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________________________________________________________________________________________________________ 
Abstract: In the current era of fast digital growth, the significance of security cannot be emphasized 
enough. Many academics have focused their efforts on creating malware detection systems that 
utilize data mining techniques to monitor and detect any security breaches. Nevertheless, despite 
these technological developments, existing systems continue to face challenges in attaining the 
necessary degree of precision for exact detection. Modern malware employs various evasive 
techniques, such as polymorphism and metamorphism, to rapidly change and generate numerous 
variants, challenging traditional detection methods. While machine learning algorithms (MLAs) 
have shown promise in malware analysis, they often suffer from slow performance due to extensive 
feature engineering and representation requirements. Advanced deep learning models can 
eliminate the need for feature engineering but may still face issues with biased performance due to 
skewed training data, which limits their real-time applicability. This research addresses these 
challenges by evaluating both classical MLAs and deep learning architectures for malware detection, 
classification, and categorization. Using a diverse set of public and private datasets, we performed 
experimental analyses with various dataset splits to train and test models over different timescales. 
Our key contribution is the development of a novel image processing technique with optimized 
parameters for MLAs and deep learning models, aimed at improving the effectiveness of zero-day 
malware detection. 
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________________________________________________________________________________________________________ 
1. Introduction 

 Wireless technologies, mobile devices, and networks have made it easier to process a lot of data. 
However, such improvements introduce serious security weaknesses, making systems open to a variety of 
threats and malicious attacks. Wireless communications are open, flexible, and portable, which exacerbates 
security threats. To counteract these risks, intrusion detection systems (IDS), both host and network, are 
critical in safeguarding these networks [1]. An effective intrusion detection system (IDS) must be efficient, 
robust, and capable of reliably detecting threats while limiting false positives and handling alert frequency. 
Recent research is heading toward employing machine learning to increase IDS capabilities [2].  

Machine learning algorithms are excellent at detecting patterns in massive datasets, which is crucial 
for spotting security concerns. Traditional IDS leverages a variety of machine learning techniques, 
including k-nearest neighbor, Support Vector Machines (SVM), decision trees [2], [3].  

Malware developers' techniques for preventing detection evolve alongside the industry. In this study, 
we have used the most recent CIC-MalMem-2022 dataset to identify and classify memory-obfuscated 
malware. This dataset not only helps to detect the presence of malware, but it also provides information 
on its family and type [4].  
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As a result, we conducted two experiments: one for binary classification, which determines if a sample 
is dangerous or benign, and another for multi-class classification, which identifies a specific malware 
family. To improve the efficiency of these experiments, we used innovative deep learning techniques. We 
utilized a VGG-16 Convolutional Neural Network (CNN) to convert the information into an image format, 
letting us extract complicated characteristics from visual representations of malware behavior [5]. 

 The VGG-16's depth and accuracy in image identification make it an excellent candidate for this 
application. After feature extraction, we are using LightGBM (LGBM), a highly efficient gradient boosting 
framework, to perform classification tasks. LGMB's capacity to process massive data sets at a cheap 
computational cost improves our detection system's accuracy and speed [6].  

By combining VGG-16 and LGMB into our approach, we aim to create a more robust dynamic 
malware detection solution with improved accuracy and efficiency compared to traditional methods. 

In Section 2, we present a review of previous approaches from the literature. In Section 3, we describe 
the proposed methodology. In Section 4, we discuss the experiments and their results. In Section 5, we 
examine into the discussion of our findings. Finally, in Section 6, we provide the conclusion. 

 
2. Literature Review  

 This section provides an overview of previous studies on popular techniques for selecting features 
and using machine learning (ML) and deep learning (DL) technologies in intrusion detection systems. 

This Research presents that tools have developed like the Static Analyzer for Vicious Executable 
(SAVE) and Malware Examiner using Disassembled Code (MEDiC) for general malware detection. Their 
approach promised greater rates of detection with changed malware. However, focusing on static analysis 
without considering dynamic behaviors creates an enormous research gap. It has used graphical pictures 
and entropy graphs to detect and categorize malware variants. However, because their approach is based 
on visualization, it may not be suitable for other types of malwares. [7] 

Similarly, this study presented a network intrusion detection system which includes SVM and RF. 
This strategy uses RF for feature selection, and the KDD Cup 99 dataset has been used to evaluate its 
effectiveness proposed a feature selection method based on a multilayer perceptron with ordered 
redundancy. This strategy, which is commonly used for tasks which includes prediction, classification, and 
regression, is used to discover, and remove unnecessary components. The approach detects network 
interference via Support Vector Machines (SVM) and Random Forest. RF is used for feature selection, with 
a dynamic significance technique. Despite using just a few characteristics, the model obtained 93% accuracy 
on training data, with SVM recommended for scoring.[8] 

The growing proliferation of undocumented dangerous software, notably Zero-Day malware, need 
improved detection systems to avert substantial harm. Zero-Day malware employs complex evasion 
techniques to prevent detection, forcing further research into efficient identification methods. Machine 
learning (ML) has emerged as a promising solution, and sandbox settings such as Cuckoo provide a safe 
arena for experimentation. The suggested Zero-Day Vigilante (Ze Vigilante) system used several ML 
classifiers, such as Random Forest (RF), Neural Networks (NN), and Support Vector Machine (SVM), to 
analyze both static and dynamic malware. RF achieved the highest accuracy, with 98.21% for static and 
98.92% for dynamic analysis, demonstrating its efficacy [8]. 

 With an increasing number of network-connected devices, such as mobile phones and IoT devices, 
the potential of security breaches has increased considerably. These systems are becoming more vulnerable 
to attacks as the number of device kinds increases and the attack surface expands. To address this, security 
systems often have two layers: a security system, which offers basic protection, and a network intrusion 
detection system (IDS) or attack detection system, which detects and stops more complex threats. Relying 
just on a firewall is insufficient, thus malware detection technologies are required for complete 
protection.[9]. 

 Recent improvements in e-business, e-healthcare, e-governance, and online transactions have 
provided numerous benefits while increasing the risk of serious cyberattacks. These attacks are intended 
to disrupt operations, steal critical data, and compromise national defense systems. Cybersecurity solutions 
are critical for detecting, analyzing, and defending against these attacks. This study examines a variety of 
assaults, including denial-of-service, botnet, malware, phishing, spoofing, and probing attacks. It focuses 
on how Machine Learning and Deep Learning approaches tackle these difficulties. Key topics covered 
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include research problems, intrusion detection systems, and the relevance of public and private datasets in 
cybersecurity research[10]. 

  The Aim of this study is to improve email security by using machine learning techniques to identify 
spam. Ten distinct machine learning models, including Support Vector Machines, k-Nearest Neighbor, 
Naïve Bayes, Neural Networks, Recurrent Neural Networks, and others, are used to classify spam emails, 
which are unsolicited messages. Email data is transformed into a CSV file as part of the process, and this 
file is subsequently used to train algorithms that identify messages as either spam or "ham" (benign). When 
evaluated on popular datasets, the method delivers competitive accuracy. Furthermore, the system 
produces outputs that can be used to enhance spam filtering processes, such as CSV files containing spam 
IP addresses, their geolocations, and country-specific statistics [11]. 

This research uses a dataset of malware and good ware samples from Malware Bazaar to propose a 
dynamic malware analysis and classification method. A dataset was created, features are extracted and 
scored, six machine learning models are assessed, malware families are classified using Virus Total APIs, 
and twenty-three distinct types of malware APIs are categorized as part of the five-step process. The 
Random Forest model yielded the highest results, with high F1-score, AUC, precision, and accuracy. The 
most serious malware was determined to be ransomware and trojans, and important Windows APIs and 
system operations for malware detection were noted. In addition to adding additional metrics like AUC 
and specificity, the strategy raised F1-scores [12] 

Traditional static analysis is challenged by malware developers who are always changing their 
techniques to avoid detection. Dynamic analysis and machine learning together have shown promising 
results, especially when it comes to detecting Zero-Day malware. The CNN-LSTM algorithm employed in 
this study has demonstrated potential in mitigating changing cybersecurity risks. With a high accuracy of 
96% in identifying malicious activity, the built system—which consists of a log parser, API monitoring, 
and extension checker—highlights the importance of behavioral analysis and deep learning in 
cybersecurity[13]. 

Programs that required conventional identification techniques to complex threats operating at the 
kernel level, which are more difficult to detect, malware detection has advanced. Traditional techniques 
utilized CNNs for feature classification or plain text feature extraction alongside machine learning for 
classification. Modern malware challenges these techniques by frequently displaying familial traits and 
kernel-level execution. Deep learning is used in many modern solutions. For example, Kim et al. used 
multi-modal deep learning for Android malware, Droid Detector integrated static and dynamic analysis, 
and Huang et al. utilized CNNs and sandbox analysis to visualize malware.[14] 

With the continuous growth of large data and computational power, deep learning techniques are 
becoming increasingly common in various fields. In this situation, the researcher suggests employing 
models based on Recurrent Neural Networks (RNN) for scoring, without the need for pre-training. The 
performance evaluation was conducted by utilizing the NSL-KDD dataset [Hassan] and the SAP ART 
training and test set. The evaluation involves comparing various machine learning approaches, such as J48, 
Support Vector Machine, ANN, Random Forest, and other methods recommended by previous 
researchers, for the detection of network interference in both binary and multi-class scenarios. Table 1 
illustrates the overall literature study of previous techniques. 

Table 1. Literature Study 

Reference Survey Outline Domain 
Deep Learning 

Techniques 

- - - 
 

RBM 
 

RNN 
 

CNN 

Huang et al. [15] 
Software visualization 

combined with CNNs for 
dynamic malware analysis. 

Malware 
Detection 

No No Yes 

Linh V, Hùng N 
et al. [16] 

Shallow learning, deep learning, 
and machine learning and deep 
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 learning approaches employed 
in IDS and related studies have 

parallels and 
Differences. 

Cyber Security Yes No Yes 

 
Patil R, Deng W 

et al. [17] 

Despite prior efforts and 
experiences, shallow machine 

learning approaches have 
prevented IDS auto encoder 

(AE) 
Deployment. 

 
Intrusion 

detection System 

 
Yes 

 
No 

 
No 

 
Moutafis I, 

Andreatos A et 
al. [11] 

 

Deep learning methodologies in 
IDS are explained in twelve 

ways, including feature 
extraction and classification for 

deletion and classification. 

 
Intrusion 

detection System 

 
 

Yes 

 
 

No 

 
 

Yes 

 
Chowdhury et 

al,[18] 

Performance and assessment of 
Machine learning techniques for 
IDS classification are examined. 

Intrusion 
detection System 

 
Yes 

 
Yes 

 
No 

 
 

M M, Venkatesh, 
R. V et al.[10] 

Development of efficient threat 
detection and monitoring 

systems. 

 
Intrusion 

detection System 

 
 

Yes 

 
 

Yes 

 
 

No 

Hemalatha et 
al.[19] 

Malware classification using 
DenseNet and data visualization 
with a reweighted class balance 

loss function. 

Malware 
Classification 

Yes No Yes 

Sihag V, Vardhan 
M [7] 

Correlation of static and 
dynamic features using deep 

learning for Android malware 
analysis. 

Malware 
Detection and 
Classification 

No No Yes 

 
3. Data Set 

In this research, leveraging an up-to-date dataset is critical. It is useful for fairly evaluating new 
methods and determining how well they function in real-world settings. In this experiment, we used the 
CIC-MalMem-2022 dataset. This collection contains examples of both obfuscated and non-obfuscated 
malware. To make the study more realistic, it contains popular malware kinds such as spyware, 
ransomware, and trojans. 

We ran two experiments, which include binary classification, which distinguishes between benign 
and malware samples, and multiclass classification, which detects specific malware kinds. Each sample in 
the dataset is a memory dump-generated vector of numbers. The key features include Malfind, Ldrmodule, 
Handles, Procedure View, and Apihooks, for a total of fifty-five features. The dataset contains 58,596 
memory dump samples. We divided the data into two sets: training and testing, with training comprising 
80% and testing for 20%. Table. 2 illustrates the distribution of Benign and Malware classes and division of 
training and Testing Dataset. 
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Table 2. Dataset Distribution for Classification 

Class Train Test Total 

Benign 23438 5860 29298 

Spyware 8016 2004 10020 

Ransomware 7833 1958 9791 

Trojan 7589 1898 9487 

3.1. Converting Malware Binary into Gray Scale Images 
To convert the binary files into gray scale images we make use of the hexadecimal representation of 

the file's binary content and convert those files into PNG images. For example, the resulting image after 
converting the 0ACDbR5M3ZhBJajygTuf.bytes binary file into a PNG. Figure 1 outlines the steps how we 
will convert malware binary into gray scale images. 

 
Figure 1. Flowchart to represent conversion of csv dataset into gray scale image. 

3.2. Images Dataset 
In our study, we work with a specially designed image dataset for Malware Detection. The dataset 

has two directories, one each for training our model and validation sets to validate its performance. Each 
of the sets comprises 31 classes. As shown in Fig 3.2 an image which belongs to Benign class which has a 
simple gray scale image with no other noticeable changes in it. 

Training set: This directory has been used to train the machine learning model. It contains images 
labeled with the correct class, letting the model learn and make estimates based on these examples. 

Validation Set: Once our model has trained, we need to see how well it performs. This is where the 
validation set comes in. It contains its own set of labeled images, but different from the images in the 
training set. Using this separate set, we can ensure that we evaluate the model's ability to detect malware 
on new, unseen data, which is critical to evaluating its effectiveness. 

A closer look at the dataset as presented in Figure 2, our dataset contains images from various 
categories, including the “Benign” class. An example of an image from this class would be a simple 
grayscale image that does not have any crucial features or patterns. This simplicity is typical of benign 
images, which typically do not show the complex characteristics of malware images. 

The two categories used to categorize the dataset are benign and malware. Malware frequently 
changes file’s usual binary structure by using methods like encryption and obfuscation, which 
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purposefully makes code harder to understand. These techniques result in a sudden and unpredictable 
change in the file's byte sequence. 

These byte sequences have visible characteristics like distinct distortions, complicated structures, and 
sharp lines when converted into images. Because they provide key details regarding the coding methods 
and malicious behavior, these visual irregularities are essential for the identification and analysis of 
malware. Researchers and detection systems can examine the structure and characteristics of malware 
more efficiently according to this visual representation. As Figure 3 illustrates an image belongs to malware 
class in which pattern we can see distortion which will help us to identify malicious class images. 

 
Figure 2. An Image belongs to Benign Class 

 

 
Figure 3. An Image belongs to Malware Class 

 
4. Proposed Methodology for Malware Detection in Wireless Networks 

In this study, we create a malware detection system by integrating VGG-16 with the Light Gradient 
Boosting Machine (LGBM) for feature extraction from an image-based dataset. To begin, the dataset 
includes labeled images of both benign and malicious software samples obtained from trusted repositories 
to ensure diversity and completeness. Data preprocessing involves converting malware binaries into 
standardized grayscale images and scaling them to meet VGG-16 input specifications, ensuring consistency 
across all samples. Normalizing pixel values as part of feature transformation assures consistency and 
improves data quality. 

We have extracted rich, high-level features from processed images using the VGG-16 convolutional 
neural network, which has been pre-trained on huge image datasets. These features detect detailed patterns 
and features that distinguish malicious from benign software. The retrieved feature vectors are then fed 
into an LGBM model, which was chosen for its efficiency and superior performance in classification tasks. 
Model selection entails comparing several LGBM configurations to determine the best setting. The labeled 
dataset has been used to train the model, and the LGBM learns to differentiate between benign and 
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malicious features using iterative optimization. The model's efficacy is determined using metrics such as 
accuracy, precision, recall, and the F1-score. Figure 4 presents the Architecture of our CNN model will 
detect and classify benign and malware class images. 

 
Figure 4. Proposed Architecture of CNN for Malware Detection [20] 

Several machine learning models have been built and evaluated on the dataset using several 
algorithms. Common classifiers such as decision trees, random forests, have been implemented, with a 
particular emphasis on the recurrent neural network (RNN) model for deep learning. The RNN is designed 
to process sequential data, most likely memory dumps connected with malware, and make predictions 
based on the results of the previous time step. Model performance has been assessed using common 
evaluation parameters such as accuracy, precision, recall, and F1-score. Figure 5 demonstrates the process 
of Malware Detection. 

 

 
Figure 5. Proposed Model of Malware Detection 

4.1. VGG16 
VGG-16 is a deep convolutional neural network (CNN) designed for image classification, developed 

by the Visual Geometry Group at the University of Oxford. VGG16 is a type of CNN (Convolutional Neural 
Network), which is one of the best computer vision models today. The creators of this model evaluated the 
networks and increased the depth using an architecture with very small (3 × 3) convolutional filters, which 
showed a significant improvement over prior art configuration. VGG16 is an object detection and 
classification algorithm that can classify 1000 images from 1000 different categories with 92.7% accuracy. 
It is one of the popular image classification algorithms and is easy to use in transfer learning. 
4.1.1 Key Features of VGG 16 

A VGG network is defined by its depth, which is comprised of 16 layers (VGG16), including 
convolutional, pooling, and fully connected layers. To maintain spatial resolution, convolutional layers use 
modest 3x3 filters with a step of one and padding, whereas maximum pooling with 2x2 filters decreases 
map feature samples. Following the convolution and pooling layers, the network is flattened and 
connected to fully connected layers, culminating in a softmax layer for classification. Its regular 
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architecture, which consists of repeated convolutional and pooling layers, improves efficiency and ease of 
usage. 
4.1.2. VGG16 Architecture 

The architecture has 16 layers, including 13 convolutional layers and three fully connected layers. It 
has a simple design with blocks of convolutional layers followed by max-pooling layers for down 
sampling. The network begins with two convolutional layers each with 64 filters, followed by maximum 
pooling, and then slowly increases the number of filters to 128, 256, and 512 in subsequent layers. Following 
feature extraction, the output is flattened, and three fully connected layers are used, giving 1000 output 
classes. An Architecture of VGG 16 for Features Extraction in which we give a malware class image 
(224*224*3) as an input.  
4.2. Pretrained CNN Models for features extraction and images classification 

We have used a convolutional neural network (CNN) VGG16, to extract features from images. These 
features are typically the outputs of one of the final layers before the classification layer. Once you have 
these features, we have used them as input to the LGBM Classifier. By combining LGBM with a feature 
extraction method VGG16, we have leveraged its strengths in handling structured data while working with 
image datasets. LightGBM may be efficiently combined with convolutional neural networks (CNNs), such 
as VGG16, for image classification. VGG16 is well-known for its ability to extract detailed representations 
of features from images using deep architecture and convolutional layers. High-level features are retrieved 
from the images using VGG16 before being fed into the LightGBM model. LightGBM's efficient tree 
algorithms analyze these feature vectors for classification tasks. This hybrid technique enhances 
classification accuracy while maximizing LightGBM's efficiency in large-scale data processing. 

 
5. Implementation and Result Analysis 

We achieved significant results by successfully implementing various machine learning techniques, 
such as Support Vector Machine (SVM), Random Forest, and LGBM Classifier, for both binary and 
multiclass classification tasks with the CSV dataset, as well as using the VGG-16 model for feature 
extraction from our image dataset. For the picture dataset, we used the LGBM Classifier to perform 
classification, allowing us to accurately group the photos into distinct classes. 

The classification process for the CSV dataset was thorough, going beyond the usual benign and 
malicious categories. The classifiers not only accurately distinguished between benign and malware 
samples, but they also classified the malware into specific sub-classes. This vast classification provides a 
better understanding of the many forms of malware present and improves the system's capacity to detect 
and respond to different malware threats more precisely. Overall, the combination of these methodologies 
has proved the ability to manage and analyze large datasets, resulting in more precise and accurate 
malware identification and categorization. 
5.1. Number of Occurrences of each Malware Class 

There are categorized the malware into main classes 1) Benign has occurrence 29298, 2) Spyware has 
occurrence 10020, 3) Ransomware has occurrence 9791 and 4) Trojan has occurrence 9487 as shown in 
Figure 6.  

Principal Component Analysis (PCA) is a dimension reduction approach for projecting high-
dimensional data into a lower-dimensional space while optimizing for variance conservation. In a scatter 
plot, the x- and y-axes represent the first two principal components, which represent the data set's 
directions of highest variance. The data points are color-coded, with blue dots indicating benign samples 
and red dots signifying malware samples. The overlap and clustering of both benign and malware samples 
in the plot demonstrate that the first two main components do not successfully discriminate between the 
two classes in this dataset. 

The graph demonstrates the use of t-Distributed Stochastic Neighbor Embedding (t-SNE), a 
nonlinear dimensionality reduction method, to show high-dimensional data in two dimensions. The x and 
y axes in this t-SNE plot do not represent features, but rather modified data coordinates for viewing 
reasons. Data points are color-coded, with blue dots indicating benign samples and red dots indicating 
malware samples. The plot shows greater levels of clustering between benign and malware samples than 
the principal component analysis (PCA) plot, indicating that t-SNE successfully grabbed some of the 
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fundamental patterns in the data that distinguish these sample types. Although this improvement, some 
intersection throughout clusters remains. 

 
Figure 6. Number of occurrences of each malware class 

Linear Discriminant Analysis (LDA) is a supervised reducing the dimensional method for 
classification tasks. It creates a linear combination of features that maximizes the distinction of various 
classes. The LDA in Figure depicts this separation along its axes, which reflect the linear discriminants the 
directions that maximize between-class variance while reducing within-class variability. 

The graph shows blue and red points representing benign and malware samples, respectively. The 
graph clearly differentiates between the two classes, showing that LDA has selected the projection that best 
separates benign and malware samples in the dataset. This effective separation highlights the value of LDA 
for improving class discrimination. Figure 7 reveals the visualization of class distribution of Benign and 
Malware. 

 

Figure 7. Visualization of Class Separation Using PCA, t-SNE, and LDA for Malware Detection 
It not only classifies the number of occurrences of each malware class, but it also categorizes Malware 

into subclasses and tells us whether the malware is Trojan, spyware, or ransomware.  
It not only monitors the prevalence of each malware class, but it also goes deeper, categorizing the 

malware into more specific subclasses. Furthermore, it provides precise information about the type of 
malware, indicating whether it is Trojan, spyware, or ransomware, and identifying various kinds within these 
categories. This comprehensive approach improves comprehension of the malware's nature and 
functionality, allowing for more targeted and effective responses to varied threats. 

After implementing Machine Learning Classifiers and LGBM Classifier, we obtained the anticipated 
results with a high accuracy of 0.9997 and a high recall rate. After implementing our classifiers, we obtained 
high values for Balanced Accuracy and Mathews Correlation Coefficient as shown in Figure 8. 

The left graph shows the loss values for training and testing datasets over ten epochs. The training 
loss, represented by the blue line, decreases steadily across epochs, indicating good model training and 
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increasing error reduction on the training dataset. In contrast, the test loss, represented by the orange line, 
largely follows the trend of the training loss, but increases significantly in epoch 6. This spike may indicate 
over fitting or the effect of data noise during this period, which is followed by a significant reduction in 
loss. 

 

Figure 8. Model’s Training and Testing Accuracy, Loss and AUC scores 
. The Middle graph shows the model's accuracy on both the training and test datasets within epochs. 

The blue line indicates training accuracy, which consistently improves during the training process, telling 
improved performance on the training data. The testing accuracy, represented by the orange line, increases 
overall but decreases at epoch 6, which connects to the testing loss peak. Following this fall, testing 
accuracy quickly improves, exceeding training accuracy. This random pattern could indicate a variation 
problem or that the test set is easier than the training set. 

The graph illustrates the area under the curve (AUC) scores for both the training and test datasets 
across multiple epochs. The training AUC, shown in the blue line, keeps rising, showing that the model's 
ability to discriminate between classes is gradually improving. In contrast, the tested AUC, displayed by 
the orange line, shows a rising trend, although with a fluctuating fall in epoch 6 before a strong climb. This 
tendency corresponds to the fluctuations observed in the accuracy and loss measurements. Figure 9 shows 
the graph of Model training and Testing Accuracy. 

 

Figure 9. Model’s Training and Testing Accuracy graph 
5.2. Performance Evaluation Metrics 

To further investigate the false positive and false negative cases, we created a confusion matrix 
analysis to illustrate my method's classification performance on both datasets. The accuracy metric is the 
main performance indicator used for evaluation in this model. True positive (TP) refers to instances that 
are accurately classified as positive, whereas false negative (FN) refers to situations that are overlooked as 
positive, suggesting abnormalities. False positive (FP) refers to cases that are incorrectly detected as 
positive, whereas true negative (TN) implies instances that are correctly identified as negative. A 
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classification model's accuracy is the ratio of correctly predicted instances (including true positives and 
true negatives) to the total number of instances. as shown in equation 1.       

Accuracy= 𝑻𝑷#𝑻𝑵
𝑻𝑷#𝑭𝑷#𝑻𝑵#𝑭𝑵

                         (1) 

Precision= 𝑻𝑷
𝑻𝑷#𝑭𝑷

                        (2) 

Recall= 𝑻𝑷
𝑻𝑷#𝑭𝑵

                         (3) 

F1 Score= 𝟐 ×  Precision ∗ Recall 
 Precision # Recall 

                                          (4) 

Precision assesses the accuracy of positive predictions by indicating the fraction of true 
positives among all predicted positives. As shown in equation 2. Recall (also known as sensitivity 
or true positive rate) measures a model's ability to correctly identify cases that are positive. It is 
the ratio of true positives to the sum of true positives plus false negatives. As shown in equation 
3. F1 Score is a metric that balances precision and recall, providing a single way to evaluate a 
model's performance while compensating for both false positives and false negatives. It is the 
harmonic mean of precision and recall. As shown in equation 4. 

 
Figure 10. Confusion Matrix for Binary Classification 

In Figure 10, a confusion matrix is for a binary classification problem with two classes: Benign and 
Malware. 

Table 4. Benign and malware distribution in binary classification 

Parameter Predicted: Benign Predicted: Malware 

Actual: Benign 8957 2 

Actual: Malware 3 8617 

There were 8617 instances of true malware that were correctly identified as malware. Furthermore, 
8957 benign occurrences were correctly identified as benign and shown in Table 4. 

However, two benign cases were wrongly classified as malware, causing false alarms. Furthermore, 
three malware cases were wrongly classified as benign, resulting in missed detections. In Figure 11 a 
confusion matrix represents a multiclass classification problem with four classes: Benign, Ransomware, 
Spyware, and Trojan. 
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Figure 11. Confusion Matrix for Multiclass Classification 

Table 5. A breakdown of the confusion matrix 

Parameters 
Predicted: 

Benign 
Predicted: 

Ransomware 
Predicted: 
Spyware 

Predicted: 
Trojan 

Actual: Benign 5967 0 6 0 
Actual: Ransomware 1 1233      302 356 

Actual: Spyware 18 421 1160 359 
Actual: Trojan 1 629 251 1016 

In the Benign class, 5967 occurrences were correctly classified as benign, with just 6 misclassified as 
spyware. In the Ransomware category, 1233 occurrences were correctly classified, but one instance was 
wrongly classified as benign, 302 as spyware, and 356 as a Trojan. The Spyware class has 1160 instances 
successfully detected, though 18 were misclassified as benign, 421 as ransomware, and 359 as Trojans. In 
the Trojan category, 1016 instances were precisely classified, however there were some inaccuracies, with 
one instance classified as benign, 629 as ransomware, and 251 as spyware shown in Table 5. 

Key findings from the analysis show that the benign class is primarily correctly identified, with a low 
rate of misclassification. This indicates the model is quite good at identifying benign from malicious cases. 
Certain varieties of malware, however, face additional hurdles. For example, ransomware can occasionally 
be confused with spyware or Trojan horses, despite the reality that a large percentage of ransomware cases 
are correctly recognized.  

In the case of spyware, the model has a high percentage of proper identification; however, there is a 
significant issue with misclassification, with some spyware occurrences being wrongly classified as 
ransomware or Trojan horse. Similarly, while the Trojan class illustrates a great number of valid 
classifications, it suffers from a substantial amount of misclassification, a few numbers of Trojans are 
mistakenly classified as ransomware or spyware. These results present classification model has possibilities 
for additional modification to increase accuracy across all malware categories. 

In Figure 12 confusion matrix represents a multiclass classification scenario with 31 separate classes, 
with each cell representing how many instances of a specific class were assigned to their predicted classes. 
The matrix mainly displays correct classifications along the diagonal, indicating effective performance. For 
example, Class 0 had 74 correct predictions, Class 1 had 43, and Class 2 had 54, indicating high overall 
performance. However, there were many misclassifications: class 1 instances were misclassified as classes 
2, 3, and 30; Class 8 had 8 cases misclassified as class 7; Class 15 had one case misclassified as class 8; and 
class 29 had one instance misclassified as class 7. These errors indicate that the model may have difficulty 
separating the different classes.  
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Some classes, such as class 18 and class 20, received fewer correct classifications, indicating that they 
may be difficult to correctly identify. In addition, class 24 was misclassified into classes 0 and 29. Overall, 
the model is quite accurate, with few misclassifications. To calculate precision and other metrics such as 
precision, recall, and F1 score, add the correct classifications along the diagonal and divide by the total 
number of instances. 

 

Figure 12. Confusion matrix for the classification of images dataset using the VGG-16 model with 
LightGBM (LGBM). 

In this research, both CSV and images datasets were used to assess the efficiency of several 
classification approaches for dynamic malware detection. Traditional machine learning models were used 
to categorize benign and malicious instances in the CSV dataset, and the findings of the confusion matrix 
show that they performed well. On the other hand, the images dataset required a more complex technique 
due to the need for feature extraction, which was successfully handled by the VGG-16 model. The collected 
features were then classified with LightGBM (LGBM), which resulted in excellent precision in identifying 
distinct malware classifications. While the model performed well generally, several misclassifications were 
detected, notably amongst visually similar malware groups. These findings imply that, while the 
combination of deep learning and gradient boosting approaches is effective, more refining could improve 
accuracy, particularly when discriminating across closely related malware types. This holistic approach 
emphasizes the importance of combining classic and modern cybersecurity technologies for successful 
threat identification. 

 
7. Conclusion and Future Work 

This research successfully constructed a dynamic malware detection system by combining CSV and 
images information and employing deep learning techniques to improve malware detection accuracy and 
robustness. The approach took advantage of the benefits of traditional machine learning models for CSV 
data, employing the VGG-16 model for feature extraction from images, followed by classification with 
LightGBM (LGBM). The results illustrate that this hybrid methodology has enormous potential, with near-
perfect performance in binary classification tasks and strong results in multiclass classifications. The 
system's ability to properly identify several types of malwares while minimizing false positives and false 
negatives demonstrates the value of combining several data sources with advanced feature extraction 
techniques. This research emphasizes the importance of dynamic analysis and deep learning in improving 
cybersecurity processes, providing a more dependable and efficient solution for detecting and facing 
sophisticated and developing malware attacks. Future research in dynamic malware detection using deep 
learning algorithms will concentrate on practical improvements. Integrating other data sources, such as 
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network activity and user behavior, may provide a deeper understanding of malware operations, resulting 
in increased detection capabilities. Furthermore, efforts will be made to increase the interpretability and 
transparency of these models, allowing them to be effectively used in real-life situations where trust and 
understanding are critical. These developments will help to create more flexible, resilient, and efficient 
malware detection systems, more suitable to the difficulties of an ever-changing cybersecurity landscape. 
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