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Abstract: A graph is numerically represented by topological indices. These indices are crucial for 
topological indices because they affect the quantity structure property connection and the 
quantitative structure-activity relationship. In parallel computing, digital signal processing, 
communications, data centers, and network-on-chip design, benes are utilized. In this article, we 
calculated the quadratic-Contraharmonic index (QCI), contra harmonic-quadratic index (CQI), 
geometric quadratic index (GQI), quadratic geometric index (QGI), arithmetic Contraharmonic 
index (ACI) and Contraharmonic arithmetic index (CAI) for the cylindrical Benes network 𝐻𝐶𝐵(𝑚) 
and for both horizontal and vertical and Butterfly network. We use MATLAB tool to give study 
these networks graphically and draw the comparison bar graphs. 
 
Keywords: Benes Network; Butterfly Network; Quadratic Geometric Index; Arithmetic 
Contraharmonic Index; Graphically. 

________________________________________________________________________________________________________ 
1. Introduction 

In an interconnection network, a multiprocessor serves as the processing node to create a network with 
identical pairings of memory and processors. Programs are put together and executed through message 
exchanges. The use and architecture of multiprocessor interconnection networks are crucial because of 
their enhanced affordability and increased efficiency in chips and microprocessors [1]. These networks are 
valuable and significant because they mimic naturalistic communication patterns. These networks are 
interdependent and tied to one another, thus further research on them is necessary. Graphs are used to 
form interconnected networks in a manner that is similar to natural systems.  

In these networks, vertices stand in for CPUs or other components, while edges stand in for 
communication links like fiber optic cables. Incidence functions govern how these elements function. 
Graphs are used to graphically display the topological aspects of the network. Therefore, networks, their 
elements, and their connections are fundamentally graphs, their vertices, and their edges. Graphs are 
essentially used to build networks, with vertices representing processors or other components and edges 
representing communication connections. The functions of these components are explained by incidence 
functions, while the topological properties of the network are shown by graphs. Thus, when we talk about 
edges, vertices, and graphs, we are talking about the building blocks of these networks. In order to facilitate 
effective Fast Fourier Transform (FFT) operations, butterfly graphs are essential components of Fourier 
transform networks. These networks use a sequence of linked phases to create connections between input 
and output pairs. The Benes network, which is made up of butterfly graphs connected by connections, is 
one of them and is well known for its effectiveness at handling permutation routing. Benes networks are 
important interconnection networks with very efficient topologies in the field of communication systems. 
They are used in many parallel computing systems, including as SP1/SP2, IBM, NEC Cenju-3, MIT Transit 
Project, and SP2/SP2.  

In addition, they find application in the interior configurations of optical couplers. In a Benes network 
with r dimensions, there are 2r + 1 levels altogether in the network, with each level made up of 2r nodes. 
A butterfly pattern is formed by the connection structure connecting the level 0 and level r nodes. Using 
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the common middle level between two back-to-back butterfly structures, the Benes network is constructed. 
The standard notation for an r-dimensional Benes network is B(r). As an example, Figure 1 shows a 3-
dimensional Benes network. The following notations are used to describe a connected, undirected graph, 
represented as G: The variables V(G) and E(G) stand for the set of vertices and edges, respectively; da 
denotes the degree of a vertex 'a', or the number of edges connected to it; N(a) denotes the neighbors of 'a', 
or the vertices that are directly connected to it, and Sa is the sum of the degrees of the neighboring vertices.  

If any terminology is not obvious, the listed references [6–8] provide more clarifications. Different labels 
applied to graphs or molecular structures reveal information on their composition and how it affects their 
physical and chemical properties. We call these characteristics topological indices. Several topological 
indices may be used to predict the physical and chemical characteristics of molecular structures based on 
the degrees of vertices. These indices give network structures numerical values. The objective is to use 
these indications to build computer networks and systems that increase productivity and advancement. 
An interconnection network's structure is determined by how its vertices and edges are arranged, and a 
graph may be used to visualize this structure. The network's properties are influenced by the graph's 
arrangement. We may ascertain attributes such as the greatest distance between any two vertices by 
examining the network's topography.  

A vertex's degree indicates the quantity of connections it has. A variety of interconnected networks are 
studied through the use of graph theory and complex network analysis techniques. These include 
computer networks (from intranets to global networks), electrical power grids, social networks, robotic 
networks, transmission networks, and genetic networks. These networks are used for a wide range of 
reasons and have many applications. The main goal of this study is to find topological invariants (TIs), 
which are quantitative representations of the structure or patterns of connections between nodes or other 
elements in a network. These TIs define the parameters of the research topic. A vertex's degree represents 
how connected it is. Graph theory and sophisticated network analysis techniques are used by researchers 
to investigate a wide variety of interconnected networks, including computer networks (from intranets to 
global networks), electrical power grids, social networks, robotics networks, transmission networks, and 
genetic networks. These networks are rather common and have many uses. The main focus of this work is 
to find topological invariants (TIs), which are quantitative representations of the structural relationships 
or connection patterns between nodes or entities in a network. The main goal of this research is to locate 
these TIs. By understanding these patterns, the research aims to create a comprehensive framework of laws 
and regulations that govern a variety of natural phenomena. The models developed in this work are 
supported by quantitative structure-activity relationship (QSAR) and quantitative structure-property 
relationship (QSPR) approaches. It's important to keep in mind that network analysis with these measures 
allows different regional shielding design options to be quantitatively evaluated [4]. 

 
2. Literature Review 

Topological indices (TIs) are widely used to investigate the relationship between the structure and 
physical characteristics of extremely small materials (nanoscale). The domains of industry, electronics, 
medical, pharmaceuticals, communication, information technology, and food science can all be 
significantly impacted by the development of novel nanostructures. The Sombor index and its correlation 
with entropy, acentric factor, and the vaporization behavior of octane isomers are the main subjects of this 
study. They investigate this using linear models. The findings indicate a strong correlation between the 
Sombor index and particular chemical features, particularly DHVAP. In addition, they compute the 
Sombor index for the various morphologies and configurations of the substance under study.   

One area of Mathematical Chemistry that has a big influence on the development of the Chemical 
Sciences is Chemical Graph Theory. The Combinatorial Quadratic Index (CQI) of molecular graphs is the 
subject of this research work. The work investigates the CQI for significant nano star dendrimers and a 
number of typical graph patterns. Along with updated versions of the first and second K-Banhatti Indices 
of a graph, it also presents the harmonic Sombor indices of a graph. The study looks into freshly created 
measures. In addition, it looks at TUC4C8[p, q] and TUC4[p, q] nanotubes, the modified first and second 
Banhatti Sombor indices, and the harmonic Banhatti Sombor index. A variety of topology-related indices 
based on degrees, distances, and counting techniques are examined in this article. It looks at these indices 
in relation to various molecular architectures, such as hexagonal cross-sections, honeycomb patterns, and 
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framework networks. Strength, strain energy, boiling temperatures, and other physical and chemical 
characteristics of molecules having these structures are all represented by these indices. Group theory and 
graph theory are used in the review to find these traits using Cayley graphs (CG). It computes a number 
of indices for different sets of graphs, such as the general Randi index, the first Zagreb index, the ABC 
index, the GA index, the ABC4 index, and the GA5 index. These graphs are the basis for constructing 
various graph groups related to computers networks and chemicals. The need to understand intricately 
linked networks is increasing with the introduction of large-scale integrated circuits. Graph theory is 
essential to the construction and assessment of these networks. It offers a thorough comprehension of these 
interconnected systems.  

A branch of mathematics called chemical graph theory uses the ideas of graph theory to mathematically 
describe chemical reactions. In the context of networks, edges indicate the channels by which data is sent 
inside the network, while vertices stand in for network elements such as computers, switches, and other 
devices. From a scientific standpoint, the development of large-scale integrated circuits has greatly 
increased our knowledge of complex linked networks, highlighting the critical role that graph theory plays 
in both their construction and analysis. Graph theory and interconnected networks may be used to gain a 
thorough knowledge of these interconnected systems. A subfield of mathematics called chemical graph 
theory uses graph theory methods to explicitly describe chemical reactions. Vertices in the context of 
networks stand for the basic elements, such as computers, switches, and other devices, while edges 
represent the channels by which data is conveyed. Numerical numbers linked to the properties, linkages, 
and interactions in computer networks are known as topological indices or invariants. In this work, several 
topological complexity indices are constructed by employing paired trees up to the k-level. The results of 
this study have the potential to characterize and evaluate the topology of computer networks as well as 
chemical networks [15].  

It has been successfully accomplished to evaluate the irregularity indices for oxide, hexagonal, silicate, 
and honeycomb networks. These results provide important new understandings of the behavior of various 
chemical and computer networks. Chemical and computer scientists can build their own top networks if 
they understand these ideas [16].  

The research emphasizes the use of graph theory, a field of study that uses topological indices to 
understand the characteristics of different materials and networks without requiring empirical 
investigations. In order to obtain insight, this strategy entails creating mathematical formulae or equations 
for these substances and networks. The paper computes topological indices for m-polynomial square shift 
networks, a component present in many chemical compounds, using edge division [17].  

This work investigates the derivation of topological indices and the mathematical representation of 
chemical structures. These indices are connected to certain strain energy, stability, and cutoff 
physiochemical properties of chemical substances. In this field of study, graph theory has shown to be 
quite beneficial. Studying the topology of certain networks has gained popularity recently. The present 
study extends the analysis of the authors to interconnection networks and draws logical results for the 
General Randi index R(G) in condensed valuable crystals and toroidal polyhex and octagonal networks, 
covering a wide range of conceivable values. In order to accommodate many processing centers with 
consistent processor-memory units, multiprocessor interconnection networks are frequently constructed 
[18].  

The results of the study show that a supra-molecular catalytic system may be produced by combining 
a high number of catalytic sites with certain spatial configurations. This method works well because it 
speeds up reaction times by promoting the formation of pertinent advanced states. Many chemical 
processes that depend on multisite catalysis in network systems may benefit from the porous topologies of 
Metal-Organic Frameworks (MOFs) [19]. The report highlights how widely computers are used as 
information access tools, which has led to a surge in computer use across a range of businesses.  

These days, it's difficult to identify any industry that hasn't been affected by computer applications—
intelligence-related or not. Complex sets of legislation are even impacted by data systems and 
computational processing. Here, topological descriptors—numerical representations used to evaluate 
important information and understand the connections between the structure and characteristics of 
different materials—are essential to Quantitative Structure-Activity Relationship (QSAR) methodologies 
[22].  
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Computational and data systems play a crucial role in the development and implementation of complex 
legal systems, which frequently comprise elaborate webs of interrelated regulations or standards. 
Considering different computer paradigms, these regulatory networks are essential for controlling basic 
biological processes and directing analytical study. In order to control computational techniques in logical 
analysis and guarantee appropriate and correct outcomes, a comprehensive legal framework is necessary 
[23].  

The study highlights how effective graphs are as modelling tools for expressing and illuminating a wide 
range of connections between intricate real-world problems. Graph theory may look at many different 
issues and challenges. By focusing on various graph theory problems and their implementation in software 
applications, this study demonstrated the significance of graph theory in network architecture. This page 
provides relevant information on graph theory and its applications in several domains, including operating 
systems, networks, databases, software engineering, etc., to assist software researchers. The study finds 
several practical applications of graph theory that are very relevant to the field of software development 
and computer programming [24].  

In many computers programming applications, including networking, data mining, picture 
segmentation, and clustering, graph theory is essential. It makes data organization and network modelling 
easier. Resource reservation and allocation make use of fundamental ideas from graph theory, such as 
graph coverage. Resource network management, database configuration, and optimization difficulties are 
all handled via circuits and pathfinding methods. These applications encourage the creation of novel 
concepts and techniques that may be used to a variety of computer-related industries. The paper is split 
into two sections: the first explores the various computer applications where graph theory is useful, while 
the second gives an outline of how graph theory might be used in resource booking [25].  

These domains have given rise to novel ideas in graph theory that tackle difficult graph theory issues. 
Significant progress is anticipated as long as graph theory and its applications continue to interact. The 
most useful use of graph theory in computer applications is in the creation of graph algorithms [26]. 

Topological indices offer a useful method for quantitatively identifying the essential characteristics of 
different systems and offer important insights on logarithmic structures [27]. 

 
3. Research Methodology  

A methodical strategy is used in the research process. It starts by locating pertinent Benes networks to 
investigate. After that, these networks are represented as graphs utilizing graph theory ideas. To capture 
important features of Benes networks, specific Contraharmonic-Quadratic indices are created. Edge 
partitioning and formula-based indices are used in the procedure. To guarantee data accuracy, stringent 
validation techniques—such as the use of simulation programmes like Maple—are used.  

This approach offers a systematic and trustworthy way to analyze Benes network behavior using 
Contraharmonic-Quadratic indices. 
Objective: The objective of this work is to investigate and assess the Contraharmonic-Quadratic indices of 
recently proposed Benes network types. The study aims to investigate the features and attributes of these 
indices, evaluate their usefulness for network analysis, and determine their ability to accurately measure 
and capture important elements of Benes networks. The study's main goal is to improve our knowledge of 
these indicators' behavior, effectiveness, and suitability for use in the analysis of intricate network 
architectures. 
Significance: This discovery is extremely significant since it can improve our knowledge of Benes networks, 
offer insightful information about complex network architectures, and give useful applications for network 
research and optimization across a range of industries. 
Hypothesis: The following are the hypotheses of our research: 
(i) The Benes network structure will influence how sensitively Contraharmonic-Quadratic indices 

react to perturbations. 
(ii) Contraharmonic-quadratic indices will offer information on the information flow and connection 

patterns inside Benes networks. 
(iii) There will be a correlation between Contraharmonic-Quadratic indices and other network 

measures and attributes. 
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(iv) It is possible to assess the overall performance, fault tolerance, and efficiency of Benes networks 
using Contraharmonic-quadratic indices. 

3.1. Methods 
Choosing a group of Benes networks that belong to the target class is the first stage. Then, these 

networks are represented using graph theory, which turns them into graphs with edges standing in for 
communication links and vertices for processing units or components. Specialized Contraharmonic-
Quadratic indices created especially for Benes networks are introduced to collect pertinent network 
properties. These indices are used to analyze the topology of the network, specifically concentrating on 
edge classification. The acquired results are cross-checked against previously collected data to guarantee 
their efficacy. The study methodology is given and recorded in detail, emphasizing the usefulness and 
suitability of the Contraharmonic-Quadratic indices for different types of Benes networks. 

 
4. Main Results 

In [30, 31], the Quadratic-Contra harmonic indices (QCIs) and the Contra harmonic-quadratic indices 
(CQIs) respectively 

QCI(G) =,
d𝔲 + d𝔳

12((d𝔲)! + (d𝔳)!)
																																																																																																																																														(1) 

CQI(G) =,
12((d𝔲)! + (d𝔳)!)

d𝔲 + d𝔳 																																																																																																																																														(2) 

In [32], V.R Kulli defined the geometric quadratic index and quadratic geometric index as  

GQI(G) =,
12((d𝔲)!. (d𝔳)!)
1((d𝔲)! + (d𝔳)!)

																																																																																																																																																(3) 

QGI(G) =,
1((d𝔲)! + (d𝔳)!)
12((d𝔲)!. (d𝔳)!)

																																																																																																																																																(4) 

In [33], the arithmetic-contra harmonic index and the contra harmonic-arithmetic index 
Defined by V.R Kulli is as  

ACI(G) =,
(d𝔲 + d𝔳)!

2((d𝔲)! + (d𝔳)!)																																																																																																																																																	(5) 

CAI(G) =,
2((d𝔲)! + (d𝔳)!)

(d𝔲 + d𝔳)! 																																																																																																																																																	(6) 

4.1. Cylindrical Representation of Benes Network 
We connect the vertices of two types of cylindrical Benes networks in this section. We start by linking 

the vertices of the top row and the bottom row in a Benes network B(m). The network formed by this 
connection is referred to as a horizontal cylindrical Benes network (𝐻𝐶𝐵(𝑚)). The network is represented 
by 𝐻𝐶𝐵(𝑚). To illustrate this design, we provide an example of a three-dimensional horizontal cylindrical 
Benes network, or 𝐻𝐶𝐵(3), in Figure 2. The labels assigned to the vertices in the network reveal their 
identities. Thus, the number of vertices in 𝐻𝐶𝐵(𝑚) is |𝑉(𝐵(𝑚))| = (2𝑚 + 1)(2" − 1) and no. of edges are 
>𝐸@𝐵(𝑚)A> = 2𝑚(2"#$ − 1).  

 
 
 
 

 
Figure 1 . 3-dimensional Benes Network 
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Figure 2 . 3-dimension horizontal cylindrical Benes network 

 
 
 
 
 
 
 
 

 
Figure 3 . 3-dimensional vertical cylindrical Benes network 

Table 1.  Partition of set of edge of 𝐻𝐶𝐵(𝑚) on the bases of degree of end vertices of every edge 

(𝖚, 𝖛) NUMBER OF EDGES 

(2,6) 4 
(3,4) 4 
(3,6) 2 
(4,2) 2"#! − 12 

(4,4) 4(𝑚 − 1)(2" − 3) 
(4,6) 8(𝑚 − 1) 
(6,6) 2(𝑚 − 1) 

Theorem 4.1.1: Let 𝒢 be graph of horizontal cylindrical Benes network 𝐻𝐶𝐵(𝒢(𝑚)) then  
a) 𝐶𝑄𝐼	@𝐻𝐶𝐵(𝒢(𝑚))A = 10.36 + 2"#!(𝑚 + 0.05) − 10𝑚   

b) 𝑄𝐶𝐼@𝐻𝐶𝐵(𝒢(𝑚))A = 0.11 + 2"(4𝑚 − 3.06) − 2.16𝑚	
c) 𝐺𝑄𝐼@𝐻𝐶𝐵(𝒢(𝑚))A = 10.692 + 2"#!(𝑚 − 1) − 2.308𝑚	

d) 𝑄𝐺𝐼 L𝐻𝐶𝐵@𝒢(𝑚)AM = 9.92 + 2"#!(𝑚 + 0.11) − 1.68𝑚	

e) 𝐴𝐶𝐼@𝐻𝐶𝐵(𝒢(𝑚))A = 10.692 + 2"#!(𝑚 − 1) − 2.308𝑚	

f) 𝐶𝐴𝐼 L𝐻𝐶𝐵@𝒢(𝑚)AM = 9.92 + 2"#!(𝑚 + 0.11) − 1.68𝑚	

Proof:  
a) The CQI is given in equation (1) 

CQI = ∑%!((𝔲)!#(𝔳)!)
𝔲#𝔳

= %!((!)!#(*)!)
!#*

(4) + %!((+)!#(,)!)
+#,

(4) + %!((+)!#(*)!)
+#*

(2) + %!((,)!#(!)!)
,#!

(2!" − 12) +

%!((,)!#(,)!)
,#,

@4(𝑚 − 1)(2" − 3)A + %!(,)!#(*)!)
,#*

@8(𝑚 − 1)A + %!(*)!#(*)!)
*#*

(2(𝑚 − 1))  
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= 10.36 + 2"#!(𝑚 + 0.05) − 10𝑚																																																								  
b). Now  

QCI = ∑ 𝔲#𝔳
%!((𝔲)!#(𝔳)!)

= !#*
%!((!)!#(*)!)

(4) + +#,
%!((+)!#(,)!)

(4) + +#*
%!((+)!#(*)!)

(2) + ,#!
%!((,)!#(!)!)

(2!" − 12) +

,#,
%!((,)!#(,)!)

@4(𝑚 − 1)(2" − 3)A + ,#*
%!((,)!#(*)!)

@8(𝑚 − 1)A + *#*
%!((*)!#(*)!)

(2(𝑚 − 1))  

= 0.11 + 2"(4𝑚 − 3.06) − 2.16𝑚.										  

c). 𝐺𝑄𝐼 = ∑P !-.-/
-.!#-/!

= P!(!)(*)
!!#*!

(4) + P!(+)(,)
+!#,!

(4) + P!(+)(*)
+!#*!

(2) + P!(,)(!)
,!#!!

(2"#! − 12) + P!(,)(,)
,!#,!

@4(𝑚 −

1)(2" − 3)A + P!(,)(*)
,!#*!

@8(𝑚 − 1)A + P!(*)(*)
*!#*!

(2(𝑚 − 1) = 0.391 + 2"#!(𝑚 − 0.106) − 2.134𝑚  

d) . 𝑄𝐺𝐼 = ∑P-.!#-/!

!-.-/
 = P !!#*!

!(!)(*)!
	(4) + P +!#,!

!(+)(,)!
	(4) + P +!#*!

!(+)(*)!
	(2) + P ,!#!!

!(,)(!)!
	(2"#! − 12) +

P ,!#,!

!(,)(*)!
	@4(𝑚 − 1)(2" − 3)A + P ,!#*!

!(,)(*)!
	@8(𝑚 − 1)A + P *!#*!

!(*)(*)!
	@2(𝑚 − 1)A  = −0.165 + 2"#!(𝑚 + 0.11) −

1.674𝑚	  

e). 𝐴𝐶𝐼 = ∑ (-.#-/)!

!(-.!#-/!)
= (!#*)!

!(!!#*!)
(4) + (+#,)!

!(+!#,!)
(4) + (+#*)!

!(+!#*!)
(2) + (,#!)!

!(,!#!!)
	(2𝑚"#! − 12	) + (,#,)!

!(,!#,!)
@4(𝑚 −

1)(2" − 3)A + (,#*)!

!(,!#*!)
@8(𝑚 − 1)A + (*#*)!

!(*!#*!)
(2(𝑚 − 1) = 10.692 + 2"#!(𝑚 − 1) − 2.308𝑚 

f). 𝐶𝐴𝐼 = ∑ !0-.!#-/!1
(-.#-/)!

= !0!!#*!1
(!#*)!

(4) + !0+!#,!1
(+#,)!

(4) + !0+!#*!1
(+#*)!

(2) + !0,!#!!1
(,#!)!

(2"#! − 12) + !0,!#,!1
(,#,)!

@4(𝑚 −

1)(2" − 3)A +  !0,
!#*!1

(,#*)!
@8(𝑚 − 1)A + !0*!#*!1

(*#*)!
@2(𝑚 − 1)A = 9.92 + 2"#!(𝑚 + 0.11) − 1.68𝑚 

 
Figure 4. Graph 1: Comparison Bar Graph of Indices of 𝐻𝐶𝐵(𝑚) for 𝑚 = 1,2,3 

The bar graph for HCB(G(m)) exhibits distinct trends in the indices as  m increases. The QCI and ACI 
start negatively at m=1 but step by step increase, underscoring their growing relevance with large network 
scales. In comparison, CQI, although beginning low, would not increase as sharply, indicating a steadier 
assessment of complexity and fine. GQI and CAI display the most tremendous growth, suggesting they 
are fantastically sensitive to modifications in 𝑚 and may be important for evaluating community 
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performance and adaptability at better scales. This contrast highlights how every index serves one-of-a-
kind evaluative purposes relying on the community length and complexity. 
Table 2. Partition of edge set of	𝐻𝐶𝐵(𝑚),𝑚 ≥ 4, built on degree sum of neighbor Partition of end vertices 

of each edge 
(𝖚, 𝖛) NUMBER OF EDGES 

(8,12) 2(2"#$ − 1) 
(12,16) 2(2"#$ − 1) 
(16,16) 2(2"#$ − 1)(𝑚 − 2) 

 
Theorem 4.1.2: Let 𝒢 be graph of horizontal cylindrical Benes network 𝐻𝐶𝐵(𝒢(𝑚)) 	𝑚 ≥ 4 then 

a) 𝐶𝑄𝐼(𝐻𝐶𝐵(𝒢(𝑚)) = (2"#$ − 1)(2𝑚 + 0.05) 

b) 𝑄𝐶𝐼(𝐻𝐶𝐵(𝒢(𝑚)) = (2"#$ − 1)(2𝑚 − 0.07)	
c) 𝐺𝑄𝐼@𝐻𝐶𝐵(𝒢(𝑚))A = (2"#$ − 1)(2𝑚 − 0.12)	 	

d) 𝑄𝐺𝐼 L𝐻𝐶𝐵@𝒢(𝑚)AM = (2"#$ − 1)(2𝑚 + 0.12)	

e) 𝐴𝐶𝐼@𝐻𝐶𝐵(𝒢(𝑚))A = 2(2"#$ − 1)(2𝑚 − 0.12)	

f) 𝐶𝐴𝐼 L𝐻𝐶𝐵@𝒢(𝑚)AM = 2(2"#$ − 1)(2𝑚 + 0.12)	 	

Proof: 
 a). As we know 

CQI = ∑%!((𝔲)!#(𝔳)!)
𝔲#𝔳

= %!((2)!#($!)!)
2#$!

@2(2"#$ − 1)A + %!(($!)!#($*)!)
$!#$*

@2(2"#$ − 1)A + %!(($*)!#($*)!)
$*#$*

×  

@2(2"#$ − 1)A(𝑚 − 2) = (2"#$ − 1)(2𝑚 + 0.05)																																																																													 

b). QCI = ∑ 𝔲#𝔳
%!((𝔲)!#(𝔳)!)

= 2#$!
%!((2)!#($!)!)

@2(2"#$ − 1)A + $!#$*
%!(($!)!#($*)!)

@2(2"#$ − 1)A + $*#$*
%!(($*)!#($*)!)

×  

@2(2"#$ − 1)A(𝑚 − 2) = (2"#$ − 1)(2𝑚 − 0.07).																																																		  

c). 𝐺𝑄𝐼 = ∑P !-.-/
-.!#-/!

= P!(2)($!)
2!#$!!

(2(2"#$ − 1)) +P!($!)($*)
$!!#$*!

(2(2"#$ − 1)) + P!($*)($*)
$*!#$*!

(2(2"#$ − 1)(𝑚 − 2)) 

= (2"#$ − 1)(2𝑚 − 0.12)  

d). 𝑄𝐺𝐼 = ∑P-.!#-/!

!-.-/
= P 2!#$!!

!(2)($!)!
	@2(2"#$ − 1)A + P $!!#$*!

!($!)($*)!
	@2(2"#$ − 1)A + P $*!#$*!

!($*)($*)!
	@2(2"#$ − 1) ×

(𝑚 − 2)A = (2"#$ − 1)(2𝑚 + 0.12)  

e). 𝐴𝐶𝐼 = ∑ (-.#-/)!

!(-.!#-/!)
= (2#$!)!

!(2!#$!!)
@2(2"#$ − 1)A + ($!#$*)!

!($!!#$*!)
@2(2"#$ − 1)A + ($*#$*)!

!($*!#$*!)
(2(2"#$ − 1)(𝑚 − 2) 

= 2(2"#$ − 1)(2𝑚 − 0.12)  

f). 𝐶𝐴𝐼 = ∑ !0-.!#-/!1
(-.#-/)!

= !02!#$!!1
(2#$!)!

@2(2"#$ − 1)A + !0$!!#$*!1
($!#$*)!

@2(2"#$ − 1)A + !0$*!#$*!1
($*#$*)!

(2(2"#$ − 1) × (𝑚 −

2)) = 2(2"#$ − 1)(2𝑚 + 0.12) 
In the following comparison graph, ACI and CAI, those indices always perform the best across all 

values of m. This indicates that once changes for complexity are made, the ensuing price notably will 
increase, suggesting that these metrics may component in extra complexities or enhancements inside the 
network's shape that aren't accounted for inside the different indices. CQI and QGI, those indices are 
notably excessive but do not reach the stages of ACI and CAI. CQI considers factors that slightly decorate 
the complexity, while QGI consists of a advantageous adjustment, suggesting a barely extra positive 
evaluation of best boom. QCI and GQI, those indices display the lowest values, indicating a greater 
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conservative estimation of first-class and increase, respectively, in the community shape. They subtract a 
small consistent factor from the bottom calculation, doubtlessly reflecting constraints or barriers within the 
network's design or overall performance. 

Overall, the higher performance of ACI and CAI shows that those indices remember more distinct or 
substantial components of community complexity and version, which can be critical for programs 
requiring robust community evaluation and optimization. The decrease values of QCI and GQI may be 
beneficial for situations where a conservative estimate is essential, such as preliminary planning levels or 
when managing tremendously sensitive records or operations 

 
Figure 5. Graph 2: Comparison Bar Graph of Indices of 𝐻𝐶𝐵(𝑚) for 𝑚 = 4,5,6,7 

4.2. Toroidal Representation of Benes Network 𝑇𝐵(𝑚) 
We may create a toroidal network called the Toroidal Benes network by calculating the number of 

vertices in the first row of VCB (m) and comparing it to the equivalent vertices of the last row. This network 
is represented by the symbol TB (m). The graph of the toroidal Benes net-work𝑇𝐵(3) is displayed in Figure 
4. Clearly, |𝑉(𝑇𝐵(𝑚))| = 	 (2𝑚 + 1)(2" − 1) and|𝐸(𝑇𝐵(𝑚))| 	= 2𝑚(2"#$ − 1). 

 
 
 
 
 
 
 
 
 
 

Figure 6. 3-dimensional toroidal Benes network 
Table 3. Partition of Edge Set of 𝑇𝐵(𝑚) Built on the Degree of End Vertices of Each Edge 

(𝖚, 𝖛) NUMBER OF EDGES 

(4,4) 2𝑚(2"#$ − 6) 
(4,6) 8m 
(6,6) 2m 

Theorem 4.2.1: Let 𝒢 be the graph of toroidal cylindrical Benes network, 𝑇𝐵(𝒢(𝑚)) then  

a) 𝐶𝑄𝐼(𝑇𝐵(𝒢(𝑚)) = 𝑚[2"#! − 1.85]																																																																						   
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b) 𝑄𝐶𝐼(𝑇𝐵(𝒢(𝑚)) = 𝑚[2"#! − 2.16] 

c) 𝐴𝐶𝐼(𝑇𝐵(𝒢(𝑚)) = 2(2"#! − 2.308) 

d) 𝐶𝐴𝐼(𝑇𝐵(𝒢(𝑚)) = 𝑚(2"#! − 1.68) 

e) 𝐺𝑄𝐼(𝑇𝐵(𝒢(𝑚)) = 4𝑚(2"#! + 0.4134)  

f) 𝑄𝐺𝐼(𝑇𝐵(𝒢(𝑚)) = 𝑚[0.25(2"#!) − 9.9688] 
Proof: 
 a). The formula for the Contra harmonic quadratic index (CQI) is  

CQI = ∑%!((𝔲)!#(𝔳)!)
𝔲#𝔳

	= %!((,)!#(,)!)
,#,

@2𝑚(2"#$ − 6)A + %!((,)!#(*)!)
,#*

(8𝑚) + %!((*)!#(*)!)
*#*

(2𝑚)  = 𝑚[2"#! −

1.85]  
b). the formula for the quadratic-Contra harmonic quadratic index (QCI) is 

QCI = ∑ 𝔲#𝔳
%!((𝔲)!#(𝔳)!)

= ,#,
%!((,)!#(,)!)

@2𝑚(2"#$ − 6)A + ,#*
%!((,)!#(*)!)

(8𝑚) + *#*
%!((*)!#(*)!)

(2𝑚) = 𝑚[2"#! − 2.16]	  

c). Now for arithmetic Contra harmonic index,  

𝐴𝐶𝐼 = ∑ (-.#-/)!

!(-.!#-/!)
= (,#,)!

!(,!#,!)
@2𝑚(2"#$ − 6)A + (,#*)!

!(,!#*!)
(8𝑚) + (*#*)!

!(*!#*!)
(2𝑚)  

= (2"#! − 2)(𝑚 − 0.059)  
d). The Contra harmonic quadratic index is  

 𝐶𝐴𝐼 = ∑ !0-.!#-/!1
(-.#-/)!

= !0,!#,!1
(,#,)!

@2𝑚(2"#$ − 6)A + !0,!#*!1
(,#*)!

(8𝑚) + !0*!#*!1
(*#*)!

(2𝑚) 

= 𝑚(2"#! − 1.68)  

e). The geometric quadratic index is following  𝐺𝑄𝐼 = ∑P!-.!-/!

-.!#-/!
= P!(,!)(,!)

,!#,!
@2𝑚(2"#$ − 6)A +

P!(,!)(*!)
,!#*!

(8𝑚) +P!(*!)(*!)
*!#*!

(2𝑚) = 4𝑚(2"#! + 0.4134)  

f). The quadratic geometric index is  

𝑄𝐺𝐼 = ∑P-.!#-/!

!-.!-/!
= P ,!#,!

!(,!)(,!)
	@2𝑚(2"#$ − 6)A + P ,!#*!

!(,!)(*!)
(8𝑚) + P *!#*!

!(*!)(*!)
(2𝑚) = 𝑚[0.25(2"#!) −

9.9688]	  
In the following comparison graph, GQI, this index considerably outperforms the others for all values 

of  𝑚. The GQI method incorporates a strong growth component, scaled with the aid of 4m, and provides 
a positive constant, which significantly will increase with m. This indicates that the GQI is probably 
specifically touchy to aspects of the network's shape that beautify its ability for handling complex 
operations or expansions, making it important for situations wherein increase capability is a key aspect. 
The ACI does no longer scale with 𝑚, which results in a regular calculation throughout special values of 
𝑚. This index gives a steady measure of complexity that might be useful for standardized assessments 
throughout diverse configurations or sizes of the community. The QGI increases at a decrease rate 
compared to different indices, indicating a conservative estimate of fine increase inside the network. This 
index might be essential in conservative designs or opinions in which overestimation of functionality ought 
to cause inefficiencies or failures. CQI, QCI , and CAI, these indices scale linearly with  𝑚 and regulate 
barely for various factors. They provide a mild assessment of the community’s skills, appropriate for 
general critiques however much less impactful while excessive precision or high sensitivity to 
modifications is required. Overall, the better price of the GQI throughout all values of m highlights its 
ability utility in packages requiring an assessment of growth skills. In assessment, the ACI’s consistency 
might be useful for programs that need a stable complexity metric irrespective of the network length or 
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configuration. The slight increases in CQI, QCI, and CAI suggest their applicability in routine assessments 
where intense elements are much less in all likelihood to impact the overall evaluation. 

 

Figure 7. Graph 3: Comparison Bar Graph of Indices of 𝑇𝐵(𝑚) for 𝑚 = 1,2,3 

4.3. Representation of Buperfly Network 𝐵𝐹(𝑚) 
The butterfly network is among the most important and widely utilized degree-based networks. It is 

made up of butterfly-like motifs. The set of vertices 𝑉 in an m-dimensional butterfly network comprises 
pairs  (𝑖, 𝑗), where 𝑖 is an m-bit binary value that represents the row of the node and 𝑗 indicates the level 
or stage of nodes (ranging from 0 to m). A walking cycle is used to link two nodes. This means that a node 
(𝑖, 𝑗) is connected to two other nodes: a node (𝑖, 𝑗 + 1) and a node 	(𝑚, 𝑗 + 1), where 𝑚 is the result of 
flipping the 𝑗𝑡ℎ	bit and reflects the butterfly pattern. The edges in these networks are not directed. 𝐵𝐹(𝑚) 
represents an m-dimensional butterfly network with 2"(𝑟 + 1) vertices and 𝑚2"#$ are edges. Figure 5 
shows a three-dimensional butterfly network,𝐵𝐹(3). 

 
 
 
 
 

 
 
 
 
 

 
 

Figure 8. a 3-dimensional Butterfly Network 
 

Table 4. Partition of edge set of BF(3) built on degree sum of neighbor Partition of end vertices of each 
edge 
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(𝖚, 𝖛) NUMBER OF EDGES 

(2,4) 2!#! 
(12,16) 2!#!(M − 2) 

 
Theorem 4.3.1: Let 𝒢 be the graph of toroidal cylindrical Benes network, 𝑇𝐵(𝒢(𝑚)) then  
a) 𝐶𝑄𝐼	@𝐵𝐹(𝑚)A = 2"#!(9.6974𝑚 − 18.3408)  

b) 𝑄𝐶𝐼@𝐵𝐹(𝑚)A = 2"#![0.1031𝑚 + 0.7424]	
c) 𝑄𝐺𝐼@𝐵𝐹(𝑚)A = 2"#![0.0736𝑚 + 0.248]			
d) 	 𝐴𝐶𝐼@𝐵𝐹(𝑚)A = 2"#![0.0003𝑚 − 0.8994]		
e) 𝐶𝐼𝐴@𝐵𝐹(𝑚)A = 2"#![28.5714𝑚 − 56.5873]	
f) 𝐺𝑄𝐼@𝐵𝐹(𝑚)A = 2"#![13.5764𝑚 − 24.623]	
Proof: 
 a).  As we know  

CQI = ∑%!((𝔲)!#(𝔳)!)
𝔲#𝔳

= %!((!)!#(,)!)
!#,

(2"#!) + %!(($!)!#($*)!)
$!#$*

(2"#!(𝑚 − 2)) = 2"#!(9.6974𝑚 − 18.3408)  

b). For QCI 

QCI = ∑ 𝔲#𝔳
%!((𝔲)!#(𝔳)!)

= !#,
%!((!)!#(,)!)

(2"#!) + $!#$*
%!(($!)!#($*)!)

(2"#!(𝑚 − 2)) = 2"#![0.1031𝑚 + 0.7424]  

c). For QGI 

𝑄𝐺𝐼 = ∑c
𝑑𝑢! + 𝑑𝑣!

2𝑑𝑢!𝑑𝑣! = c
2! + 4!

2(2!)(4!)
(2"#!) 	+ c

12! + 16!

2(12!)(16!) (2
"#!(𝑚 − 2)) = 2"#![0.0736𝑚 + 0.248]		 

d). For ACI 

 𝐴𝐶𝐼 = ∑ (-.#-/)!

!(-.!#-/!)
= (!#,)!

!(!!#,!)
(2"#$) + ($!#$*)!

!($!!#$*!)
2"#!(𝑚 − 2) = 2"#![0.0003𝑚 − 0.8994]		 

e). For CAI 

𝐶𝐴𝐼 =,
2(𝑑𝑢! + 𝑑𝑣!)
(𝑑𝑢 + 𝑑𝑣)! =

2(2! + 4!)
(4 + 4)!

(2"#$) +
2(12! + 16!)
(12 + 16)! (2"#!(𝑚 − 2)) = 2"#![28.5714𝑚 − 56.5873] 

f). For GQI 

𝐺𝑄𝐼 = ∑c
2𝑑𝑢!𝑑𝑣!

𝑑𝑢! + 𝑑𝑣! =
c2(2

!)(4!)
2! + 4!

(2"#$) + c
2(12!)(16!)
12! + 16! (2"#!(𝑚 − 2)) = 2"#![13.5764𝑚 − 24.623] 

In the evaluation of indices for the toroidal cylindrical Benes network 𝐵𝐹(𝑚), the CIA indicates the 
very best values, indicating a enormous have an effect on of complexity adjustments on network overall 
performance. The GQI also scales robustly with 𝑚 highlighting its relevance in scenarios requiring tests of 
growth ability. The CQI, though starting decrease, grows exponentially, suggesting its usefulness in 
environments where network complexity and pleasant are paramount. Meanwhile, the QCI and QGI 
showcase slight increase, suitable for balanced reviews. The ACI remains drastically low, doubtlessly due 
to its components's layout, which can also simplest be effective below particular, excessive-scale situations. 
This shows various software of each index primarily based at the community's complexity and boom 
characteristics. 
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Figure 9. Graph 4, Comparison Bar Graph of Indices of 𝐵𝐹(𝑚) for 𝑚 = 1,2,3,4,5, 

5. Conclusion 
The obtained indices shed important light on the structural properties of cylindrical Benes networks 

and Butter Fly that are vertical and horizontal. These findings might improve performance and usefulness 
in a number of areas, including as boosting data center operations and communication effectiveness. The 
results of the study advance our knowledge of network behavior and the useful applications of Benes 
networks and butterfly network. The study's main finding emphasizes how important topological indices 
are for characterizing complex networks, such as Benes networks. These calculated indices are vital 
resources for understanding and enhancing network performance, especially in applications pertaining to 
digital signal processing, telephony, data centers, parallel computing, and Network-on-Chip architecture. 
It is anticipated that these discoveries would prove beneficial for the development and use of Benes 
networks in many practical scenarios. 
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