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________________________________________________________________________________________________________ 
Abstract: Breast cancer is one of the leading causes of premature death for women worldwide; 
therefore, early and accurate detection is critical to improving patient outcomes.This study analyzes 
the effectiveness of multiple neural network optimization algorithms in the classification of breast 
cancer using clinical data. To assess optimization tools like Adam, Nadam, Adagrad and RMSprop 
with neural network ,we used a number of efficiency measures,such as accuracy, precision, recall, 
F1-score, specficity, and ROC-AUC. Our trials, executed at various folds, highlight the positive 
aspects and drawbacks of each optimizer in relation ti the diagnosis of breast cancer. The results 
show that Adam Consistently achieves higher balanced accuracy and accuracy than other 
optimizers. Adam specifically attained a balanced accuracy of 94.12% together with a high accuracy 
of 94.9%. This research mapped using SDG-3. Our research sheds light on the most effective 
optimization techniques for creating credible breast cancer diagnosis models. 
 
Keywords: Breast Cancer Classification; Machine Learning Ensemble Techniques; Random Forest; 
Boosting Algorithm; Medical Diagnostics AI. 

________________________________________________________________________________________________________ 
1. Introduction 

A particular kind of cancer that starts in the breast cells is called breast cancer. A lump, a form 
modification, or fluid are some of the possible manifestations. Mutations in BRCA1/2 are one of the 
inherent risk factor. The use of tobacco and alcohol are two more lifestyle factors. However, only 25% of 
cases of breast cancer than lung cancer was diagnosed, making it the most prevalent type of cancer 
nationwide [1]. Many women are unable to get This essay seeks to address this problem by offering 
findings that bolster the argument in the care they require because of the high cost of consultations and the 
dearth of skilled doctors. There is a critical deficit in medical personnel in developing nations like India. 
Consequently, this problem may be mitigated by the use of automated clinical decision support systems. 
However, a major obstacle to promoting the adoption of these systems is the ignorance of the general public 
about the applications of machine learning models in medicine. In support of using these models in the 
therapeutic domain. Although the prognosis can be enhanced by early identification, undetected breast 
cancer frequently leads in premature death [2] - [4]. As a result, the number of deaths from breast cancer 
could be drastically reduced by an automated method of diagnosis. Furthermore, by confirming diagnosis, 
this technology could help medical personnel in the field. The existing manual examining of 
mammography results technique is not sustainable in highly populated countries such as India. 

As demonstrated in [5] - [9], the Random Forest approach consistently produces better models for the 
identification of various diseases. Jackins et al. [5] obtained an 83.85% accuracy rate in their diagnosis of 
coronary heart disease using Random Forests. Furthermore, they show how accurate Random Forests are 
in identifying breast cancer. Sarica et al. found that Random Forests outperform existing machine learning 
methods for classifying neuroimaging data associated with Alzheimer's disease [6]. An analysis of [10] - 
[13] offers proof in support of the use of machine learning in breast cancer diagnosis. Naji et al. provide 
evidence that the support vector machine and Random forest algorithms identify malignant tumors with 
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greater than 96% accuracy [12]. According to Vaka et al. [11], a Deep Neural Network achieves an accuracy 
of 97.21%, outperforming popular supervised models like K-Nearest Neighbors and Decision Trees. 
However, because neural networks have a tendency to over fit on smaller datasets, they are not advised 
for the chosen dataset. As revealed by [14] – [16] and [24], a number of other supervised machine learning 
techniques have also proven effective in detecting malignant breast tumors. Azar and El-Metwally [14] 
identify breast cancer with 95% accuracy using a variety of Decision Tree classifiers. Desai and Shah [15] 
implement a Multilayer Perceptron (MLP) classifier with the Wisconsin breast Cancer Dataset, finding an 
accuracy of 911.9%. Polat and Gunes [16] employ a variation of the Support Vector Machine called the 
Least Square Support Vector Machine (LS-SVW). They report a final accuracy of 98.53%, demonstrating 
that it is possible to identify tumors using SVMs. Finally, Sarkar and leong [16] apply K-Nearest Neighbors 
(KNN) to this problem. They claim to have improved classification outcomes by 1.17% over the present 
models. 

This research uses supervised machine learning approaches to develop such a system. Given the 
increased likelihood of mortality associated with malignant tumors, a classification model has to be 
developed. The only goals of treatment for benign tumors are to get rid of the malignant cells and keep 
them from coming back. Since malignant tumors can spread to other parts of the body, it's important to 
diagnose people with them at an early stage of the illness.  

 
2. Research Methodology 
2.1. Data Collection 

A publicly accessible dataset on breast cancer that includes clinical and diagnostic characteristics for 
both bengin and malignant cases served as the source of the data for this study. Various crucial factors, 
including tumor size, texture, and shape, are present in every sample. To provide a fair assessment of the 
model's generalizability, the dataset was split into training and testing subsets. In order to prevent 
overfitting and further improve the reliability of the results, multiple fold cross- Validation was also used. 
2.2. Strategies for Organizing Data  

Before training the neural network model, a series of preprocessing steps were applied to the dataset 
to optimize model performance: 
1. Overcoming Absence Values: Using the proper method –such as mean or median imputation for 

numerical variables and mode imputation for categorical variables –missing data points were 
imputed[17]. 

2. Standardization of Data:To ensure that values were within a constant rang,min-max scaling was used 
to normlizeall input aspects (0 to1). This is crucial for neural networks since it stabilizes gradient-based 
optimization tools and speeds up the learning process. 

3. Investigation of Exceptions: Method of statistical analysis such as the coefficient range (IQR) were 
used to identify and extreme outliers, either by deleting or altering them in order to reduce their 
influence on the model[18]. 

4. Synthesis of Data: Artificial data augmentation methods such as SMOTE were employed to improve 
the representation of the minority class in order to overcome class imbalances, especially in cases of 
benign and malignant tumor classifications. By balancing the training set, this method reduced bias 
and increased model accuracy [19]. 

5. Merging Data: 80% of the preprocessed data was used for training, and 20% was used for testing. Five-
fold cross-validation was employed as a validation technique to make sure the model performed 
consistently across several data divisions [20]. 

2.3. Selected Classifier 
Neural networks, a kind of artificial intelligence, teach computers to process information similarly to 

the human brain. Deep learning is a subset of machine learning that uses networked nodes or neurons 
stacked to resemble the structure of the human brain. This adaptive strategy may be used by computers to 
learn from their mistakes and continue improving. Consequently, artificial neural networks strive to 
provide more precise responses to difficult problems like facial recognition and document summarization. 
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Figure 1. Nueral Network Architecture 
2.4. Selected Optimizers 

The performance of the breast cancer diagnosis model was evaluated using four key optimizers: Adam, 
Nadam, Adagrad, and RMSprop. Each optimizer was selected for its distinct properties and contributions 
to enhancing model convergence and accuracy. 

Adam (Adaptive Moment Estimation) was selected of its capacity for adaptable learning rate, which 
blends the benefits of RMSProp and AdaGrad. Based on estimations of lower-order moments, it modifies 
the learning rate during training. For complex medical data, such as breast cancer classification, this 
optimizer is well-suited because of its reputation for quicker convergence and improved generalization in 
neural networks [21]. 

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is a continuation of Adam that uses 
Nesterov momentum.It was chosen because it provides better performance in some situations when Adam 
could have trouble finding local optima or sharp minima.Especially in deep learning models, NAdam’s 
use of momentum speeds up convergence and produces more consistent training results. 

Adagrad was added because it works well with sparse data because it modifies the learning rate of 
each parameter separately. Adagrad was assessed to comprehend its performance in a balanced dataset 
such as breast cancer, where certain features may play a more dominating role in diagnosis, despite its 
tendency to decay the learning rate too aggressively over time. 

RMSprop was chosen because it used a moving average of squared gradients to maintain a steady 
learning rate .It is quite useful for models that behave differently over different training phases and helps 
prevent big oscillations during training.The flexible learning rate RMSprop is very helpful in medical 
datasets where the significance of features varies greatly. 

To ensure uniformity between tests, the default settings for each optimizer were applied. Their efficacy 
in diagnosing breast cancer was assessed using a variety of measures, such as accuracy, precision, recall, 
F1-score, and ROC-AUC, to give a thorough picture of their performance. 

2.5. Standards for Evaluation 
Compute multiple assessment measures in order to evaluate the efficacy of machine learning models 

on breast cancer datasets.Insights into many elements of the model’s behavior are provided by each 
statistic, especially when working with medical data, where false positive or false negatives might have 
detrimental effects. 
2.5.1. Accuracy 

The proportion of accurately anticipated cases- both true positives and true negatives-to all instances 
is known as accuracy. Accuracy on its alone can be deceptive in medical datasets, particularly when there 
is an imbalance across groups (e.g., more benign than malignant instances). A crucial problem is that high 
accuracy could nevertheless lead to a large number of cancer cases being missed. As a result, even while 
accuracy provides a broad indication of correctness, it must be weighed in conjunction with other 
measures. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	
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2.5.2. Precision 
The ratio of real positive predictions to all positive predictions, including false positives,is known as 

precision [22]. The percentage of times a model properly predicts a malignant tumor is its precision. High 
precision in medical diagnosis is necessary to prevent misdiagnosing patients with cancer, which could 
cause anxiety and unnecessary therapy. 

	𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆(𝑻𝑷)

𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆(𝑻𝑷) + 𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆(𝑭𝑷) 

2.5.3. Recall (Sensitivity or True Positive Rate) 
The ratio of actual positive (true positive and false nagative) to genuine positive forecasts is know as 

recall. Recall is significant in medical diagnostics since it measures a model's ability to recognize potentially 
harmful malignancies. A low recall suggests that the model may not account for malignant, which may 
have a negative impact on patient outcomes. In order to decrease false negatives, or cancer diagnoses that 
are missed, high recall is occasionally prioritized in the diagnosis of breast cancer. 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆(𝑻𝑷)

𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆(𝑻𝑷) + 𝑭𝒂𝒍𝒔𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆(𝑭𝑵)
	

2.5.4. F1 Score 
The F1 score is the harmonic mean of recall and precision. A trade-off between recall and precision is 

achieved by the F1 score, which is critical in medical settings where minimizing false positives and false 
negatives is vital. Due to its ability to provide a single statistic that takes into account both types of 
mistakes, it is particularly useful when dealing with imbalanced datasets. 

𝑭𝟏	𝑺𝒄𝒐𝒓𝒆 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍 

2.5.5 Specificity (True Negative Rate) 
Specificity measures the proportion of true negative instances (i.e., benign cases correctly diagnosed) 

out of all genuine negative cases. Reducing the amount of false positive medical diagnosis is vital. 
Specificity shows how well the model can differentiate between non-cancer scenarios. High specificity 
ensures that healthy individuals are not misdiagnosed as having cancer, which is crucial to avoiding 
needless medical interventions. This measure is critical to removing false positives, unnecessary diagnostic 
procedures, or therapies for healthy individuals.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)

𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃) 

2.5.6. Brier Score 
The mean squared difference between expected probablility and the actual result, which might be 

either 0 or 1,is measured by the Brier score.It assesses how accurate probabilistic forecasts are.Better 
calibrated forecasts are indicated by lower Brier scores [23]. It may be useful when the model generates 
probabilities instead of binary choices because it tells us something about the model's level of confidence 
in its predictions. For models that produce confidence scores in addition to class predictions, this metric is 
essential. 

𝐵𝑎𝑟𝑖𝑒𝑟	𝑆𝑐𝑜𝑟𝑒 =
1
𝑁SS(𝑝!" − 𝑜!")#

$

"%&

'

!%&

 

2.5.7. Cohen’s Kappa 
Cohen's Kappa determines the degree of agreement between the actual and anticipated categories after 

correcting for chance. Cohen's Kappa provides a more trustworthy evaluation statistic than accuracy alone 
when the data is uneven. It shows how much better the model is performing than chance, giving a clearer 
insight of its performance. 

𝐾 =
𝑃()*!
1 − 𝑃+
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2.5.8. Matthews Correlation Coefficient (MCC) 
The correlation coefficient known as MCC accounts for all four components of the confusion matrix 

(TP, TN, FP, and FN). It is regarded as a balanced metric even when the datasets are unbalanced. MCC is 
particularly useful in datasets related to breast cancer, where there may be a significant difference between 
benign and malignant instances. It provides a fair evaluation of the model's predictions even though one 
class dominates the dataset [24]. 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑁)
 

2.5.9. ROC Curve and AUC (Area Under the Curve) 
The Recipient Operating Characteristic (ROC) curve is created by graphing the genuine positive rate 

(recall) versus the false positive rate (specificity - 1). The AUC (Area under the Curve) provides a summary 
of the model's performance across all classification criteria. The ROC curve's area under the curve, which 
ranges from 0 to 1. A number closer to 1 indicates better model performance [25]. The AUC and ROC curve 
provide a graphical representation of the model's ability to distinguish between benign and malignant 
classifications. An elevated AUC suggests that the model is effective in distinguishing between the two 
classes, which is important in medical diagnosis when trade-offs between sensitivity and specificity need 
to be carefully managed. 

 

𝐴𝑈𝐶 =S
(𝑇𝑃𝑅!,& + 𝑇𝑃𝑅!)

2 . (𝐹𝑃𝑅!,& − 𝐹𝑃𝑅!)
-)&

!%&
 

 
3. Results and Discussion 

Accuracy, precision, recall, F1-score, specificity, ROC-AUC, MCC, Kappa, and Brier score are among 
the assessment measures that from the basis of the comparative performance study for the optimizers 
Adam, Nadam, Adagrad, and RMSporp, below, we’ll talk about each optimizer’s performance by 
comparing the approach and the outcomes and elucidating the reasons for the improvement or decline in 
particular measures. 

Figure 2. Performance Metrics of the Selected Models 
 

 

optimizer accuracy precision recall f1_score specificity kappa mcc roc_auc brier training_time fold 
Adam 0.925 0.9 0.9 0.9 0.94 0.84 0.84 0.92 0.075 3.385 1 
Adam 0.925 0.95454 0.80769 0.875 0.98148 0.82195 0.82781 0.89458 0.075 3.441092 2 
Adam 0.875 0.86206 0.80645 0.83333 0.91836 0.73351 0.73455 0.86240 0.125 3.521083 3 
Adam 0.92405 0.85294 0.96666 0.90625 0.89795 0.84283 0.84750 0.93231 0.07594 3.422259 4 
Adam 0.94936 0.96551 0.90322 0.93333 0.97916 0.89259 0.89388 0.94119 0.05063 3.281334 5 

Nadam 0.925 0.9 0.9 0.9 0.94 0.84 0.84 0.92 0.075 3.889737 1 
Nadam 0.925 0.95454 0.80769 0.875 0.98148 0.82195 0.82781 0.89458 0.075 3.781687 2 
Nadam 0.875 0.888889 0.774194 0.827586 0.938776 0.730276 0.734564 0.856485 0.125 3.904384 3 
Nadam 0.911392 0.870968 0.9 0.885246 0.918367 0.813113 0.813402 0.909184 0.088608 3.925482 4 
Nadam 0.924051 0.857143 0.967742 0.909091 0.895833 0.844284 0.84887 0.931788 0.075949 3.90557 5 

Adagrad 0.5 0.428571 1 0.6 0.2 0.157895 0.29277 0.6 0.5 3.054567 1 
Adagrad 0.9 0.875 0.807692 0.84 0.944444 0.767442 0.768742 0.876068 0.1 2.709354 2 
Adagrad 0.5125 0.441176 0.967742 0.606061 0.22449 0.157667 0.262276 0.596116 0.4875 2.976949 3 
Adagrad 0.873418 0.777778 0.933333 0.848485 0.836735 0.741323 0.750416 0.885034 0.126582 6.121897 4 
Adagrad 0.924051 0.837838 1 0.911765 0.875 0.846004 0.856217 0.9375 0.075949 2.905195 5 
RMSprop 0.9375 0.903226 0.933333 0.918033 0.94 0.86755 0.867854 0.936667 0.0625 3.079844 1 
RMSprop 0.9 0.875 0.807692 0.84 0.944444 0.767442 0.768742 0.876068 0.1 3.429861 2 
RMSprop 0.8875 0.892857 0.806452 0.847458 0.938776 0.758713 0.761179 0.872614 0.1125 3.250464 3 
RMSprop 0.911392 0.870968 0.9 0.885246 0.918367 0.813113 0.813402 0.909184 0.088608 3.321672 4 
RMSprop 0.949367 0.909091 0.967742 0.9375 0.9375 0.895017 0.896252 0.952621 0.050633 3.51714 5 
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3.1. Accuracy 
Adam consistently displayed precision; in one fold, he reached 94.9% especially in complicated   

datasets like those used to diagnose breast cancer, this optimizer classification performance by adapting 
learning rates for individual parameters, hence speeding up convergence. Adam’s skill in balancing the 
trade-off between speed and precision throughout is responsible for the great accuracy. Despite being an 
Adam variant, NAdam gave the optimization process more momentum and generally showed accuracy 
levels that were comparable to Adam’s. Its additional complexity may have contributed to this slight drop, 
possibly resulting in less-than-ideal convergence in certain folds.  

Adagrad, which modifies learning rates in response to the appearance of features, had comparatively 
poorer accuracy, particularly in later folds. The decline in accuracy may be explained by its aggressive 
learning rate decay over time, which can restrict its effectiveness in lengthy training cycles. While RMSporp 
did not perform as well as Adam, it was still quite good. RMSprop’s general learning behavior may have 
led to the comparatively poorer accuracy even while it is excellent at maintaining learning rates throughout 
training phases, especially given its tendency to converge more slowly. 

 

 

 

 

 

 
 

Figure 3. Comparison of Accuracy 
3.2. Precision 

Adam displayed great precision across folds (up to 96.5%), showing its remarkable power to 
appropriately detect malignant patients without generating many false positives. This is because of its 
adaptive learning mechanism, which during training more precisely adjusts weight updates. Adam was 
often followed by NAdam, albeit it wasn’t always better. In some instances, the momentum component in 
NAdam might have led to overcorrecting the updates, which somewhat raised the amount of false 
positives and decreased precision in some folds. Adagrad’s precision was noticeably less than that of Adam 
and NAdam’s. The model may have had difficulty updating weights for features that appear infrequently 
due to its declining learning rate over time, which is probably why precision declined in later stages. 
RMSprop didn’t match Adam’s performance. But it did fairly well in term of precision. Although update 
is stabilized by RMSprop’s adaptive learning rate, the little decrease in precision may be attributed to its 
lack of momentum as compared to Adam or NAdam. 

 
Figure 4. Comparison of Precision 
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3.3. Recall 
Adam demonstrated exceptional memory, with scores reaching 96.6%. The model can capture the 

majority of true positive cases because of its capacity to balance learning rates. This high recall shows that 
Adam effectively reduces false negatives, which is important in a medical setting where it might have 
serious repercussions if malignant cases are missed. While Nadam did well in recollection as well, he 
showed greater variability across folds. While the additional momentum was helpful in many folds, it may 
have caused overshooting in gradient updates in others, which could account for the marginally worse 
recall than Adam. Adagrad struggled with recollection. Because of its rapid learning rate degradation, the 
optimizer can’t learn as well in subsequent epochs, which raises the false negative rate and lowers recall 
values. RMSprop had a mediocre recall performance, usually scoring lower than Adam. Despite 
maintaining a study learning rate, the model may not have been able to fully explore the parameter space 
for real positive predictions due to its lack of momentum. 

 
Figure 5. Comparison of Recall 

3.4. F1-Score 
Adam attained a high F1-score of up to 93.3% with a strong balance between recall and precision. This 

balance demonstrates how Adam always finds a reasonable middle ground between avoiding false 
positives and minimizing false negatives, which is crucial for precise medical diagnosis. Nadam frequently 
had a slightly lower F1-score than Adam, despite the fact that he was still performing admirably. 
Specifically, NAdam's momentum could cause overcorrection in updates, which could cause a small 
amount of instability in the precision-recall balance. Adagrad has trouble with F1-scores because of its 
decreasing learning rate, which makes it more difficult for it to correctly classify both benign and malignant 
instances in subsequent epochs. RMSprop's F1-score was constantly lower than Adam's, while being 
respectable. Although it stabilizes gradient updates, the lack of adaptive learning based on momentum 
likely led to a lower ability to balance precision and recall. 

 
Figure 6. Comparison of F1 Score 
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3.5. Specificity 
Adam achieved remarkable results in specificity, with values as high as 97.9%.This indicates that the 

optimizer is very good at correctly detecting benign instances, which lowers the quantity of false positives 
.Adam’s adaptive learning provides additional specificity by adjusting weights in a more sophisticated 
way. Although Nadam's performance was typically better than Adam's in terms of specificity, its 
momentum might have caused overcorrections that resulted in a few more false positives, somewhat 
lowering specificity. The distinctiveness of Adagrad was reduced. As the optimizer's learning rate declines 
over time, it becomes more challenging for it to maintain parameter adjustments, leading to an increase in 
false positives. Despite being efficient, RMSprop's performance was inferior to Adam's. RMSprop’s set 
learning rate across updates might explain the somewhat reduced specificity compared to Adam, as it lacks 
the adaptability that is crucial in balancing predictions for benign and malignant situations. 

 
Figure 7. Comparison of Specificity  

3.6. ROC-AUC 
Adam's ROC-AUC values were high, indicating that it has a strong ability to distinguish between 

benign and malignant cases at various thresholds. Adam's changeable learning rates likely contributed to 
its greater fit to the data and helped explain its excellent discriminatory power. While he did not always 
surpass Adam, Nadam was never far behind. In some cases, the impact of momentum variability could 
account for the somewhat lower ROC-AUC values. Adagrad's poor performance on ROC-AUC tests is 
likely due to its low learning rate, which renders it less flexible and less able to generalize than the other 
optimizers. RMSprop underperformed somewhat in ROC-AUC when compared to Adam because of its 
less dynamic learning process, but it also did well in other metrics. 

 
Figure 8. Comparison of ROC-AUC 
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3.7. Matthews Correlation Coefficient (MCC) 
Adam consistently had good MCC ratings, which is indicative of its performance being balanced 

between true positives and true negatives. Adam’s success in obtaining a high-quality categorization was 
probably due to his ability to modify learning rates in an efficient manner. Nadam often displayed slightly 
lower MCC values, albeit being still effective. Sometimes Nadam’s momentum causes overshooting, which 
lowers the quality of the categorization as a whole. Adagrad’s MCC was lower, indicating that its rapid 
learning rate degradation over time made it challenging for it to maintain balanced classification. Although 
RMSprop outperformed Adam in MCC, it trailed somewhat behind him, perhaps because of a slower 
learning rate convergence that led to it missing ideal classification limits. 

 
Figure 9. Comparison of MCC 

3.8. Kappa Statistic 
Adam’s high Kappa values indicated a high degree of agreement between the actual and predicted 

classifications. Achieving high consistency across folds requires reducing classification errors, which is 
made possible by its adaptive learning rate. Nadam’s Kappa values were likewise good, albeit they varied 
more. Although the momentum helped in certain situations. it caused instability in others, which decreased 
agreement. Due of Kappa’s poor adaptability over extended training periods, Adagrad had trouble using 
it, which resulted in less consistency in predictions. Because RMSprop converges more slowly and is less 
flexible than Adam, it did not do as well as Adam in Kappa. 

 
Figure 10. Comparison of Kappa Statistics 

3.9. Brier Score 
Adam’s Brier scores were the lowest, demonstrating its superior capacity to produce accurate and well-

calibrated probability estimates. This is crucial for medical models since clinical decision-making can be 
impacted by forecast confidence. While Nadam’s Brier scores were marginally higher than Adam’s, they 
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were comparable. In some situations, the addition of momentum may have led to miscalibration and 
somewhat inaccurate probability calculations. With the greatest Barier scores, Adagrad was unable to 
generate well-calibrated probability estimates. Most likely as a result of its learning capability being limited 
over time by a declining learning rate. Despite not matching Adam’s performance, RMSprop did rather 
well, this was probably because its fixed learning rate prevented it from properly calibrating predictions. 

 
Figure 11. Comparison of Barrier Score 

 
4. Conclusions 

This study analyzed multiple optimizers, including Adam, Nadam, Adagrad, and RMSprop, for breast 
cancer diagnosis using neural networks. Adam is able to consistently provide the best results in terms of 
accuracy, precision, and recall because to its modifiable learning rates. Nadam did well, especially in 
circumstances requiring good memory, although he too exhibited a great deal of performance variability. 
Adag-rad struggled with its diminishing learning rate, while RMSprop showed stability but slower 
convergence. Because of its excellent generalization, Adam is the best choice for real-time diagnostic 
applications; however, Nadam can be useful when minimizing false negatives is essential. Future research 
could look at larger datasets, moderate interpretability, and hybrid optimizers to further improve 
diagnostic accuracy. These f: indings show how optimizers can help advance early diagnosis, improve 
patient outcomes, and strengthen machine learning models for breast cancer detection. 
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