
Journal of Computing & Biomedical Informatics Volume 07 Issue 02
 ISSN: 2710 - 1606 2024

ID : 571-0702/2024

Research Article
https://doi.org/10.56979/702/2024

Dynamic Load Balancing and Task Scheduling Optimization in Hadoop Clusters

Haiqa Mansoor1, Bilal Aslam1, and Usman Akhtar2*

1Riphah School of Computing and Innovation, Riphah International University Lahore, Lahore, Pakistan.

2Berlin School of Business and Innovation GmbH, Berlin, 12043, Germany.
*Corresponding Author: Usman Akhtar. Email: usman.akhtar@berlinsbi.com

Received: March 11, 2024 Accepted: June 22, 2024 Published: September 01, 2024

__
Abstract: Hadoop is a widely utilized distributed file system and processing framework for
handling large-scale data. Nonetheless, the inherent load balancing and task scheduling
mechanisms in Hadoop exhibit inefficiencies that may result in performance bottlenecks. In this
paper, we propose a novel dynamic load-balancing algorithm designed specifically for Hadoop
clusters. Our algorithm continuously monitors the performance indicators of nodes and
dynamically adjusts task-node allocations to ensure equitable load distribution within the cluster.
Furthermore, we consider the execution states of tasks to optimize resource allocation effectively.
The primary contribution of this study resides in the analysis and resolution of load balancing and
scheduling issues within Hadoop. In addition, our proposed dynamic scheduling algorithm also
accounts for task execution states, thereby facilitating optimized resource allocation. We validate
our algorithm across various workloads, demonstrating that it surpasses existing methods in job
completion time, scalability, and resource utilization. The findings indicate that the proposed
algorithm efficiently balances cluster loads, expedites task completion, and reduces both costs and
resource consumption.

Keywords: Cloud; Load Balancing; Hadoop; Optimized Load Balancing; Hadoop Cluster.

1. Introduction

With the advancement of the Internet and the demand for data, many cloud service providers are
offering services to their customers. Due to the need for horizontal scaling of storage in the era of Big Data,
the Hadoop Distributed File System (HDFS) has attracted the attention of many researchers. Hadoop is the
most widely used and effective solution for storing and processing large amounts of data. To process large
amounts of data in its cluster, Hadoop uses the Hadoop Distributed File System and the MapReduce model
platform. This has made high-performance load balancing an important consideration in ensuring the
availability and performance of these applications. Hadoop is the most widely used and effective solution
for storing and processing large amounts of data. Hadoop uses the Hadoop Distributed File System (HDFS)
and the MapReduce programming model to process large amounts of data in its cluster [1].

Hadoop is a popular open-source framework for storing and processing large data sets. It is used by
companies such as Yahoo, Facebook and Amazon. The core components of Hadoop are the Hadoop
Distributed File System (HDFS) and MapReduce. HDFS provides reliable storage and data management,
while MapReduce processes data in the cluster in parallel [2]. Hadoop breaks a job into smaller tasks, called
map tasks, and reduce tasks. Map tasks read data from HDFS, split it into smaller pieces, and perform
some computation on each piece. Reduce tasks and then combine the results of the map tasks [3]. Hadoop’s
distributed architecture makes it efficient for writing, reading, and processing data. It is a popular choice
for a variety of big data applications, including data warehouse, data mining, and machine learning.

The HDFS is an open-source distributed file system designed to run on commodity hardware. It is a
scalable, fault-tolerant file system that can be used to store large datasets.

HDFS was originally developed by the Apache project, but it has since become a popular choice for a
variety of big data applications. HDFS uses a master-slave architecture. The master node, called the

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

NameNode, manages the file system namespace and metadata. The slave nodes, called DataNodes, store the
actual data blocks [4]. HDFS is designed to be fault tolerant. If a DataNode fails, the NameNode will reassign
the blocks that were stored on that node to other DataNodes. This ensures that the data is always available.
Orchestration and preservation of the file system, file namespace, and metadata are within the purview of
the name node. This central node keeps an inventory of the quantity of data nodes within the Hadoop
infrastructure and their corresponding file associations. Data nodes, on the other hand, execute storage
actions as directed by the name node and periodically provide updates to the NameNode about the blocks
they are hosting [4]. HDFS is a powerful tool for storing and processing large datasets. It is used by a
variety of organizations, including Google, Facebook, and Amazon. HDFS comprises a primary component
known as the name node, acting as the master, alongside multiple data nodes that serve as slave nodes.

The load balancing problem has received a lot of attention and research in recent years. When a
considerable volume of tasks is executed on a singular node, load balancing is achieved by redistributing
tasks from overloaded nodes to those with less workloads. This strategic shifting of tasks results in a
reduction in the overall duration of task execution, contributing to enhanced efficiency. In Hadoop, the Yet
another Resource Negotiator (YARN) framework manages load balancing. Task scheduling is exclusively
handled by the scheduler, aligning tasks with the available resources.

YARN offers three default scheduler types of FIFO, capacity, and fair schedulers each catering to
distinct resource allocation scenarios. FIFO (First in First Out) algorithm used in the legacy version of the
Apache Hadoop framework. When the jobs are submitted to the queue, the master node selects the job in
order of submission. The most straightforward scheduler within YARN is the FIFO scheduler, which
operates without the need for any configuration. Meanwhile, the capacity scheduler sets aside a distinct
queue for small jobs, enabling swift initiation upon request. However, this approach comes with a trade-
off, as it divides the cluster’s capacity [5]. Consequently, larger jobs encounter prolonged completion times
due to resource allocation. In contrast, the fair scheduler eliminates the need for capacity reservations.
Dynamically distributes resources among all approved jobs. The main objective of the Fair scheduler is to
share the resources between the tasks and to make sure that the data are available to the next available
resource. Here, jobs are group into groups and this algorithm improves the allocation of data locality and
provides fast response times in a shared Hadoop cluster [6]. The priority of the job is considered. The
applications of YARN can share the resources of the huge Hadoop cluster using the Fair Scheduler, and
these resources are dynamically managed so that no prior capacity is required. Resources are allocated so
that each application in a cluster gets the same amount of time. Fair Scheduler makes scheduling decisions
based on memory but can also be configured to work with CPU.

Several researchers have made attempts to tackle load balance and job assignment in Hadoop. One
such approach is the Constraint-Based Hadoop Scheduler, as outlined in a recent study by Kumar et al. [7].
However, it is important to note that this method may not be entirely practical considering the inherent
heterogeneity of Hadoop clusters, where job tasks may vary in completion time when executed on different
data nodes. Tasks within Hadoop are allocated based on data location; in simpler terms, they are assigned
to nodes storing the respective data.

In this research, we aim to address critical issues pertaining to Hadoop, load balancing and task
scheduling. These aspects play a pivotal role in shaping Hadoop’s overall performance. Our primary
contribution lies in the examination and resolution of load balance and scheduling challenges within
Hadoop. Effective load balancing stands to significantly enhance the efficiency of Hadoop, impacting task
execution times and, in turn, job completion. Additionally, our proposed dynamic scheduling algorithm
considers the execution state of tasks, enabling optimized resource allocation. This algorithm represents a
substantial advancement over existing approaches by achieving dynamic load balancing, which allocates
jobs based on task priorities and node capabilities. This innovation is poised to elevate Hadoop’s
capabilities across various dimensions, ultimately leading to improved overall performance.

The structure of the paper is as follows. Section 2 offers a comprehensive review of recent
advancements in cloud load balancing. In Section 3, we delve into the detailed description of our proposed
architecture. Moving forward, Section 4 is dedicated to the analysis and presentation of our research
findings. Finally, Section 5 presents the conclusive remarks and key takeaways from this study.

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

2. Related Work
Scholars have dedicated considerable research efforts to optimizing data allocation for load balancing.

Our literature review begins with a comprehensive review of load balancing across diverse computing
domains, encompassing cloud computing, grid computing, and wireless networks, before focusing on the
specific domain of Hadoop load balancing. Various load-balancing algorithms have been proposed,
including well-known methods [8–10] such as round-robin, weighted round-robin, least-connection,
weighted least-connection, and shortest expected delay. In the area of load balancing, the major
contribution comes from the introduction of the Central Load-Balancing Decision Model (CLBDM) [11].
This novel approach extends the widely recognized round-robin load-balancing algorithm, introducing a
layer of session switching at the application level. The CLBDM operates by meticulously monitoring the
connection establishment duration between clients and nodes. Notably, this algorithm incorporates a
critical threshold mechanism; should the connection time surpass this threshold, the connection is
promptly terminated. Subsequently, the responsibility originally assigned to the node is seamlessly
transferred to another node in the system. This dynamic approach to load balancing enhances the efficiency
and reliability of resource allocation in distributed systems [8]. Their innovative approach draws
inspiration from the coordinated behavior of ants to collect data from cloud nodes and efficiently assign
tasks to specific nodes. Nonetheless, their method grapples with synchronization challenges, a concern that
has subsequently been addressed [9].

In the field of load balancing research, Ni et al. (2011) [12] present an intriguing approach in their
study. Their work focuses on designing a virtual machine mapping policy for private cloud environments,
emphasizing multi-resource load balancing. In this policy, central scheduling controller assesses the
availability of resources specific to a given job and subsequently determines task assignments.
Complementing this controller, a resource monitor continuously gathers critical information pertaining to
resource availability within their algorithm. This integrated approach ensures efficient resource allocation
within private cloud infrastructures. Furthermore, T. Wu et al. have made significant strides in addressing
the challenge of system stress resulting from data duplication and redundancy [10]. Their innovative
solution introduces the Index Name Server (INS), a novel architecture designed for email-to-phone (SIP)
management within data centers. The INS system incorporates deduplication and access point selection
optimization techniques, effectively mitigating data redundancy issues. In the context of load balancing,
the INS dynamically monitors key parameters, such as IP information and the busy level index, ensuring
that load distribution remains balanced across the data center infrastructure. This approach enhances the
overall efficiency and reliability of data management within data centers.

In another notable contribution, S. W. et al. present a load balancing methodology that combines
elements from Opportunistic Load Balancing (OLB) and Min-Min Load Balancing (LBMM) algorithms [13].
OLB, though an established static load balancing technique, exhibits shortcomings in its treatment of node
execution times, often leading to slower task processing. To mitigate this issue, the proposed approach
introduces a sophisticated three- layered design and systematically partitions tasks into multiple subtasks.
This innovative approach enhances task processing speed while maintaining effective load balancing,
contributing to improved overall system performance.

Several notable contributions have advanced the field of load balancing in Hadoop. The Active
Monitoring Load Balancing (AMLB) approach, as proposed by Mahalle et al. [14], prioritizes assigning
requests to virtual machines with the lowest load. Another modified algorithm as a locally optimized load
balancing solution is proposed by S. G. Domanal et al. [15]. The algorithm aims to equitably distribute
incoming jobs among servers or virtual machines. It employs a directory counter with a virtual machine
slope in addition to their status, enabling efficient virtual machined selection in the Load Balancer.
However, a limitation lies in the algorithm’s oversight of the present machine load, which may affect load
distribution efficiency. To overcome this limitation, J. Adhikari and S. Patil [16] introduced the Double
Threshold Energy-Aware Load Balancing (DT-PALB) method. The program manages to compute nodes
depending on utilization percentages and reduces energy consumption by simultaneously turning off idle
compute nodes.

Within Hadoop, scheduling and allocation decisions operate at the task and node level, applying to
both the map and reduce phases. This means that not all tasks within a job are necessarily scheduled
simultaneously. J. Gautam et al. [17] have categorized Hadoop schedulers based on factors including time

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

and priority. Static scheduling, which predetermines job-to-node assignments before execution, aims to
minimize overall job execution time. Dynamic scheduling, on the other hand, assigns jobs to nodes as they
are being executed, optimizing resource utilization. Scheduling strategies based on resource availability
aim to enhance Hadoop’s performance by efficiently harnessing CPU, storage, and memory resources.
Time-based scheduling centers around job deadlines, determining whether a job can be completed within
a specific timeframe and how resources should be allocated accordingly [17].

Several Hadoop and MapReduce scheduling algorithms are designed around factors like data locality,
resource availability, and performance. In their work, M. Hammoud et al [18], they introduce the Center-
of-Gravity Reduction Scheduler (CoGRS). CoGRS minimizes MapReduce network traffic by incorporating
locality and skew awareness in reduced task scheduling decisions, ensuring that each reduced job runs on
the node with the highest center of gravity. Kumar et al. [19] introduced the Context-Aware Scheduler for
Hadoop (CASH), a scheduler designed to adapt to the heterogeneity of Hadoop clusters. CASH
demonstrates an understanding of the cluster’s diversity and incorporates context learning, which
encompasses job and resource characteristics. The CASH algorithm categorizes jobs based on their CPU
and I/O demands and, in parallel, categorizes nodes according to their capabilities. Subsequently, it
schedules jobs by considering contextual information, resulting in efficient and tailored resource allocation.

A resource and deadline-aware Hadoop job scheduler is proposed in Zhang et al. [20] suggest a next-
knode scheduling (NKS) technique, prioritizing map tasks with strong data locality to improve node
utilization. Y. Zhao et al. [21] introduce the Distributed Data Warehouse-based Work Scheduling
Algorithm (TDWS), categorizing jobs by type and employing memory-aware techniques for more efficient
scheduling. M. Yong et al. [22] propose a resource-aware scheduler that monitors node resource loads and
matches jobs to their specific resource requirements. R. Nanduri et al. [23] develop a job-aware MapReduce
scheduling algorithm utilizing heuristics and machine learning to select jobs compatible with available
resources. H. Mao et al. [24] present a load-driven task scheduler featuring adaptive DSC, which
dynamically assigns tasks based on data node workload and adjusts slot allocation. Y. Li et al. [25] offer a
MapReduce scheduler and a power-aware rescheduling technique for a heterogeneous environment. The
power-aware rescheduling strategy considers how to save energy while processing jobs and storing data.

To the best of our knowledge, only a limited body of work has been presented [26]. In their
contribution, the authors introduce a scheduler that is distinguished by its dependence on constraints and
conditions. This scheduler incorporates user-specified deadlines into a job-execution cost model as input
parameters. Notably, it provides users with prompt feedback regarding the feasibility of completing a
project within a given deadline, even allowing for deadline adjustments. By efficiently allocating the
maximum number of open slots to the current running job, this model optimizes job execution within a
Hadoop cluster. Additionally, this scheduler introduces a preemptive mechanism designed to reallocate
resources from jobs with durations shorter than the required time limit [26].

In summary, the literature review exposes a wide spectrum of scheduling techniques and resource
allocation strategies in the context of Hadoop and MapReduce. Researchers have diligently explored
methods to enhance job execution efficiency and minimize resource contention. While some approaches
prioritize data locality and real-time resource availability prediction, others adopt a multi-objective and
multi-constrained approach to optimize task allocation. However, it is evident that the challenges of
heterogeneous clusters, varying resource costs, and accurate progress tracking continue to pose promising
research questions in the field. These findings collectively underscore the dynamic nature of Hadoop
scheduling and the need for innovative solutions to address the evolving demands of big data processing.

3. Proposed Methodology

We have developed an algorithm to optimize load balancing, as shown in Figure 1. This diagram
provides an overview of a load-balancing solution tailored to Hadoop. The purpose of a web scraper,
resource report server, and monitoring client is to assist in dynamic load balancing, optimize resource
utilization, and enhance the performance of the distributed computing environment. The main goal of our
algorithm is to introduce a mechanism that increases the efficiency of the Hadoop system through dynamic
load balancing.
3.1. Overview

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

In our approach, the time required to execute tasks is important. For example, consider a scenario
where a resource-intensive task needs to be executed in HDFS and the nodes have different resource
availability. In such cases, it is important to assign tasks in such a way that larger tasks are prioritized to
nodes with sufficient resources and vice versa. To achieve this, it is necessary to implement a dynamic
load-balancing strategy aimed at optimizing performance. In practice, the Load Balancer periodically
acquires data pertaining to the Hadoop clusters from the Monitoring System. This dataset encompasses
crucial metrics such as CPU utilization, memory consumption, and disk space usage for each individual
node within the cluster. Subsequently, the Load Balancer uses these data to identify which nodes are under-
utilized and which are struggling with excessive workloads.
3.2. Resource Report Server

The resource Report Server is a main component in our approach that tracks the resources available
in a Hadoop cluster. It consists of two submodules: the resource report server and the monitoring client.
The resource report server runs on each node in the cluster. It collects information about the node’s
resources, such as the CPU frequency, the number of cores, the total amount of RAM, and the total amount
of storage. The resource report server then sends this information to the monitoring client, which runs on
the master node. The monitoring client keeps track of the resources available in the cluster. It uses this
information to make decisions about how to allocate resources to jobs. The monitoring client updates the
resource tracker table every 10 seconds. The CPU power of a node is defined by Equation (1), and the RAM
capability is defined by Equation (2). These equations are used by the monitoring client to calculate the
resources available in the cluster.

𝐶!"#(𝑖) = 	𝑓!"#(𝑖) 	×	𝑁!$%&' (1)
This equation is used to calculate the total processing capacity of a given node. To do this, it

multiplies the CPU frequency of the cores of that node (𝑓!"#(𝑖)) by the total number of CPU cores (𝑁!$%&').
Essentially, this quantifies the node’s ability to perform computational tasks based on its CPU
configuration.

𝐶%()(𝑖) = 	𝑅'*+&(𝑖) (2)
In equation (2) we determine the RAM capacity (𝐶%()) of the same specific node denoted by "i" It

directly corresponds to the RAM size (𝑅'*+&(𝑖)) of the node. RAM Capacity is critical because it dictates the
amount of data that can be cached for processing.
3.3. Web Scrapper

To obtain the number of blocks and the corresponding nodes of data to be processed, we write a web
scrapper. This scrapper collects the IPs of the nodes and the blocks they contain from the Hadoop web
interface page using regular expressions.
3.4. Required Parameters

This process allows for the customization of parameters and preconditions when initializing the
algorithm. Among these parameters, computing power emerges as the most critical factor for each node.
It is quantified using the following equation:

𝑁"$,&%(𝑖) = 	𝛼 , -!"#(*)

0-!"#(*)1	
- ÷ ,𝐶!"#(𝑖) 	+ 	𝛽	 1

-$%&(*)
)*3	(-$%&)

2-		 (3)

Using this equation, we can calculate the computational power for each node, taking into account the
capacities of both CPU and RAM. This parameter can then be used in your algorithm to make informed
decisions about task allocation and load balancing based on the capabilities of each node.

The node’s load rate, denoted as 𝐿4$5&, is determined using Equation (4) as follows:
𝐿3$5&(𝑖) = 	

6'()$%*+(*)
7'()$%*+(*)

	× 100 (4)

The load rate of a node, denoted as 𝐿3$5&(𝑖), is a measure of how much of its storage capacity is being
used, expressed as a percentage. The amount of storage used by node "i", 𝑈'8$%(9&(𝑖), is the volume of
storage space that is currently occupied. The total storage capacity of node "i", 𝑇'8$%(9&(𝑖), is the entire
storage capacity available on the node.

The load rate of the entire cluster, denoted as 𝐿!:#'8&%, is calculated using the equation provided
below:

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

𝐿!:#'8&% =	
∑ ⬚,
-./ 6'()$%*+(*)
∑ ⬚,
-./ 7'()$%*+(*)

 (5)

Figure 1. The overview of the proposed approach

The load rate of the entire cluster is represented by 𝐿!:#'8&%. This quantifies the utilization of collective
storage at all nodes in the cluster. The amount of storage used by node "i" is denoted by 𝑈'8$%(9&(𝑖), which
reflects the volume of storage space that is currently occupied by each node. The total storage capacity of
node "i" is indicated by 𝑇'8$%(9&(𝑖), which is the entire storage capacity available on each node.

The maximum load rate of the cluster, denoted as 𝐿)(=, is calculated using the following equation:
𝐿)(= = [𝜕	 + (1	 − 	𝜕) 	×	𝐿!:#'8&%] × 100 (6)
The equation combines ∂ and 𝐿!:#'8&% to calculate the maximum load rate of the cluster. When the

cluster is completely occupied (i.e., ∂ = 1), the value of 𝐿)(= is determined only by 𝐿!:#'8&%. On the other
hand, when the cluster is unloaded (i.e., ∂ = 0), 𝐿)(= is equal to 80, regardless of the value of 𝐿!:#'8&%.

The hit rate of an individual node, represented as 𝐿>*8, is calculated using the following equation:

𝐿>*8(𝑖) = <4")0+$
(*)	.		6'()$%*+(*)

@4")0+$.		6'()$%*+A	
=	× 100 (7)

The equation computes the hit rate for each node by combining computing power and storage
utilization. It then scales the result to a percentage by multiplying it by 100. This metric provides insights
into how efficiently each node is using its resources within the cluster.
3.5. Dynamic Load Balancer

We have introduced a dynamic load-balancing algorithm tailored for Hadoop. This algorithm
dynamically prioritizes job nodes to attain load balancing. After successfully assigning one task, it initiates
the allocation of the next task. This iterative process continues until all tasks are allocated.

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

As shown in Algorithm, it initiates by obtaining monitoring information denoted as𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔*3B$.
It then generates the node-priority-list as its output. The algorithm invokes the getParams() function with
𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔*3B$ as input. This function computes essential parameters, including the load rate of individual
nodes (𝐿3$5&(𝑖)), the load rate of the entire cluster (𝐿!:#'8&%), the hit rate of nodes (𝐿>*8(𝑖)), and the maximum
load rate of the cluster (𝐿)(=). The proposed algorithm algorithm creates three priority tables: PT1, PT2,
and PT3 using the function createPriorityTables(). These tables store node identifiers along with their
corresponding hit rates. Each node is assigned to one of these priority tables based on its node load. If
𝐿3$5&(𝑖) exceeds𝐿)(=, the node is placed in PT3. If 𝐿3$5&(𝑖) is greater than𝐿!:#'8&%, the node is assigned to
PT2. Otherwise, it is assigned to PT1. The algorithm first analyzes PT1. If it is not empty, it sorts the nodes
in descending order based on their hit rates. It then iterates through all nodes in PT1. If a node’s storage
capacity (Storagenode) is greater than or equal to the storage required by a task (Storagetask), that node is
added to the node-priority-list. In case PT1 is empty, the algorithm checks PT2. If it contains nodes, it sorts
them in descending order of hit rate and iterates through the nodes in PT2. If a node’s storage capacity
(Storagenode) meets or exceeds the storage requirements of a task (Storagetask), it is added to the node-
priority-list. This dynamic load-balancing algorithm ensures that tasks are allocated to nodes based on
their load rates and storage capacities, achieving efficient load distribution across the cluster.

4. Experimental Results
In this section, we have compared the proposed algorithms with existing load balancing algorithms

such as FIFO, capacity, fair, and GPA. These algorithms are used in existing Hadoop platforms.
4.1. Dataset

We used the MovieLens 20M benchmark datasets 1 , which comprises 20000263 ratings 318 and 465564
tag applications in 27278 movies. 138493 users created this data set between 319 January 9, 1995 and March

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

31, 2015. The data set was published on October 17, 2016. All 320 users had rated at least 20 movies. We
write extensive resource-hungry tasks that include 321 sorting out the movies according to the ratings,
getting the top-rated and worst movies, and 322 recommending movies to the users according to the
ratings they had given to the movies.
4.2. Experimental setup

The experiments were conducted on a heterogeneous cluster consisting of one master node and four
slave nodes, each differing in hardware resources. This configuration was deliberately chosen to facilitate
a comprehensive examination of time efficiency. Detailed information on the hardware resources for each
node can be found in Table 1.

Table 1. Hardware Resources of Each Node.
Sr No Cores CPU Freq RAM HDD Responsibility IP Address

1 3 2.60 GHz 5 GB 30 GB Master 192.168.56.102
2 2 2.60 GHz 4 GB 20 GB Slave_1 192.168.56.103
3 1 2.60 GHz 3 GB 12 GB Slave_2 192.168.56.104
4 1 2.60 GHz 2 GB 9 GB Slave_3 192.168.56.105
5 1 2.60 GHz 1 GB 8 GB Slave_4 192.168.56.106

Our implementation was based on a Linux-based system, and we configured Apache Hadoop version
3.3.1 on both the master and slave nodes to ensure seamless integration with Hadoop. To enable efficient
communication between the master and slave nodes, we disabled the firewall. We conducted four
replications and recorded the outcomes of our results.

For the remote distribution of jobs from the master node to the slaves, we leveraged the well-known
open-source Python library, Pyro4. Within this setup, the Pyro4 name server was configured on the master
node, and relevant jobs were registered. MapReduce tasks were submitted to the master node, which
effectively managed the resources within the cluster.
4.3. Evaluation Results

In this experiment, we compared our approach with state-of-the-art approaches as shown in Figure 2.
The X-axis indicates the number of films processed simultaneously, while the Y-axis indicates the job
completion time in minutes. Examination of the results shows that the proposed algorithm is more efficient
when running larger jobs. The proposed dynamic load balancing algorithm is compared with the default
load balancing algorithms, the FIFO scheduler, the capacity scheduler, the fair scheduler and the
previously proposed greedy priority algorithm [27]. As shown in Figure 2 the proposed algorithm has the
shortest completion time of the job and

Figure 2. Comparison of the completion time of a job for different load balancing algorithms

The x-axis shows the number of movies processed at a time, and the y-axis shows the completion time
of the job in minutes. The bar represents the different load balancing algorithms with less resource-hungry
jobs w.r.t. time shows that the proposed algorithm is the best strategy for load balancing. The fair algorithm

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

has the second shortest completion time, followed by the FIFO algorithm, the capacity algorithm, and the
GPA algorithm. The FIFO algorithm is the simplest load balancing algorithm. It simply processes the jobs
in the order in which they arrive. The capacity algorithm assigns jobs to servers based on server capacity.
The GPA algorithm assigns the jobs to the servers based on the GPA of the servers. The proposed algorithm
is a more complex algorithm that considers the number of movies processed simultaneously. This allows
it to find a better solution for load balancing, resulting in shorter completion times. We found that the
proposed dynamic load balancing algorithm can reduce the execution time of jobs and effectively balance
the load, resulting in higher cluster efficiency. The load on each cluster is monitored, and the job execution
time is calculated.

Figure 3. Showing the load comparison on different nodes and x-axis represents the nodes, while the y-

axis represents the load count
We conducted another experiment to compare our approach with existing methods. In this

experiment, we assessed the distribution of load among the cluster nodes by analyzing monitoring module
logs and calculating node loads at various intervals. The results are presented graphically in Figure 3, with
the X-axis representing nodes and the Y-axis representing cluster loads. The findings clearly demonstrate
that our algorithm outperforms FIFO, Capacity, Fair, and GPA in terms of load balancing. Figure 3 is a bar
plot that visually depicts load counts for each load balancing algorithm. It’s noteworthy that our proposed
algorithm consistently shows lower load counts across all slave nodes, highlighting its scalability as a load
balancing strategy based on load ratios.

5. Discussion

The experimental results presented in this research provide valuable insights into the efficiency and
effectiveness of the proposed dynamic load-balancing algorithm for Hadoop clusters. The evaluation
aimed to compare the proposed algorithm with existing algorithms and assess its impact on job completion
times and load distribution. One of the key findings is that the proposed dynamic load balancing algorithm
outperforms the default load balancing algorithms (FIFO, capacity, fair) and the previously proposed GPA
algorithm in terms of job completion time. This is particularly significant in large-scale data processing
scenarios, where efficient job completion directly impacts the overall throughput and productivity of the
system. For instance, reduced job completion times could enable organizations to generate reports and
insights more quickly or to train text clustering or machine learning models more efficiently.

The experiment also highlights the efficiency of the algorithm in processing larger jobs, emphasizing
its scalability and potential to handle substantial workloads. This is crucial in real-world applications
where data processing tasks can vary significantly in size and complexity. For example, the algorithm
could be employed to process large datasets for scientific research or to power real-time data analytics
applications. The ability of the algorithm to consider the number of movies processed simultaneously

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

showcases its adaptability and responsiveness to varying workloads. Furthermore, the experiment
analyzing the load distribution among the cluster nodes demonstrates that the proposed algorithm
effectively balances the load across the cluster, as evidenced by the lower load counts on all slave nodes.

This finding underscores the algorithm’s capacity to efficiently utilize available resources, ensuring a
more balanced and optimized system. For instance, this could assist organizations in reducing costs and
improving the performance of their Hadoop clusters. The implications of these findings are significant.
Efficient load balancing directly translates to improved performance and resource utilization within
Hadoop clusters. Shorter job completion times mean quicker data processing, enabling organizations to
derive insights and make decisions faster. Moreover, the scalability and adaptability of the proposed
algorithm render it a promising solution for diverse Hadoop cluster configurations and varying
workloads. The results and findings of this research provide compelling evidence for the effectiveness and
efficiency of the proposed dynamic load-balancing algorithm in the context of Hadoop clusters.

The algorithm has the potential to significantly enhance Hadoop performance by optimizing resource
allocation, improving load balancing, and ultimately reducing costs and resource consumption. Future
research can build upon these findings, exploring further refinements and applications of the algorithm to
continue advancing the field of big data processing. For instance, future research could focus on refining
the algorithm to improve its performance in specific scenarios, such as when handling large numbers of
concurrent jobs or when dealing with heterogeneous clusters. Additionally, future research could
investigate new applications for the algorithm in different domains, such as machine learning and real-
time data analytics.

6. Conclusions

In this manuscript, we present a dynamic load balancing algorithm engineered to enhance the
efficiency of Hadoop clusters. Our empirical assessments underscore that this innovative algorithm
substantially diminishes job processing durations while sustaining stability, particularly for sizeable tasks.
The proposed model integrates a monitoring module that persistently tracks node performance metrics,
supplemented by a distinctive method for task-node allocation adjustments, thereby guaranteeing load
equilibrium within the cluster.

When juxtaposed with existing strategies, our algorithm not only realizes quicker completion times
relative to the greedy algorithm but also exhibits double the efficiency of FIFO. Furthermore, in terms of
scalability, our methodology surpasses the Fair, Greedy, and Capacity schedulers, significantly alleviating
the burden on master nodes. This technique proficiently equilibrates cluster loads, expedites task
completion, and mitigates costs and resource consumption, as evidenced by our experimental results. The
advantages of our method become increasingly evident with the augmentation of cluster size and
complexity in heterogeneous scenarios.

Future inquiries in this domain should emphasize investigating load balancing in varied clusters,
particularly within heterogeneous environments. Examining the influence and optimization of assorted
rack and replication mechanisms is crucial for further augmenting cluster performance and efficiency.

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

References
1. Singh, T.; Gupta, S.; Kumar, M.; et al. Adaptive load balancing in cluster computing environment. The Journal of

Supercomputing 2023, pp. 1–29.
2. Dean, J.; Ghemawat, S. MapReduce: simplified data processing on large clusters. Communications of the ACM

2008, 51, 107–113
3. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In 436 Proceedings of the 2010

IEEE 26th symposium on mass storage systems and technologies 437 (MSST). Ieee, 2010, pp. 1–10.
4. White, T. Hadoop: The definitive guide; " O’Reilly Media, Inc.", 2012.).
5. Zaharia, M. Job scheduling with the fair and capacity schedulers. Hadoop Summit 2009, 9, 592.
6. Isard, M.; Prabhakaran, V.; Currey, J.; Wieder, U.; Talwar, K.; Goldberg, A. Quincy: fair scheduling for distributed

computing clusters. In Proceedings of the Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, 2009, pp. 261–276.

7. Kumar, Y.; Kaul, S.; Hu, Y.C. Machine learning for energy-resource allocation, workflow scheduling and live
migration in cloud computing: State-of-the-art survey. Sustainable Computing: Informatics and Systems 2022, 36,
100780.

8. Zhang, Z.; Zhang, X. A load balancing mechanism based on ant colony and complex network theory in open cloud
computing federation. In Proceedings of the 2010 The 2nd international conference on industrial mechatronics and
automation. IEEE, 2010, Vol. 2, pp. 240–243.

9. Radojevi´c, B.; Žagar, M. Analysis of issues with load balancing algorithms in hosted (cloud) environments. In
Proceedings of the 2011 Proceedings of the 34th international convention MIPRO. IEEE, 2011, pp. 416–420.

10. Wu, T.Y.; Lee, W.T.; Lin, Y.S.; Lin, Y.S.; Chan, H.L.; Huang, J.S. Dynamic load balancing mechanism based on cloud
storage. In Proceedings of the 2012 Computing, Communications and Applications Conference. IEEE, 2012, pp.
102–106.

11. Asan Baker Kanbar, K.F. Modern load balancing techniques and their effects on cloud computing. Journal of
Hunan University Natural Sciences 2022, 49.

12. Ni, J.; Huang, Y.; Luan, Z.; Zhang, J.; Qian, D. Virtual machine mapping policy based on load balancing in private
cloud environment. In Proceedings of the 2011 International Conference on Cloud and Service Computing. IEEE,
2011, pp. 292–295.

13. Wang, S.C.; Yan, K.Q.; Liao, W.P.; Wang, S.S. Towards a load balancing in a three-level cloud computing network.
In Proceedings of the 2010 3rd international conference on computer science and information technology. IEEE,
2010, Vol. 1, pp. 108–113.

14. Mahalle, H.S.; Kaveri, P.R.; Chavan, V. Load balancing on cloud data centres. International Journal of advanced
research in computer science and software engineering 2013, 3.

15. Soni, G.; Kalra, M. A novel approach for load balancing in cloud data center. In Proceedings of the 2014 IEEE
international advance computing conference (IACC). IEEE, 2014, pp. 807–812.

16. Adhikari, J.; Patil, S. Double threshold energy aware load balancing in cloud computing. In 468 Proceedings of the
2013 fourth international conference on computing, communications and 469 networking technologies (ICCCNT).
IEEE, 2013, pp. 1–6.

17. Gautam, J.V.; Prajapati, H.B.; Dabhi, V.K.; Chaudhary, S. A survey on job scheduling algorithms 471 in big data
processing. In Proceedings of the 2015 IEEE International Conference on Electrical, 472 Computer and
Communication Technologies (ICECCT). IEEE, 2015, pp. 1–11.

18. Hammoud, M.; Sakr, M.F. Locality-aware reduce task scheduling for MapReduce. In Proceed- 474 ings of the 2011
IEEE Third International Conference on Cloud Computing Technology and 475 Science. IEEE, 2011, pp. 570–576.

19. Kumar, K.A.; Konishetty, V.K.; Voruganti, K.; Rao, G.P. CASH: context aware scheduler for 477 Hadoop. In
Proceedings of the Proceedings of the international conference on advances in 478 computing, communications
and informatics, 2012, pp. 52–61.

20. Zhang, X.; Zhong, Z.; Feng, S.; Tu, B.; Fan, J. Improving data locality of mapreduce by scheduling 480 in
homogeneous computing environments. In Proceedings of the 2011 IEEE Ninth International 481 Symposium on
Parallel and Distributed Processing with Applications. IEEE, 2011, pp. 120–126.

21. Hou, X. Dynamic Workload Balancing and Scheduling in Hadoop MapReduce with Software 483 Defined
Networking. PhD thesis, Oklahoma State University, 2017.

22. Yong, M.; Garegrat, N.; Mohan, S. Towards a resource aware scheduler in hadoop. In 485 Proceedings of the Proc.
ICWS, 2009, pp. 102–109.

Journal of Computing & Biomedical Informatics Volume 07 Issue 02

ID : 571-0702/2024

23. Nanduri, R.; Maheshwari, N.; Reddyraja, A.; Varma, V. Job aware scheduling algorithm for 487 mapreduce
framework. In Proceedings of the 2011 IEEE Third International Conference on 488 Cloud Computing Technology
and Science. IEEE, 2011, pp. 724–729.

24. Mao, H.; Hu, S.; Zhang, Z.; Xiao, L.; Ruan, L. A load-driven task scheduler with adaptive DSC 490 for MapReduce.
In Proceedings of the 2011 IEEE/ACM International Conference on Green 491 Computing and Communications.
IEEE, 2011, pp. 28–33.

25. Li, Y.; Zhang, H.; Kim, K.H. A power-aware scheduling of mapreduce applications in the cloud. 493 In Proceedings
of the 2011 IEEE Ninth International Conference on Dependable, Autonomic 494 and Secure Computing. IEEE,
2011, pp. 613–620.

26. Kc, K.; Anyanwu, K. Scheduling hadoop jobs to meet deadlines. In Proceedings of the 2010 496 IEEE Second
International Conference on Cloud Computing Technology and Science. IEEE, 497 2010, pp. 388–392.

27. Chen, R.; Zeng, W.H.; Fan, K.J. Research on Hadoop Greedy Scheduler Based on the Fair. In 499 Proceedings of the
Applied Mechanics and Materials. Trans Tech Publ, 2012, Vol. 145, pp. 500 460–464.

