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________________________________________________________________________________________________________ 
Abstract: SQL injection attacks are among the most prominent threats against Web application 
security, intended to illegitimately access sensitive information by exploiting related vulnerabilities. 
Their detection with traditional rule-based approaches is futile in view of this evolving nature and 
complexity of SQL Injection Attack (SQLIA). This paper proposes a new approach towards detecting 
SQLIA using Convolutional Neural Networks, one of the deep learning techniques very famous for 
its capability of automatically learning intricate patterns and representations from large-scale 
datasets. We focus on leveraging this strength of CNNs while working on the structure and 
semantics of SQL queries to help in differentiating malicious and benign inputs. In this paper, we 
describe a detailed method-ology that includes data preprocessing, feature extraction, model 
training, and evaluation. In this paper, we propose a CNN model trained and tested using a large 
dataset containing 109,520 SQL queries with an accuracy of 97.41%. Further, we have tested the 
efficiency of the model with the help of precision, recall, and F1-score, and it turned out to be 
effective for the identification and classifications of SQLIA properly. The model showed high 
precision, 96.50%, and high recall, 99.00%, which gives it the capability to reduce false positives and 
false negatives. The balanced F1-score was 97.00%, thereby confirming that this model performed 
well in detecting and classifying SQLIAs. These results may indicate that deep learning techniques, 
and particularly CNNs, have some potential to be very useful in enhancing web application security 
by providing a robust, adaptive solution for mitigating risks caused by SQL injection attacks. 
 
Keywords: SQLIA (SQL Injection Attack); SQLi (SQL Injection); Deep Learning; Convolutional 
Neural Networks; Web Application Security; Cybersecurity. 

 
1. Introduction 

The most dangerous and really persistent threat to the security of web applications is represented by 
an SQL injection attack [1]. More precisely, SQLIAs are among the major causes of the huge leak of data, 
leading to enormous financial losses. This exploits the vulnerabilities in input validation mechanisms of a 
web application to inject malicious SQL code into the user inputs, which can manipulate the back-end 
database [2]. As shown in Figure 1, obviously, if executed successfully, SQLIA may have strong 
consequences in terms of data leakage and unauthorized access, which could escalate to a full compromise 
of a database with further financial fraud [3]. 

Traditional rule-based detection methods, while in wide application, typically fail to effectively 
mitigate SQLIAs due to their limitation to manual features and failure to generalize against new patterns 
of attacks [4]. Such methods face a challenge in keeping pace with the ever-changing tactics that attackers 
use, since they always obfuscate their malicious code to evade detection [5]. The increased complexity of 
web applications and their connectivity drive the need for more robust, adaptable mechanisms of detection 
against SQLIA. 
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Figure 1. SQL Injection Attack 

Machine learning has lately offered a promising approach to overcome such limitations of traditional 
methods. In this line, several machine learning algorithm-based SQLIA detection models, able to adapt to 
new variations of attacks by automatically learning patterns and anomalies in data, have been proposed. 
Nonetheless, challenges related to feature engineering, model selection, and availability of high-quality 
training data persist. 

In particular, deep learning, a subset of ML, has been found to be especially promising in detecting 
SQLIA, for the simple reason that it is capable of learning complex data representations from raw data [9]. 
Deep learning models, such as Convolutional Neural Networks and Recurrent Neural Networks, have 
been applied to fairly a good number of cybersecurity tasks, for instance, malware detection and intrusion 
detection, with high success rates [10]. In the case of SQLIAs, deep learning models would not require 
feature engineering since relevant features from SQL queries can be learned automatically. This may 
potentially improve the accuracy of detection [11]. 

In this paper, we give an approach to detect SQLIA based on a CNN model. By making use of some 
such inherent capabilities of CNNs in self-features extraction from raw data, our approach averts one 
common limitation found in most traditional machine learning approaches: manual feature engineering. 
Our model achieved 98.16% during the testing and training conducted on the large dataset of 109,520 SQL 
queries. The model further revealed high precision of 98.97% and recall of 97.17%, hence it can be 
considered a very good model that can reduce false positives and false negatives. Further, its balanced F1-
score is 98.06%, thus further confirming that our model is effective in detecting SQLIAs accurately and 
classifying them well. This work contributes greatly to the security of web applications by providing a 
robust solution that is effective and accurate for CNN-based detection of SQLIAs, hence better protection 
of sensitive data and systems. 

 
2. Related Work   

SQL injection attacks have been among the most enduring and evolving web application security 
threats, which have resulted in very serious data breaches and associated financial losses [1]. Basically, 
SQLIA exploits the vulnerabilities of input validation mechanisms of any given web application. This is 
utilized by hackers intending to inject malicious SQL code into user inputs for manipulating the backend 
database [2]. This can be very severe in impact when executed successfully, with results such as leakage of 
data, full database compromise, unauthorized access, and financial fraud [3]. 

Traditional rule-based detection is applied very widely, but its effectiveness in mitigating SQLIAs is 
disappointing because it depends on features defined manually and poor generalizability to new patterns 
of attacks [4]. Such methods are hard to keep pace with the continuous change in attackers' tactics, 
generally obfuscating their malicious code to elude detection [5]. In the light of increasingly complex, 
interconnected web applications, more robust, adaptable detection mechanisms for SQLIA become 
paramount. 
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The deficiencies of these traditional approaches recently proposed machine learning as a solution. In 
this regard, several models of SQLIA detection have been developed by exploiting the power of machine 
learning algorithms on automatic learning of patterns and anomalies in data and hence adapt to new 
variations of attacks. However, challenges still remain in feature engineering, model selection, and 
availability of high-quality training data. 

Deep learning, a subdomain of ML, has been found to be pretty effective in detecting SQLIA because 
it easily learns complex representations from raw data. Deep learning models, such as Convolutional 
Neural Networks and Recurrent Neural Networks, have been applied to a number of cyber-security tasks, 
like malware detection and intrusion detection with good results. Deep learning models can automatically 
extract relevant features from SQL queries in the context of SQLIAs, thus eschewing the manual feature 
engineering effort and probably detecting with enhanced accuracy. A few research studies have been 
conducted on the use of deep learning techniques for the detection of SQLIA. Luo et al. suggested a CNN-
based approach to extract payloads from network flows that turned out to be effective in a real-traffic case 
study. Tang et al. [13] used an MLP and LSTM model for detecting SQLIA and achieved high accuracy 
using a real dataset from an ISP. Zhang et al. [14] utilized a DBN for the identification of SQLIAs in the 
network traffic in real-time, thus proving the potential of Deep Learning in real life. Xie et al. [15] proposed 
an Elastic-Pooling CNN model that could deal with variable-length SQL queries without truncation, thus 
further improving the adaptability of deep learning for detecting SQLIAs. 

Even with these advances, challenges still exist toward the development of deep learning models with 
regard to the effective generalization for new and unseen patterns of SQLIA. The success of such models 
is strongly tied to diverse and representative training data. Deep models can be computationally expensive 
to train and deploy, possibly prohibitive for resource-constrained environments. 

 
3. Methodology 
3.1. Data Collection 

The dataset used in this research consists of 109,520 SQL queries that are curated as either malicious 
(SQL injection attacks) or benign (normal queries). The sources utilized for compilation include: 
● Publicly available repositories: Tons of SQL injection payloads and benign queries are present on 

online platforms, more specifically GitHub and Kaggle, which can be used in training and testing 
machine learning models. 

● SQL injection tool log files: Much information with respect to attack patterns and techniques relevant 
in real life can also be obtained from log files acquired from automated SQL injection tools like SQL 
Map. 

● Manual queries: Synthetic SQL injection queries can be manually created by security experts to enrich 
the dataset in a way which already captures most of the attack variations. 
The sources have been put together in a diversified way to create a rich dataset, including many types 

of attacks and some techniques related to SQL injection: in-band, error-based, blind SQL injections, and 
different techniques of obfuscation and evasion. 
3.2. Data Sanitization 

The dataset shall be sanitized to ensure data quality and consistency; this includes: 
● Duplicate removal: It identifies and removes duplicate queries to avoid model overfitting towards 

overrepresented samples. 
● Missing value handling: Replacing or filling missing or incomplete data points with appropriate 

values. 
● Label Verification: This consists of manual verification of the labels for a subset of queries to ensure 

that the dataset is accurate and reliable. 
● Normalization: Converting all queries to lowercase, removing extra whitespace and comments, and 

handling special characters should yield a standard format of SQL. 
3.3. Data Normalization 

Data normalization is done to prepare these sanitized SQL queries as input to the CNN model. All of 
these text-based queries are then transformed into numerical formats using the steps mentioned here.  
● Tokenization: Each SQL query will be broken down into individual tokens. They could either be 

words, characters, or sub words depending on the tokenization technique applied. 
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● Encoding: It involves the assignment of a unique numerical identifier to each token. Thus, it creates a 
vocabulary of integers representing the whole dataset.  

● Padding/Truncation: Bringing all the tokenized queries to the same length by padding zeros in case 
of short query words and truncating longer queries.  

● Embedding: These integer-encoded queries are transformed into dense vector representations using 
word embedding, which capture semantic relationships between words. 
As shown Figure 2, these numerical representations of SQL queries are fed into the CNN model to 

learn the extraction of relevant features in the detection of SQL injection attacks. 

 
Figure 2. Methodology Diagram to perform CNN Model 

 
4. Experiment 
4.1. Dataset 

The dataset used for this work contains 109,520 SQL queries, classified as either malicious (which are 
the SQL injection attacks) or benign (normal). As appropriate datasets were not available, several sources 
were put into consideration: public repositories like GitHub and Kaggle, log files from SQL injection tools 
like SQLMap, and manually crafted queries by security experts. It contains all varieties of SQL injection 
attack types and techniques: in-band, error-based, blind SQL injections, obfuscation, and evasion 
techniques. 

The dataset was carefully curated to balance classes in an exact number of malicious and benign 
queries. This is because a balanced distribution is essential for training a robust and unbiased CNN model 
for later classification between the two classes. 

The data set was divided into two parts: one used for training the CNN model and the other used for 
the evaluation. 
● Training Set: The CNN model was trained on 80% of the dataset, which was 87,616 queries, to 

probably learn the underlying patterns and features of each class differentiating malicious from benign 
queries. 

● Testing set: The remaining 20% of the dataset, consisting of 21,904 queries, is used to test the 
performance of the model in a real-world application, supporting the estimation of unbiased results in 
generalization capability. 

4.2. Data preprocessing 
A robust pipeline of preprocessing steps prepared the collected dataset before being fed into a base 

CNN model, including: 
● Cleaning: This dataset cleaning process removed duplicate queries, handled missing values, and 

checked a subset of queries for their labels to ensure accuracy and reliability. 
● Tokenization: Each SQL query was then tokenized into words or characters, depending on the chosen 

tokenization strategy. This step is very important in changing the raw text data into a form processed 
by the CNN model. 

● Encoding: Each token was assigned a unique numerical identifier to create a vocabulary of integers 
that represent the whole dataset. This step of encoding is quite necessary in turning text data into 
numerical input for the CNN model. 

● Padding/truncation: Zeros were appended to the end of shorter queries, while the longer queries were 
truncated to be of the same, fixed maximum length, so that each tokenized query would be of the same 
length. This step is very important in the journey towards consistency of input data and efficient 
batching during training. 

● Embedding: The integer-encoded queries were turned into word embedding, which are dense vector 
representations. This word embedding help the CNN model understand semantic relationships among 
words and learn more meaningful representations from the given data. 

4.3. Building CNN Model 
The architecture of the CNN model for SQLIA was designed in order to successfully extract relevant 

features from the preprocessed SQL query inputs. They include the following:  
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● Input Layer (Sequences): It all starts with an input layer containing sequences of words or characters 
which are to be treated as raw SQL queries. Such queries may be of variable lengths, thus mirroring 
the variety of SQL statements encountered in real-world scenarios. 

● Embedding Layer (5000, 256): This layer acts as a translator, changing every word or character into a 
dense, numerical representation known as a word embedding. The word embeddings permit 
capturing semantic relationships between the words so that the model can truly understand the 
meaning and context of the input queries. The vocabulary size is 5000, so it can include a maximum 
number of unique words or characters. 

● Conv1D Layers (256 & 128 filters, kernel size=3): At the very core are the two Conv1D layers, with 
256 and 128 filters, respectively, and a kernel size of 3. These layers use filters to slide over an 
embedded input sequence to extract from it local patterns and features that may indicate the existence 
of SQL injection attacks. The first layer uses 256 filters, and the second one 128 filters, thus letting the 
model capture fine-grained and more general features. The kernel size of 3 signifies that every filter 
view three consecutive words or characters at a time; it extracts localized information. 

● Batch Normalization: After each Conv1D layer, Batch Normalization layers have been added. These 
layers will normalize the activations of the filters of the convolution so that they do not get too large 
or too small, hence making the learning smoother. 

● Dropout: 0.5 after every Batch Normalization, dropout layers were embedded at a rate of 50%. These 
layers shut off a fraction of neurons randomly during training and therefore help prevent overfitting. 
This makes the model learn more robust and generalizable representations. 

● GlobalMaxPooling1D: After convolutional layers extract the relevant features, it gets aggregated by 
the GlobalMaxPooling1D layer. This will take the maximum value over each feature map, condensing 
the spatial dimensions while keeping only the most salient features. 

● Dense Layer (64 units): The output from the GlobalMaxPooling1D layer serves as input into a Dense 
layer, which acts as a fully connected layer. It simply refines even more the already aggregated 
features, learning complex relationships between them. The number of units in this layer is 64, with 
each computing the weighted sum of its inputs, linked to by an activation. 

● Output Layer (Sigmoid): The output layer finally produces the probability score with respect to every 
input query through a sigmoid activation function. That score will indicate the likelihood of the query 
being a SQL injection attack. If the value of this probability is greater than some predefined threshold, 
then a query is classified as malicious; otherwise, it will be considered benign. 
Basically, this CNN model works as if it were a high-dimensional filter: carefully surveying the 

structure and content of SQL queries to discriminate between those that have a benign and malicious 
intent. This would be a very effective way to combat the perennial problem of SQL injection attacks by 
automation of feature extraction and deep learning capabilities. 

As shown in the Figure 3, the model was implemented in the Keras deep learning library, using 
TensorFlow as the backend. It was trained with the Adam optimizer, where binary cross-entropy was 
selected as the loss function. 

 
5. Results and Discussion 
5.1. Evaluation Metrics 

Several evaluation metrics were followed to study the efficiency of our proposed CNN model in SQL 
injection attack detection. In general, these evaluation metrics give an in-depth understanding about the 
performance of the model based on its potential to classify SQL queries as malicious or benign. These 
include: 
● Accuracy: The proportion of correctly classified cases—that is, the sum of true positives and negatives 

divided by the total number of cases. 
● Precision: It represents the number of true positive predictions against total positive predictions for 

correctly identified SQL injection attacks. 
● Sensitivity/Recall: This measures the proportion of true positive predictions against total actual 

positive cases. 
● F1-score: The weighted average of precision and recall, providing a balanced measure of a model's 

performance. 
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Figure 3. Building CNN Model 

These metrics are calculated using the following formulas: 
Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Precision = TP / (TP + FP) 
Recall = TP / (TP + FN) 
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F1-score = 2 * (Precision * Recall) / (Precision + Recall) 
where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and 

false negatives, respectively. 
5.2. Experimental Results 

The proposed CNN model was trained on 80% of the dataset (87,616 queries) and evaluated on the 
remaining 20% (21,904 queries). The results of the evaluation are presented in Table 1. 

Table 1. Results of CNN Model 
Model Accuracy Precision Recall F1-score 
CNN 98.16% 98.97% 97.17% 98.06% 

As shown in Table 1, the proposed CNN model demonstrated excellent performance across all 
evaluation metrics. The accuracy achieved by the CNN model was 98.16%, indicating a high level of 
discrimination between malicious and benign SQL queries. The model also exhibited strong performance 
in terms of precision, 98.97%, and recall, 97.17%, highlighting its effectiveness in detecting SQL injection 
attacks while minimizing false positives and false negatives. The F1-score of the CNN model is 98.06%, 
further validating its superior performance. 
5.2.1. Accuracy Curve 

As Shown in Figure 4, the graph shows the accuracy of a machine learning model while training over 
many epochs. The blue line is the training accuracy, which is the accuracy of the model on the data that it 
is trained on. This line rises steadily, so the model learns and improves its predictions on the training data.  

The orange line shows the validation accuracy, which is the accuracy of the model on data that wasn't 
used for training. This line also rises but less smoothly and at a somewhat lower rate than that of the 
training accuracy, suggesting that the model generalizes well to unseen data but with visible fluctuations 
in performance. Overall, the model progresses well in learning with very promising generalization 
capability. 

 
Figure 4. Training and Validating Accuracy 

5.2.2. Loss Curve 
As Shown in Figure 5, the graph illustrates the training and validation loss of a machine learning 

model running for four epochs. The training loss, which measures the model's error on the data it learns 
from, dropped rapidly in the first few epochs before it began to get stabilized. The validation loss, a 
measure of the model's error on unseen data, also dropped but at a slower rate with minor fluctuations. 
That means it's learning very well; it generalizes to new data, perhaps with a small tendency to overfit. 
That would be when, in the last epochs, this-validation loss basically goes flat, whereas this-training loss 
can still go a little bit down [16-21]. 
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.  
Figure 5. Training and Validating Loss 

5.2.3. F1 Score Curve 
As Shown in Figure 6, the graph represents the learning curve of an F1 score for a machine learning 

model within five epochs. The F1 score is a measure that balances precision and recall, starting with 
approximately 0.985 at the first epoch, peaking at around 0.990 at the second epoch. It then undergoes 
some slight drop but recovers to finally rest at 0.989 for epochs 3 and 4. In the last epoch, this value 
increased considerably to about 0.992. That means the whole performance of the model, measured in terms 
of correct classification of both positive and negative instances, improves over time with minor fluctuations 
in the middle epochs. 

 
Figure 6. F1 Score 

5.2.4. Confusion Matrix 
The confusion matrix shows the performance of a binary classification model. In all likelihood, this 

was in the setting of SQL injection attack detection. The different rows in the matrix represent the instances 
in the actual class, while columns represent the instances in the predicted class. 

As shown in Figure 6, it is excellent at recognizing benign queries, missing only 18 of nearly 10,000, 
but it does poorly on malicious queries, capturing 11,090 but missing 484, which are false negatives. This 
could mean that the model is skewed toward avoiding false positives at the cost of catching all malicious 
instances. 

Overall, the model performs very well: the number of correct predictions is high for both classes. 
Clearly, there is room for improvement in detecting malicious queries, probably by threshold tuning or 
using more training data. 
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Figure 7. Confusion Matrix 

 
6. Results 

We showed in this paper a new approach for detecting SQL injection attacks based on Convolutional 
Neural Networks. In this approach, we leveraged the power of CNNs in automatically learning 
discriminative features from raw SQL query inputs, which would obviate the need for manual feature 
engineering. We could train the proposed CNN model on a huge dataset of SQL queries to a test accuracy 
of 98.16%, thus proving its effectiveness in identifying and classifying SQLIAs. The measured precision, 
recall, and F1-score for both benign and malicious queries were very high, hence confirming the model's 
performance. 

These results show the potential of deep learning, especially CNNs, in augmenting web application 
security with a robust, adaptive solution for SQL injection detection and prevention. Some future research 
directions would be the investigation of more complex architectures of CNNs, additional features—for 
instance, contextual information, HTTP headers—and investigating the effectiveness of the model in real-
world environments. We would like to extend this further and come up with a general framework that 
integrates our CNN-based detection system with all the security measures to ensure multilevel defense 
against SQLIAs. 
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