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___________________________________________________________________________________________________________ 
Abstract: We study the effects of tidal force and the behavior of the geodesic deviation vector in the 
background of a modified Schwarzschild black hole. In this analysis, we obtain the curvature tensor on 
a tetrad basis to evaluate the radial and angular tidal force on a radially free-falling particle towards a 
black hole. The radial tidal forces increase with an increase in the Λ (cosmological constant) value but 
decrease when the value of r increases. The variation of angular tidal force for Lambda shows increasing 
behavior and gradually decreases to a smooth curve when increasing the radius. We solve the geodesic 
deviation equation numerically and analyze how the geodesic separation vector varies with radial 
coordinates for two neighboring geodesics under suitable initial conditions. All the obtained results are 
tested for a modified Schwarzschild black hole by constraining the value of the acceleration parameter 
and the cosmological constant. The results are also compared with a simple Schwarzschild black hole. 
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___________________________________________________________________________________________________________ 
1. Introduction	

In general relativity, black holes (BHs) are generated when stars with masses similar to or greater than the 
sun’s mass collide under their gravitational field. Einstein’s theory of relativity characterizes the BH as an area 
of space with many objects that can escape the gravitational field. The BH is the most significant gravitationally 
massive object identified in active galaxies. 

Black holes are regarded as outdoor research facilities where we may test our knowledge of nature. 
Although BHs initially developed theoretically, subsequent advancements in the subject continue to improve 
their ability to observe scientific reality rather than fantasy. Studying BHs’ physical features becomes one of 
the most important first steps in this direction since they give us the natural framework to evaluate and 
improve the existing scientific understanding of gravity. More than a century has passed since BHs were 
proposed as the theoretical answer to Einstein’s field equations. General relativity (GR) is widely regarded as 
the most comprehensive theory of gravity [1]. On the experimental side, all findings on the cosmic scale point 
to the presence of dark matter and dark energy [2]-[6], suggesting that GR is flawed at this size. 

After that, gravitational experiments on submillimeter scales [7, 8], in the solar system [9]-[15], in binary-
pulsar systems [16]-[20], and on celestial and cosmic scales [21]-[24] have shown that Einstein’s theory is 
incredibly accurate. The initial identification of gravitational waves provided an entirely novel tool for testing 
gravity in high-gravity conditions. The currently detected gravitational waves, as projected by GR, can only be 
formed by intense gravitational forces and barely interact with matter, carrying information concerning the 
characteristics of gravity in strong fields’ domain of expertise. The curvature is important in GR for 
understanding the geometric impact of curved spacetime. The study of geodesics and their deformations in 
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the context of a specific spacetime is a beautiful approach to the Pioneer spacecraft [29]. However, at great 
distances, the force law that Rindler’s acceleration term produces significantly impacts gravity. Furthermore, 
Turyshev et al. [30] have researched an alternate explanation for the Pioneer anomaly to Grumiller’s changed 
gravity: the satellites’ thermal heat loss. However, RMSBH may theoretically explain changes in planetary 
orbits during perihelion, gravitational redshift, and spiral galaxy rotation curves. Ref [31] gives a quantum 
gravity theory’s Rindler acceleration, which may be used to clarify why the nearby galaxies’ curves are 
spinning. 

We investigated the new Rindler acceleration term as a substitute for dark matter in galaxies. The HI nearby 
Galaxy Survey confirms that in the end, giving a Rindler acceleration value of around a ≈ 3 × 10−99cm/s2 [32]-
[35]. Refs. [36, 37] provide research on tunnelling entropy and spectroscopy of RMSBH. Sakalli et al. have 
conducted research on light deflection and Hawking radiation for RMSBH recently [38]. 

Extreme gravitational fields around BHs can bend objects, causing phenomena like gravitational lensing 
and the bending of light trajectories due to spacetime’s curvature. Tidal forces may amplify these effects, 
making gravitational lensing more noticeable. Investigating tidal events near BHs provides important 
information on the characteristics of these mysterious objects, how they affect the environment, and how 
matter accretes onto them. Tidal disruption and other tidal effect observations advance our knowledge of BH 
demography, feeding processes, and galaxy development.  

Tidal phenomena are prominent in the cosmos and essential to astronomical circumstances like tidal 
disruption incidents. The gravitational field causes a body’s shape to be warped, and this fluctuation in 
gravitational attraction between two locations is what causes the tidal force. In Schwarzschild spacetime, a 
body falling close to the event horizon suffers radial stretching and rotational compression [39]-[41]. It is shown 
that the location of the body and its charge-to-mass ratio is the tidal effect in Reissner-Nordstr¨om spacetime 
throughout this paper, we examine the tidal forces and their impact on a dark matter surrounded cosmological 
constant. New studies on the timelike and null geodesics around this BH spacetime have shown how the 
presence of dark matter around the cosmological constant changes the structure of the related geodesics. We 
chose to investigate the tidal forces and the development of vectors of geodesic deviation within this BH metric 
in order to identify these distinctive features. To investigate the geodesic deviation vector behaviour and search 
for potential impacts of the many factors involved, we created generalized equations for geodesic deviation 
and resolved them. This is the manner in which the article is structured: In Section 2, we examine the RMSBH 
and the geodesic motion of this BH with the effects of Rindler acceleration and the cosmological constant. In 
Section 3, we explored in detail the geodesic deviation equations as well as tidal forces for neutral. 

All authors have same contribution. 
 

2. Radial Geodesics in Rindler Modified Schwarzschild Black Hole 
This section will cover Rindler’s modified Schwarzschild black hole’s geometry. Grumiller [58] developed 

an effective model, often referred to as RMSBH geometry, for the gravity of a central object at an enormous 
scale beyond the galaxy. Test particle geodesics exhibit an abnormal acceleration due to the Rindler term’s 
existence in the RMSBH spacetime.  The action of RMSBH is given as 

 

Where a represents the Rindler acceleration [59], which is really missing in Einstein’s GR, g = det(gµν) is 
metric tensor, scalar field Φ , Λ indicates the cosmological constant, and Ricci scalar . Finally, the static 
spherically symmetric RMSBH spacetime may be shown by considering the action, Eq. (1), and addressing the 
field equations with a cosmological constant 

 

With 

R
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  Where M representing the BH mass, the Schwarzschild solution may be readily recovered when 
a = Λ = 0. Furthermore, Eq. (2) simplifies to the two-dimensional Rindler metric [60] if Λ = M = 0, above (Eq.3). 
Based on [61], the value of Λ is estimated to be 10−123. For convenience, one may thus set it Λ = 0, but, to have a 
more generic answer, we shall not do so in the current research. The Rindler acceleration is significant because, 
when a is treated as a positive parameter, it implies a continuous acceleration towards the source and may be 
used to determine the form of the galactic rotation curve. In [58], the author also says that the”Rindler 
acceleration” might explain the”Pioneer anomaly,” which is an apparent radial constant acceleration of order 
a ≃ 10−11m/s2 that is linked to the paths of the Pioneer spacecraft. [62]. This is because the cosmological constant 
term Λr2 and the Rindler term 2ar become more important as distances get larger, up to the Hubble length, and 
get close to unity for a ≃ 10−10 − 10−11m/s2. According to [63], the Pioneer acceleration and the modified 
Newtonian dynamics characteristic acceleration have the same value. It is important to note that using this 
gravity model that accounts for effective dilation scalar fields, the Rindler acceleration a is system-
independent.  

We shall now talk about the RMSBH’s event horizon. If G(r) = 0, then a BH’s event horizon radius r+ may 
be computed. Curiously, the calculation shows that just one of the three possible roots of r turns into the actual 
positive root, giving us the physical radius of the RMSBH horizon. The actual beneficial root emerges as 

 

In which 

 

It is seen that, as predicted, we get r+ = 2M in the limits Λ → 0 and a → 0.  
The explicit analysis of radial geodesic motion in RMSBH is shown in Eq. (2), here ds = dτ is used in Eq.(2) 

 

Where prime represents the differentiation w. r. t. the proper time . To calculate the radial geodesic motion 

of test particles in RMSBH. We substitute  in Eq. (1) and consider the angular motion  

 
then we get 

 

 
 

t
ds dt=
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The energy of the test particle   is preserved and converted. Suppose that the test particle is at rest in the 
radial position r = b, we can estimate its energy  via Eq. (3) which implies that the test particle radial acceleration 
is 

. 

 
The Newtonian radial acceleration AR gives us Rindler-modified SBH ”exerts” of massive test bodies on a 

neutral free fall. The Newtonian radial acceleration depends on the M, a and Λ parameters, which increase 
with these values. It is consequently critical to observe that the test particle rests on a neutral body at r = b > r+. 
The relativistic effect in Eq. (8) is expressed purely. It is crucial to note that the test particle would bounce back 
at r = b > r+ from rest on a neutral body Rstop. The radius Rstop can readily to determined as a root of  

 

 
The  behaves like other BHs. The geodesic equation of motion is a key equation in general relativity 

that explains particle motion in curved spacetime. It is based on the extremal action principle, which states that 
a particle’s precise path between two locations in spacetime is the path that extremes an action. The 
mathematical formula for the geodesic equations in four velocities is   

stopR
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To simplify and arrive at the outcome, we take into consideration geodesics in the equatorial plane as 

, and 

Then,	we	obtain	respectively,	where	 and	 are	constants	of	integration.	The	conserved	quantities	of	

energy	and	momentum	of	test	particle	by	using	the	killing	vectors	 and	 	are	
given	by                                         

																														
  

 

Comparing the above relations with Eqs. (14), we can fix the constants of integration as ,  

in the term of conserved quantities of E and L. Finally, by considering  in Eqs. (1) and using Eqs. 
(14), one can obtain 

 
,																																

Where the - sign shows the inward and + outward motion of the particle, as well as a time-like (1) and null-
like (0). 

 

 

3. Tidal force and geodesic deviation in Modified Schwarzschild Black Hole 
The gravitational attraction on distinct regions of an object gets increasingly divergent as it approaches a 

BH. The side closest to the BH has a greater gravitational pull than the side farther away. This difference in 
gravitational force produces tidal force, which either stretches or compresses the item. Tidal forces cause the 
separation or spreading apart of initially parallel geodesics (i.e., the paths taken by freely falling objects). In 
the presence of a BH, tidal forces can cause neighboring geodesics to diverge or converge, changing their 
relative positions over time. The general equation of geodesic deviation [65, 66] is following: 

 

.																																																																	

The separation vector may be expressed as having a fixed value [64]. The non-vanishing components 
of curvature tensor in the context of tetrad basis: 

 
                    

Tidal forces in the neutral body therefore can be obtained as 
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Where . 
The variation of radial tidal force with the  parameter is shown in Fig. 1. The radial tidal forces increase 

with the value of  but show a decreasing curve to smooth the path along a radial direction. From Fig. 2, the 
variation of angular tidal force concerning  (cosmological constant) shows increasing behaviour and 

gradually decreases to a smooth curve when expanding the radius. Fig. 3 indicates that the angular tidal force 
sharply decreases with an increase in the value of , and the tidal forces compress in an angular direction until 

. 

 

 

Where is the Riemann curvature tensor, separation four-vectors and unit vector  in geodesic. 
We present a tetrad basis for characterizing a neutral body, which is given as 

 
Furthermore, solve the above Eqs. (19) and (20) in the context of radial coordinate  by using the expression  
 We assume the test particle moves in a neutral, free fall towards the RMSBH. So, we get 

 
which implies that the Eqs.(23)    

                                     
and (24) is 

 

The analytical solution to the above equation could not exist, so we will apply numerical methods to solve 
differential equations. Numerical methods provide a practical and versatile approach to solving differential 
equations where exact solutions are challenging or impossible.  For this process, we chose two conditions. The 
first initial condition of IC-I is and second one condition is IC-II [67]-[70] is 

 
 

Figures 1, 2, and 3 show the radial component of the geodesic deviation vector of RMSBH with ICI as a 

function of   for different values of   and . The value of  decreases with increasing the value of 

 (cosmological constant) but increases with increasing the value of  (rindler acceleration). The geodesic 
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deviation path is infinitesimally closer to each other when the radius and b are increased. As in Figures 7, 8, 
and 9, we plot the angular component of the geodesic deviation vector of RMSBH with ICII as a function of r 

for different values of  and . The value of  increases with increasing the value and 

monotonically decreases when increasing the value of $\Lambda$ as well as . The geodesic deviation paths 
are infinitesimally closer as the radius increases, and the angular geodesic deviation vector compresses in the 
angular direction in Fig. 9.  
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Figure 1 & 2. :   Verses  for  and  to 15. &   verses  for  

and  to 20. 
Figures 4 and 5 (the dial component of geodesic deviation) show converse behavior compared to Figures 7 

and 8 (the angular component of geodesic deviation). 
 
4. Conclusions 

         We explore the geodesic deviation and tidal force impacts of the RMSBH. To assess the radial and 
angular tidal forces influencing a particle falling radially toward a BH, we construct the curvature tensor within 
the context of a tetrad basis.  The variation in Newtonian radial acceleration for a test particle moving in 
RMSBH along the radial direction with and  parameters. The cosmological constant and rindler 
parameter $a$ enhance the absolute value of the Newtonian radial acceleration. 

The variation of radial tidal force with the  parameter, The radial tidal forces increase with the value of 
, but show a decreasing curve to smooth the path along a radial direction. The variation of angular tidal 

force with respect to  (cosmological constant) shows increasing behaviour and gradually decreases to a 
smooth curve when increasing the radius. The angular tidal force sharply decreases with an increase in the 
value of , and also the tidal forces compress in angular direction until . 

For various values of , and , the radial component of the geodesic deviation vector of RMSBH with 

ICI as a function of . When  (the cosmological constant) is increased, the value of  falls, while  

(rindler acceleration) grows. When  and radius are increased, the geodesic deviation route becomes 
infinitesimally closer to one another. 
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For various values of , and , the angular component of the geodesic deviation vector of RMSBH with 

ICII as a function of r. As the value of  increases, so does the value of , which decreases monotonically 

as both and  grow. As the radius increases, the geodesic deviation paths become infinitesimally closer to 
one another, and the angular geodesic deviation vector compresses in the direction of angular deviation. 
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