying data structures. 
Data portability is challenging due to the diversity of cloud service providers (CSPs). The rapid growth of 
business databases adds complexity to cloud storage, with AWS DBaaS offering limited storage extension 
options for Azure databases [28]. Table 6 lists product languages, categories, database types, and 
architectures. 
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Table 10. Database architecture type, product category and its languages 
Databases 

Name 
Databases Types Databases 

Architectures 
Databases 
Category 

Written in 

MySQL Open Source  Sql C, C++ 

MongoDB Open Source Multi-Model of 
Distributed 

Store of NoSql-
Document 

C++, Go, 
JavaScript, 

Python 

Oracle DB   Sql 
C, Assembly 

language, 
C++ 

SQL Servers   Sqk C++, C 
Couchbase 

 Open Source Multi-Model of 
Distributed 

Store of NoSql-
Document 

C++, Erlang, 
C, Go 

Neo4j Open Source  Family of NoSql-
Graph Java 

CouchDB Open Source 
Multi-Model of 

Distributed 
Store of NoSql-

Document 

Erlang, 
JavaScript, 

C, C++ 

Rethink Open Source Multi-Model of 
Distributed 

Store of database 
NoSql-Document 

C++, 
JavaScript, 

Python, 
Bash, Java 

Cassandra 
 Open Source Multi-Model of 

Distributed 
Based of NoSql-

Document Java 

RavenDB Open Source Open Source 
 

Store of NoSql-
Document C# 

4.1. Gaps of Research 
Significant availability and scalability requirements necessitate complex distribution systems. 

Sharding and partitioning occur at the application, caching, and back-end storage tiers. The software must 
handle data replicas and inconsistencies from concurrent updates. Each type of NoSQL database has 
different shortcomings regarding consistency, durability, performance, and scalability. To choose the right 
database, architects must examine the features of each candidate database. This includes analyzing gaps 
in each type of NoSQL database [29]. 

Gaps among databases of NoSql.  
• If your applications primarily involve storing and retrieving data items identifiable by a key, use key-

value stores. However, querying by an attribute other than the key can cause crashes, and individual 
fields cannot be modified or retrieved. 

• For applications needing detailed management of record selection and specific fields, document 
databases are better. They offer more query flexibility than key-value stores, allowing retrieval using 
criteria besides the primary key. 

• Column-family stores are suitable for applications storing data with numerous fields but requiring 
access to only a portion. These stores handle extensive datasets well. 

• Graph databases are ideal when entities and their connections are equally important. 
Big data from sensor networks or social media often overwhelms traditional relational databases due 

to their inability to handle massive, unstructured data sets. NoSql databases, lacking a centralized schema, 
offer greater scalability, availability, fault tolerance, and performance for big data [30,31]. 

The study concludes that NoSql is not a complete replacement for relational databases but is well-
suited for heterogeneous big data. Further research is needed in NoSql performance, scalability, simplicity, 
and schema design. Horizontal scalability makes NoSql ideal for handling large, diverse data, whereas 
SQL databases scale vertically. Research also focuses on integrating non-relational and relational database 
features and developing frameworks for data migration from SQL to NoSQL, which has significant 
business implications. 
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4.2. Forecasting and incidents involving DBMSs in comparison to a specific DBMS 
We generated a set of (x, y) data pairs and constructed 301 combinations for database names. We 

preprocessed the data by converting x and y from strings to numbers using a label encoder. We then trained 
a Gaussian Naïve Bayes model on the encoded data. This model identified distinct database names and 
calculated the probability for each class. The results were represented in an n by n table, where n is the 
number of distinct databases. The model was trained on this data, but it correctly identified MongoDB for 
every database name except its own [32, 33]. 

 
5. Conclusions 

The study concludes that switching from relational databases to NoSql databases isn't always 
necessary. Organizations should choose the database management system (DBMS) that best fits their 
needs. SQL databases are ideal for maintaining data consistency and uniformity, while NoSql databases 
excel in handling large amounts of unstructured data and providing accessibility. Relational databases 
might be better for consolidating smaller datasets, whereas NoSql databases are suited for big data 
analytics and applications producing large quantities of data due to their distributed and scalable 
architecture. 

Relational databases perform better with geospatial data, though they are slower than NoSql 
databases in processing extensive geographical information. Despite the advantages of NoSql databases, 
many enterprises may still hesitate to replace traditional RDBMSs entirely. NoSql databases, being a newer 
addition to the database industry, lack universally recognized standards and strict ACID properties, but 
they offer a flexible and dynamic schema, facilitating quick development. However, the diverse models 
and interfaces used by different NoSql databases and cloud service providers (CSPs) pose challenges for 
data portability and interoperability. A standardized cloud-based solution is needed to address these 
issues. 

Future research could focus on denormalized techniques for SQL RDBMS and compare performance 
metrics like data insertion, updating, and retrieval between MongoDB and other systems. NoSql databases 
should also consider more effective parallel geographic strategies to serve large user groups better. 
Additionally, the development of big data techniques can benefit applications in deep learning, such as 
object detection, signal classification, and computer vision. 
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