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Abstract: Scene classification is a meaningful and challenging research field in computer vision due 
to the wide variety of objects present in a scene, their internal relationships, and inter-class 
similarities. Thus, complex scene recognition and understanding are needed in various applications, 
including virtual reality-based scene integration, robotics, autonomous driving, and tourist guide 
systems. Therefore, a novel scene recognition system that integrates various components to 
recognize the scenes in complex imagery is developed. Compared to the state-of-art systems, our 
system combines many significant features for improving the classification accuracy. Initially, the 
images are acquired and preprocessed. It is worth mentioning that semantic segmentation 
approaches are powerful as they not only detect objects present in an image but recognize the 
boundaries of each object. To leverage the effectiveness of semantic segmentation, we propose a 
modified fuzzy C-means (MFCM) segmentation method that partitions the image into various 
objects to label the pixels according to different segmented objects. Then, convolutional neural 
network (CNN) features, the dynamic geometrical (GF), and, blob features (BF) are extracted and 
fused for further analysis to recognize the scene through a deep belief network (DBN). The latter 
incorporates a genetic algorithm that optimizes the number of hidden units based on the error rate 
and the training time. The effectiveness of the proposed system is validated over Pattern Analysis, 
Statistical Modeling, and Computational Learning Visual Object Classes (PASCAL VOC 2012) and 
the Microsoft Research Cambridge (MSRC) datasets by achieving 93.30% and 92.53% recognition 
accuracies respectively.  

Keywords: Blob Features; Deep Belief Network; Feature Fusion; Fuzzy C-Means; Scene Recognition. 

 

1. Introduction 
Deep learning has become a powerful tool for computer vision processes including scene recognition. 

However, scene recognition still faces many challenges due to the complexity and diversity of real-world 
scenes, including variations in light intensity, viewpoint, and object appearance. Semantic segmentation is 
an effective technique for understanding the scene, which labels each pixel in an image according to its 
semantic meaning. By segmenting an image into semantic regions, the model can capture the spatial 
relationships between different objects and their context, which is essential for scene recognition. 
Moreover, feature fusion is an important step for integrating different sources of information, such as 
visual and semantic features, to improve the recognition accuracy. The ability to accurately recognize 
scenes in images and videos is a crucial responsibility with a multitude of practical applications in the real 
world within the field of computer vision. To achieve this goal, researchers have proposed various 
approaches, including deep learning-based methods that can automatically learn useful representations of 
visual features from large-scale datasets. Among these methods, DBNs [1] have gained increasing attention 
due to their capacity to output complex hierarchical representations from raw input data. 

 This paper introduces a DBN architecture that combines semantic segmentation and feature fusion to 
outperform the state-of-the-art performance on scene recognition. Specifically, our approach first performs 
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semantic segmentation on the input image to obtain a set of semantic regions. Then, the model extracts 
both visual and semantic features from each region and fuses them using a novel feature fusion strategy. 
Finally, the fused features are handled by a fully connected layer for scene classification. We have 
evaluated our approach on several benchmark datasets and compared it with other state-of-the-art 
methods. The obtained results have demonstrated that our DBN-based approach achieves superior 
performance relating to accuracy and robustness. Overall, this work provides a promising direction for 
scene recognition research by leveraging the power of deep learning, semantic segmentation, and feature 
fusion. 

 Our key contributions are as follows:  
• A novel approach namely, modified fuzzy C-means (MFCM) segmentation is presented and 

implemented for semantic segmentation of complex images with dynamic environments. 
• The proposed algorithm aims to obtain dynamic geometrical features by identifying the object's key 

points and linking them to generate various geometric shapes for the purpose of feature extraction. 
• CNN and machine learning features including blob extraction are extracted and fused to effectively 

recognize the scenes with a comprehensive feature set.  
• To recognize a scene using feature fusion, a DBN is employed.  

 The rest of the article has been structured as follows: Section II presents the methodology of the 
proposed system and the architecture of the model in detail. Section III illustrates experimental results and 
datasets utilized and compares existing techniques. Finally, in section IV, the conclusion and future work 
are discussed. 

 
2. Literature Review   

Several researchers have employed conventional systems for investigating scene comprehension and 
categorization. These conventional systems compute various features to identify objects and categorize 
scenes. L. Zhang et al. [2] proposed a novel approach for scene classification based on learning object-to-
class kernels. The authors have addressed the limitations of existing methods which either rely on 
handcrafted features or involve a large number of parameters in kernel-based methods. The proposed 
approach learns the object-to-class kernels from the data and uses them for scene classification. The method 
involves a joint optimization of the kernel weights and the classifier parameters. The authors have 
conducted experiments on several benchmark datasets, including Caltech-101 and Scene-15, and have 
demonstrated that the proposed method outperforms the state-of-the-art performance in scene 
classification. Thus, the paper presents a promising approach for scene classification, which reduces the 
reliance on handcrafted features and achieves high accuracy using a relatively small number of parameters. 
Their framework has achieved an accuracy of 88.80% for the LS dataset. The proposed method has potential 
applications in areas such as image retrieval and object recognition.  

 X. Song et al. [3] presented a method for scene recognition that combines multiple visual features and 
spatial information. The proposed method constructs a semantic manifold by embedding the visual 
features into a common space, which allows for effective fusion of different features. Spatial context is also 
considered in the model by incorporating local and global spatial information. The proposed method 
outstands the performance of the state-of-the-art techniques on three benchmark datasets for scene 
recognition. The results presented in [3] demonstrate the effectiveness of combining multiple features and 
spatial information for scene recognition tasks. In [4], R. Kachouri et al. proposed an unsupervised image 
segmentation method that combines local pixel clustering and low-level region merging techniques. The 
proposed method clusters pixels based on local similarity and then groups cluster into coherent segments 
using low-level feature similarity between adjacent clusters. The method achieves competitive 
performance with other unsupervised segmentation methods while being computationally efficient, as 
shown by experiments on several benchmark datasets. The paper provides a comprehensive overview of 
unsupervised image segmentation techniques, highlighting the strengths and limitations of different 
approaches. More particularly, the authors [4] have used visual accuracy and Liu factors to evaluate their 
technique.  

 In [5] H. Zhao et al. proposed a Pyramid Scene Parsing Network (PSPNet) for semantic scene 
segmentation, which utilizes global context information effectively. The PSPNet adopts a pyramid pooling 
module that generates feature maps of different scales, which are fused with the original feature map 
through concatenation. The performance of the proposed network is superior to the performance of the 
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state-of-the-art methods on four challenging scene-parsing benchmark datasets, and extensive experiments 
show the effectiveness of the proposed pyramid pooling module in capturing global context information 
for semantic segmentation. The paper provides a comprehensive review of related work on semantic 
segmentation and global context modeling, highlighting the limitations of previous methods and the 
advantages of the proposed PSPNet. The technique described in [5] has provided an accuracy of 85.4% for 
the Pascal VOC 2012 dataset. In [6] N. Hussain et al. presented a novel deep learning and classical features-
based scheme for object recognition, which is has been applied to machine inspection. The proposed 
scheme uses a DNN to extract high-level features and a set of classical features, including texture, color, 
and shape, to capture low-level features. The classical features are fused with the DNN features to improve 
the recognition accuracy. The proposed scheme is evaluated on a machine inspection dataset, and the 
results show that it outperforms several state-of-the-art object recognition methods. Paper [6] provides a 
comprehensive literature review on object recognition and machine inspection, highlighting the limitations 
of previous methods and the advantages of the proposed scheme. The proposed scheme has the potential 
to be applied in various applications, such as quality control and defect detection in manufacturing 
processes.  

 S. Xia et al. [7] discussed a weakly supervised attention map (WS-AM) for scene recognition, which 
can localize the discriminative regions in an image without the need for pixel-level annotations. The 
proposed method first generates a coarse attention map by training a CNN with image-level labels and 
then refines the attention map by iteratively training the network with attention-guided feature maps. The 
refined attention map is used to localize the discriminative regions in the image and improve the scene 
recognition accuracy. The proposed method has been evaluated on various benchmark datasets, and the 
results show that it outperforms several state-of-the-art weakly supervised methods while being 
computationally efficient. Paper [7] provides a comprehensive literature review on weakly-supervised 
methods for scene recognition, highlighting the limitations of previous methods and the advantages of the 
proposed WS-AM. The proposed method has the potential to be applied in various applications, such as 
image and video retrieval. The work presented in [7] has considered three benchmark datasets including 
MIT Indoor 67, Scene 15, and UIUC Sports. The results obtained in [7] demonstrate that the proposed 
method selects fewer local regions. 

 In [8], Jun Chu et al. have introduced a unique object detection framework for small and occluded 
objects. The framework is a combination of two techniques: multi-layer convolution feature fusion (MCFF) 
and online hard example mining (OHEM). MCFF is a technique for fusing features from different layers of 
a CNN. This helps to improve the representation of objects in the network, which can be helpful for 
detecting small and occluded objects using KITTI dataset. In [9], Y. Zhand et al.  have presented the 
instance segmentation task in the context of flexible vision sensors and visual sensor networks. The authors 
have proposed a new method called Mask-Refined R-CNN (MR R-CNN) to overcome the limitations of 
Mask R-CNN. They have identified that the scale-invariant fully convolutional network structure of Mask 
R-CNN did not handle spatial differences among receptive fields having different sizes. This leads to the 
misclassification of pixels at object edges, affecting instance detail prediction. To address this issue, the 
stride of ROIAlign (region of interest align) is modified, and MR R CNN applies feature fusion by replacing 
the original fully convolutional layer with a new semantic segmentation layer. The authors of [9] have used 
MS COCO for experiments.  

 Furthermore, the idea of feature extraction and fusion has been adopted for palm print recognition. 
The authors of [10] have fused left and right palm prints while considering features with high 
discrimination. Another interesting study [11] has also applied adaptive selection and weighting of 
features for palm print protection. Thus, the scheme described in [11] is based on correlation from 2D 
feature representations to improve the verification performance. Various authors have proposed methods 
and techniques for scene understanding and recognition. These techniques have been evaluated on various 
benchmark datasets, highlighting their potential in different applications. 

Table 1. Overview of the various studies with datasets, methods used and their limitations. 

Reference Author Dataset used Contribution/Method used Limitations 
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[2] 
L. Zheng 

et al. 

Caltech-101, 

Scene-15 

Learning object-to-class 

kernels, joint optimization 

Reduces reliance on 

handcrafted features, 

achieves high 

accuracy with fewer 

parameters 

[3] 
X. Song et 

al. 

Scene-15, 

Scene-12, 

Caltech-256 

Fusion of multiple visual 

features, spatial 

information 

Effective combination 

of features and spatial 

information for 

solving scene 

recognition 

[4] 

R. 

Kachouri 

et al. 

Corel, 

Barkeley 

datasets 

Unsupervised image 

segmentation using local 

pixel clustering 

Competitive 

performance, 

computational 

efficiency 

[5] 
H. Zhao et 

al. 

Pascal VOC 

2012, 

Cityscapes 

Pyramid Scene Parsing 

Network (PSPNet) with 

global context modeling 

State-of-the-art 

semantic scene 

segmentation, 

effective global 

context modeling 

[6] 

N. 

Hussain et 

al. 

MNIST, 

CIFAR-10, 

ImageNet 

ILSVRC 2012 

Deep learning and classical 

features-based object 

recognition 

Improved 

recognition accuracy 

by fusing classical 

and DNN features 

[7] 
S. Xia et 

al. 

MIT Indoor 

67, Scene 15, 

UIUC Sports 

Weakly supervised 

attention map (WS-AM) for 

scene recognition 

Discriminative region 

localization without 

pixel-level 



Journal of Computing & Biomedical Informatics                                            Volume08  Issue 01                                                                                         

ID: 716-0801/2024  

annotations 

outperforms weakly 

supervised methods 

 
3. Materials and Methods  

This section briefly introduces a novel framework for scene recognition in complex scenarios. Figure 
1 depicts a high-level overview of the proposed model. The system architecture is divided into multiple 
phases, including (i) segmentation, (ii) feature extraction, (iii) feature Fusion, and (iv) scene recognition. 

 
Figure 1. System Architecture of Proposed Model 

3.1. Pre-processing  
 After data acquisition, the first step is to prepare the data for analysis. The information gathered for 

this study has been manipulated statistically and geometrically. When saving an image, the RGB format is 
used in order to process and remove any unwanted particles in the image. An image's artifacts and noise 
can be filtered out using digital filters. 
3.2. Modified Fuzzy C-Means Segmentation 

 MFCM is a variant of FCM that introduces modifications to better handle complex images with 
dynamic environments, particularly for semantic segmentation tasks. The modification in MFCM involves 
adapting the cluster weight reduction strategy based on minimizing the error in the objective function, 
allowing for more effective segmentation of spatially structured data. During segmentation, similar areas 
are separated into their constituent parts. Figure 2 illustrates the MFCM segmentation results over 
PASCAL VOC 2012 dataset.  

 MFCM is a fuzzy-based [12] segmentation method. In this method, pixels are used as data points to 
find pairs of similar parts. In fuzzy logic, pixels do not belong to one particular group but are instead 
categorized into multiple different categories. By iteratively minimizing the objective function, the FCM 
has an effect on the image. Using a cluster weight reduction strategy based on minimizing the square of 
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the error in the objective function AN(P, Q), useful clusters can be created. An expression for the objective 
function is as follows: 

 
   (a)                (b)                  (c) 

Figure 2. Semantic segmentation (a) original image, (b) grayscale image, and (c) segmented image 
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where the distance between the pixel to the cluster's center is computed via 𝑃 and	𝑄  𝐴!(𝑃, 𝑄). 
Usually, the MFCM technique is computationally complex as it analyses the spatial values along with each 
iteration. These spatial values determine the distance between the cluster center and each pixel. The 
distance and the membership value are indirectly proportional to each other. For instance, if the distance 
between the cluster center and the pixel is large, the membership value will be small, and vice versa. 
Consequently, the computation for all the adjacent pixels significantly increases. 

The modification in MFCM aims to enhance the original FCM algorithm by considering spatial 
relationships and dynamic environments in image segmentation tasks. 

Unlike standard FCM, which may not effectively capture spatial information, MFCM incorporates 
spatially structured data into the clustering process, leading to improved segmentation results. 

Alternatively, we can also compare it Mathematically, MFCM adjusts the objective function to account 
for spatial relationships among data points and cluster centroids, resulting in more accurate segmentation 
of complex images. 

The Modified Fuzzy C-Means (MFCM) algorithm builds upon the classical Fuzzy C-Means (FCM) by 
introducing modifications to the objective function to enhance the clustering process, particularly for 
spatially structured data. Here’s how the mathematical foundation for MFCM could be expressed, 
incorporating the details from our earlier discussion: 

In classical FCM, the objective function 𝐽FCMJFCMis given by: 
 𝐽012 = ∑ ⬚&

#$% ∑ (𝑊#')3"
'$% . >𝑥# −	𝑣'>

)	          (5) 
where 𝑛 is the number of data points, 𝑐 is the number of clusters, (𝑊#') is the membership degree of 

the data point 𝑥# to the cluster  𝑣', 𝑚 is a fuzziness exponent, controlling the degree of cluster fuzziness, 
>𝑥# −	𝑣'>

) represents the squared Euclidean distance between the data point 𝑥# and the cluster centroid 
𝑣'. 

The membership degrees are updated by using the following formula:  
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By using the above mathematical formula, the membership degree based on the relative distances 
from the data point to all cluster centroids are adjusted, emphasizing the data points' closer centroids. 

MFCM extends the objective function of FCM by adding a regularization term that incorporates an 
additional error term (𝑃,). The modified objective function, 𝐽MFCM, is: 

𝐽2012 = ∑ ⬚&
#$% ∑ (𝑊#')3"

'$% . >𝑥# −	𝑣'>
) + 		λ	. 𝐴	𝑁	(𝑃, 𝑄)      (7) 

where λ is a regularization parameter that adjusts the impact of the 𝐴	𝑁	(𝑃, 𝑄) term on the overall 
objective function, 𝐴	𝑁	(𝑃, 𝑄) is an error term designed to address specific clustering challenges, such as 
minimizing errors due to overlapping clusters or spatial separations that are not well-captured by 
traditional methods. 

The introduction of 𝐴	𝑁	(𝑃, 𝑄)  allows MFCM to handle more complex data distributions and 
structures, making it particularly useful for datasets where spatial relationships or other contextual factors 
are important. By adjusting cluster weights and taking into account additional error considerations, MFCM 
can achieve more accurate and contextually relevant clustering than the standard FCM algorithm. 

 Here are some key differences between FCM and MFCM for understanding. FCM is a more general-
purpose clustering algorithm, while MFCM is a more specialized clustering algorithm that is designed for 
data that is spatially structured. MFCM is also less computationally expensive than FCM, which makes it 
a more attractive option for large datasets. The modification in MFCM aims to enhance the original FCM 
algorithm by considering spatial relationships and dynamic environments in image segmentation tasks. 
Unlike standard FCM, which may not effectively capture spatial information, MFCM incorporates spatially 
structured data into the clustering process, leading to improved segmentation results. 

 By integrating spatial information, MFCM minimizes the effects of noise and improves the coherence 
of the segmented regions, which is crucial for accurate scene recognition. Additionally, MFCM adjusts the 
objective function to account for spatial relationships among data points and cluster centroids, resulting in 
more accurate segmentation of complex images. The theoretical background and comparative analysis 
between FCM and MFCM provide a clear understanding of how the modification enhances the original 
algorithm and its impact on semantic segmentation. By incorporating spatial information and adapting the 
clustering strategy, MFCM offers improved segmentation results, particularly for complex images with 
dynamic environments. Table 2 demonstrates the key modifications of both clustering algorithms. 

Table 2. Comparison of FCM and MFCM in terms of features 

Feature FCM MFCM 

Distance metric Euclidean Spatial 

Optimization approach Global Local 

Computational 
complexity 

More computationally 
expensive 

Less computationally 
expensive 

Specialization General-purpose 
Spatially structured 

data 

3.3. Features Extraction and Fusion 
In this section, the unique features from various segmented objects are extracted. Different deep and 

machine learning feature extraction approaches are discussed and elaborated. These features are then 
fused to accurately recognize the scenes in the imagery.  
3.3.1. CNN Features Extraction 

 CNN features [13] are extracted through a pre-trained CNN model i.e. VGG-16  [14]. This 
architecture normally uses ImageNet as a training dataset. The VGG-16 architecture has an input as well 
as an output layer while sixteen convolution layers are embedded to process the input data accordingly. 
All the images are converted to a size of 224x224x3 before being taken as input for the CNN model. 
Additionally, five max-pooling and three fully-connected layers are incorporated. a window size of 2 x 2 
is used to maximize the results of pooling. When it comes to activation functions, ReLU is unquestionably 
the most prevalent, and as such, it is employed in the layers. To successfully extract useful CNN features, 
we employ a transfer learning approach. In order to make the model more useful than a newly designed 
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model, this approach makes use of the learned features. Figure 3 illustrates the architecture of CNN 
features extraction by using VGG-16.  

 
Figure 3. The architecture of VGG-16 for CNN features extraction over segmented objects 

3.3.2. Dynamic Geometrical Features 
 The segmented objects undergo a local computation of geometrical attributes. At first, four corners 

are determined for each object that has been recognized and segmented. In addition, the upper and lower 
bounds, as well as the left and right extremes have been considered. The four local geometric aspects, 
including the Euclidean distance, the area of triangles generated by connecting extreme points, 
the perimeter of these triangles, and measuring the cosine for the angles estimated between the sides of a 
triangle, may be determined using these extrema. Algorithm 1 illustrates the process of dynamic 
geometrical feature extractions. This method significantly extends the feature extraction capabilities of 
typical scene recognition systems by focusing on the geometrical relationships within the image. By 
identifying key points and constructing geometric shapes (like triangles), the system can capture more 
nuanced information about the structure and layout of the scene. The step by step procedure for the 
dynamic geometrical feature extraction are described in Algorithm 1.  

Algorithm 1: Dynamic geometric features computation 
Input: Segmented objects 
Output: Dynamic geometric features of objects. 
[ROW COL] = size (seg_object) /* returns number of rows and number of col. in the object*/ 
/* Find these extrempoints */ 
[extreme_top , extreme_right, extreme_bottom, extreme_left, mid_pixel]=extremes(seg_object) 
for 1: ROW   /* read all pixel’s pix in the scene/image */ and mark spot points  
     for 1: COL   /* Extract points*/ 
     if pix (u,v) = mid_pixel Then spot point on pix(u,v) end 
  else-if pix (u,v) = ext_left Then spot point on pix (u,v) end 
  else-if pix (u,v) = ext_right Then spot point on pix (u,v) end 
  else-if pix (u,v) = ext_top Then spot point on pix (u,v) end 
  else-if pix (u,v) = ext_bottom Then spot point on pix (u,v) end 
  else Then pix (u,v) is other than extreme point pixels end 
     end 
  end 
/* compute distance and draw lines between these extreme points by using an array of points 
for all images */ 
ArrayPoints = [ext_top, ext_right, ext_bottom, ext_left] 

mid_pixel; 

for j = 1 : ArrayPoints [] 
     if (ArrayPoints [j] => 4) Then ArrayPoints [j+1]=0; end 
    dist (ArrayPoints [j], ArrayPoints [j+1])  /*1st iteration show distance between extreme top 
and right points */ 
  draw_line(ArrayPoints [j], ArrayPoints [j+1]) end 
for j = 1 : ArrayPoints [] 
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    dist (ArrayPoints [j], mid_ pixel)  /* 1st iteration show distance between extreme top and mid_ 
pixel */ 

  draw_line(ArrayPoints [j], mid_ pixel) 
  end 
return ext_left, ext_right, ext_top, ext_bottom, mid_ pixel, and distance between these points 

 Capturing the spatial relationships between objects through geometrical shapes allows for a deeper 
understanding of the scene, which is critical for distinguishing complex scenes where simple feature 
extraction methods might struggle. The use of extreme points (corners, edges) to generate geometric 
features adds a layer of precision in representing the structural attributes of objects within the scene. 
3.3.3. Blob Features Extraction  

A blob is defined a cluster of connected pixels belonging to a specific shape [15-16]. Given an image, 
the morphological closing operation is utilized for pixel clustering. This operation allows to detect an object 
as a set of blobs. Moe importantly, the Laplacian of Gaussian (LoG) is investigated by the most popular 
technique for blob detection. Hence, the convolution of an image I(u,v) with LoG is represented by the 
following equation: 

ℊ(𝑢, 𝑣, 𝓉) = %
):𝓉

𝑒5
/+01+
+𝓉                                          (8) 

to provide a scale space representation at a specific scale t S(u,v;t)=g(u,v,t)*I(u,v). So, after the 
computation of the Laplacian operator  

    𝛻)𝑆 = 𝑆<< + 𝑆77                                        (9) 

Consequently, greatly positive responses will be provided for dark blobs with radii r=√2t. However, 
greatly negative responses will be provided for bright blobs with similar radii. The most important concern 
of the response, while applying at a single scale, is its dependency. Both the Gaussian kernel and the scale 
of the blobs are strongly correlated and dependent on each other. Therefore, to maintain the rationale for 
the blob feature extraction, this paper incorporates a multi-scale technique. Hence, a scale-normalized 
Laplacian operator is embedded as follows:  

   𝛻&=(3) 𝑆 = 𝓉(𝑆<< + 𝑆77)                                    (10) 
3.3.4. Features Fusion 

 In this section, separately computed features, i.e., CNN features(𝐹1!!), Blob features (𝐹>?=@), and 
Geometrical features (𝐹AB=)	are fused. The feature vectors are normalized before fusion to ensure the 
consistency of the fused feature vector. A completely fused feature vector is created by combining the 
CNN, blob features, and geometrical features together after normalization as follows: 
   𝐹0<CBD = [𝐹1!!	𝐹>?=@	𝐹AB=	]                               (11) 
3.4. Scene Recognition via DBN 

 This section describes the details of DBN as a classifier. The DBN architecture [17-19] is simple and 
composed of various layers, including input, hidden, and an output layer, as shown in Figure 4. The input 
layer takes the features set as an input; hidden layers are the actual processing units where a genetic 
algorithm (GA) is incorporated to optimize hidden units and compute the total epochs. While the output 
layer predicts the class label of each category included in the training process. The training process 
continues until one of the following conditions is achieved: a minimum gradient is approached, 
performance standard in terms of mean squared error is reached, or epoch upper bound is approached.  

In order to optimize the hidden units, the fitness function plays an important role. As a result, a fitness 
function is developed to decrease the DBN's training time, and accordingly raise its accuracy. This paper 
considers the following fitness function:  

FitnessFun = 1000 ×  E+ (𝑇E + 𝑇>)/40                         (12) 
where the misclassification rate is denoted by E, the training time of DNB before backpropagation 𝑇E, 

and parameter tuning time by 𝑇>	during backpropagation. The smaller the error and time, the lower the 
level of fitness. The results of object detection by using DBN are presented in Figure 5. 

The dimensions of a Deep Belief Network (DBN) when applied to the MSRC (Microsoft Research 
Cambridge) dataset are as follows:  

 The MSRC dataset consists of images with pixel-wise annotations for different semantic classes. Each 
image typically has dimensions of width x height, where width and height can vary across images. The 
number of semantic classes in the MSRC dataset is fixed and typically ranges from around 20 to 23 while 
we used only 15 classes for experiments 
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Figure 4. Classifier network architecture using DBN 

 
Figure 5. Scene recognition over PASCAL VOC 2012 dataset by applying the DBN classifier 

 Our model has used the same dimensions for the input layer as the dimensions of input images in the 
MSRC dataset, i.e., width x height which is resized as 320x320. The output layer of the DBN has dimensions 
corresponding to the number of semantic classes in the MSRC dataset. In our case, 15 classes have been 
evaluated, so the output layer has a dimension of 15. Similarly, when applied to PASCAL VOC 2012, the 
dimensions are used accordingly.  
3.5. Impact of Fusion Technique over Scene Recognition 

 In the pursuit of advancing scene recognition capabilities, the integration of CNNs with distinctive 
machine learning techniques—specifically blob detection algorithms—culminates in a remarkable 
methodological breakthrough when fused with DBNs. The strategic incorporation of CNNs, renowned for 
their adeptness in hierarchical feature extraction from visual data, aligns symbiotically with blob detection 
methods, which are exemplary in identifying regions within an image that differ in characteristics, such as 
brightness or color, compared to surrounding regions. 

 The innovation lies in combining the strengths of both approaches. CNNs excel in capturing and 
learning features from raw images that are vital for identifying and classifying various elements within a 
scene. When combined with the localized feature detection capabilities of blob detection, the resulting 
hybrid feature set is both rich and nuanced, containing both high-level abstractions and specific, localized 
information. 

 DBNs act as the integrative core in this methodological fusion, adeptly combining the detailed 
textural and shape information gleaned from the blob detection with the abstracted representations learned 
by CNNs. DBNs, with their multiple layers of stochastic, latent variables, serve as a sophisticated 
architecture for feature combination and transformation. They provide a probabilistic framework that can 
discern and represent complex data distributions, making them particularly suited for integrating and 
refining the feature sets into a composite representation that enhances scene recognition performance. 

 By orchestrating the fusion of CNN and machine learning features with the robust structure of DBNs, 
the proposed approach capitalizes on the complementary strengths of each component. This innovative 
fusion not only intensifies the discriminatory power of the scene recognition system but also offers new 
pathways for research in machine learning and computer vision. The capacity to combine various types of 
features and to learn from these combinations in a deep architecture paves the way for developing more 
nuanced and powerful algorithms for scene understanding and image analysis in scientific and real-world 
applications. 
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4. Experiments and Results 
This section describes the details of the experiments performed during this study and the results of 

these experiments in order to demonstrate the significance of the proposed model. 
4.1. Datasets Description 

The performance of our system is evaluated using the PASCAL VOC 12 and MSRC datasets. The 
details of these datasets are described as follows: 
4.1.1. PASCAL VOC 2012 dataset  

The PASCAL VOC dataset [20] has been developed for the recognition of a number of real scenes. The 
dataset consists of 11,530 images spanning 20 object classes with annotations for object detection and 
segmentation tasks. Images were randomly split into 70% for training, 15% for validation, and 15% for 
testing. Images including boat, airplane, bicycle, bottle, bus, bird, car, cat, cow, chair, dining table, horse, 
dog, motorbike, potted plant, person, sheep, sofa, train, and TV/monitor were resized to 320x320 pixels.  
More precisely, the data of PASCAL VOC belong to four categories namely, Animal, Person, Indoor, and 
Vehicle. Moreover, PASCAL VOC organizes samples into three categories that are comprised of regions of 
interest annotated objects, segmentation, and training/validation images. Some samples of PASCAL VOC 
2012 are shown in Figure 6. 

 
Figure 6. A few examples of the PASCAL VOC 2012 

4.1.2. MSRC dataset 
The MSRC dataset [21] comprised an object of 591 various categories with dynamic environments 

including street buildings, landscapes with hills, traffic signs, seaside, etc.  The dataset is a collection of 15 
different classes including bench, duck, boat, flower, cow, sky, cat, sign, water, tree, bird, dog, grass, car, 
and building. The resolution of the images in the dataset is 213x320 and every image has multiple objects 
in the scene image. Figure 7 illustrates the example images of the MSRC dataset. 

 
Figure 7. Example images of the MSRC dataset 

4.2. Performance Measurement and Result Analysis     
This section presents the recognition accuracies of the proposed model using DBN over the PASCAL 

VOC 2012 and MSRC benchmarks. The proposed system is evaluated against the LOSO cross-validation 
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technique. Thus, the confusion matrix of the PASCAL VOC 2012 and MSRC datasets for scene recognition 
have been computed to present the results, as shown in Tab. 3 and Tab.4. Tab. 3 describes the confusion 
matrix of the obtained recognition accuracies that correspond to twenty classes over PASCAL VOC 2012 
with an average accuracy of 93.30%. The accuracy of PASCAL VOC 2012 is slightly higher than MSRC due 
to the feature fusion technique. However, the higher recognition accuracies over other benchmark 
techniques using PASCAL VOC 2012 and MSRC where an extensive evaluation is performed, with the 
proposed system being compared against state-of-the-art methods. Tab. 6 provides the comparison of the 
proposed model's average recognition accuracy to that of previously existing approaches. 

Experiments were conducted on a system equipped with an NVIDIA Tesla V100 GPU. Implemented 
using Python 3.7 and TensorFlow 2.3. All code was run under Linux Ubuntu 20.04. 

The DBN consisted of three hidden layers with 500, 500, and 1000 neurons respectively. The activation 
function used was ReLU for hidden layers and softmax for the output layer. Learning Rate: 0.001, adjusted 
dynamically with a decay rate of 0.95 every 5 epochs. The batch size of 64 is used with 50 Epochs. Adam 
optimizer with β1 = 0.9 and β2 = 0.999 is used for optimization. 

Initially, only CNN features are used to recognize the scene by applying DBN and achieved an 
accuracy of 85.75% and 86.11% over PASCAL VOC 2012 and MSRC datasets respectively. Next, an addition 
of blob features improved the recognition accuracy to 87.97% and 89.25% over PASCAL VOC 2012 and 
MSRC datasets respectively. Finally, the complete set of features (CNN+BF+GF) after fusion is provided to 
DBN for scene recognition. The results demonstrate that after the fusion of the features, our method has 
produced the highest accuracies of 93.30% and 92.53% over PASCAL VOC 2012 and MSRC datasets 
respectively during the experiments, as shown in Table 3 and Table 4. Subsection 
Table 3. Recognition accuracies across the Pascal VOC 2012 dataset using DBN in terms of the confusion 

matrix  
 HS BD PR CW SH AP CT DG BT BS 

HS 0.94 0 0 0.05 0 0 0 0.01 0 0 

BD 0 0.90 0 0 0 0 0.06 0 0 0 

PR 0 0.00 0.96 0 0 0 0 0 0 0 

CW 0.04 0 0 0.95 0 0 0 0.01 0 0 

SH 0.01 0 0 0 0.94 0 0 0.05 0 0 

AP 0 0 0 0 0 0.96 0 0 0.01 0.03 

CT 0 0 0 0 0 0 0.95 0.05 0 0 

DG 0 0 0 0 0 0 0.04 0.96 0 0 

BT 0 0 0 0 0 0.01 0 0 0.92 0.07 

BS 0 0 0 0 0 0 0 0 0.04 0.95 

TN 0 0 0 0 0 0 0 0 0.07 0.02 

CR 0 0 0 0 0 0 0 0 0.03 0.02 

MB 0 0 0 0 0 0 0 0 0 0 
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BC 0 0 0 0 0 0 0 0.04 0 0 

BL 0 0 0 0 0 0 0 0 0 0 

CH 0 0 0 0 0 0 0 0 0 0 

DT 0 0 0 0 0 0 0 0 0 0 

PP 0 0 0 0 0 0 0 0 0 0 

SF 0 0 0 0 0 0 0 0 0 0 

TV 0 0 0 0 0 0 0 0 0 0 

TN CR MB BC BL CH DT PP SF TV 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.04 0 0 

0 0 0 0 0 0 0 0.04 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0.01 0 0 0 0 0 0 0 0 

0.91 0 0 0 0 0 0 0 0 0 

0 0.95 0 0 0 0 0 0 0 0 

0 0 0.92 0.08 0 0 0 0 0 0 

0 0 0.03 0.93 0 0 0 0 0 0 

0 0 0 0 0.91 0 0 0.09 0 0 

0 0 0 0 0 0.93 0 0 0.07 0.00 

0 0 0 0 0 0 0.92 0.04 0 0.04 
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0 0 0 0 0.05 0 0 0.91 0 0.04 

0 0 0 0 0 0.01 0 0 0.93 0.06 

0 0 0 0 0 0.05 0.03 0 0 0.92 

Mean recognition accuracy = 93.30% 
HS = horse; BD = bird; PR = person; CW = cow; SH = sheep; AP = aeroplane; CT = cat; DG = dog; BT = 
boat; BS = bus; TN = train; CR = car; MB = motorbike; BC = bicycle; BL = bottle; CH = chair; DT = dining 
table; PP = potted plant; SF = sofa; TV = television. 

Table 4. Recognition accuracies across the MSRC dataset using DBN in terms of the confusion matrix 

 CW DG GR BN DK FW WT SK 

CW 0.95 0.05 0 0 0 0 0 0 

DG 0.04 0.91 0 0 0 0 0 0 

GR 0.03 0 0.89 0 0 0.03 0 0 

BN 0 0 0.01 0.93 0 0.01 0 0.01 

DK 0 0.03 0.02 0 0.91 0 0 0.02 

FW 0 0 0.02 0 0 0.94 0 0.02 

WT 0 0 0 0 0 0 0.96 0.03 

SK 0 0 0.03 0 0 0 0.03 0.90 

CT 0.02 0.04 0 0 0 0 0 0 

SN 0 0 0 0.06 0 0 0 0 

TR 0 0 0.05 0 0 0.01 0 0.01 

BT 0 0 0 0 0.03 0 0 0 

CR 0 0 0.02 0 0 0 0 0 

BD 0 0 0 0 0 0 0 0.08 

BG 0 0 0.02 0.01 0 0 0 0.02 

CT SN TR BT CR BD BG 

0 0 0 0 0 0 0 

0 0 0 0 0.05 0 0 

0 0 0.03 0 0.01 0 0 
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0 0.02 0 0.02 0 0 0 

0 0 0 0.02 0 0 0 

0 0 0.02 0 0 0 0 

0 0 0 0.01 0 0 0 

0 0 0.02 0 0 0.02 0 

0.93 0 0 0 0 0.01 0 

0 0.92 0 0 0 0 0.02 

0 0 0.93 0 0 0 0 

0 0 0 0.91 0.06 0 0 

0 0 0 0 0.96 0 0.02 

0 0 0 0 0 0.92 0 

0 0.02 0 0 0.01 0 0.92 

Mean recognition accuracy = 92.53% 
CW=cow; DG =dog; GR =grass; BN = bench; DK =duck; FW =flower; WT =water; SK =sky; CT =cat; SN 
=sign; TR =tree; BT =boat; CR =car; BD =bird; BG =building. 

Table 5. Scene recognition accuracies of the proposed system by incorporating various feature 
combinations over benchmark datasets  

Features 
Accuracy (%) 

MSRC PASCAL VOC 2012 

CNN 86.11 85.75 

CNN + BF 89.25 87.97 

CNN + BF + GF 92.53 93.3 

Table 6. Comparison of recognition accuracies with other state-of-the-art methods over the PASCAL 
VOC 2012 dataset. 

Author/Method 
Mean Recognition Accuracy % 

PASCAL VOC 2012 Dataset 

H. Zhao et al. [5] 85.40 

S. Shetty et al. [22] 85.60 
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Y. Wei et al. [23] 81.80 

T. Thanh-Dat et al. [28] 81.20 

Z. Chang-Bin [29] 78.80 

Proposed 93.30 

Table 7. Comparison of recognition accuracies with other state-of-the-art methods over the MSRC 
dataset.  

Author/Method 
Mean Recognition Accuracy % 

MSRC Dataset 

Z. Ye et al. [25] 77.00 

C. Wu et al. [26] 90.30 

D. Xie et al. [27] 92.50 

Proposed 92.53 

The proposed method significantly outperforms other methods, with a mean recognition accuracy of 
93.30% over PASCAL VOC 2012 as shown in Table 6. However, the results are comparable over MSRC 
with equivalent recognition accuracy using the proposed technique as shown in Table 7. It reflects that the 
proposed approach, potentially utilizing a combination of DBNs for deep feature extraction and 
sophisticated semantic segmentation techniques, is highly effective for the PASCAL VOC 2012 dataset. The 
substantial lead over other methods indicates possibly superior handling of the dataset's complexity, 
possibly through more effective feature representation and generalization capabilities. 

 
5. Discussion 

The study presents an approach that combines semantic segmentation and feature fusion to improve 
scene recognition accuracy. The results obtained by the study on both the MSRC and PASCAL VOC 2012 
datasets show that the proposed approach outperforms existing state-of-the-art methods. On the MSRC 
dataset, the proposed approach achieves an accuracy of 92.53%, which is significantly higher than the 
accuracy obtained by the benchmark methods. On the PASCAL VOC 2012 dataset, the proposed approach 
achieves an accuracy of 93.30%, which is also significantly higher than the state-of-the-art method. 

 While the overall performance is commendable, certain classes within the datasets presented 
challenges. For instance, in the PASCAL VOC 2012 dataset, some misclassifications were noted between 
similar object classes, such as between 'bus' and 'train', likely due to their structural similarities. In the 
MSRC dataset, differentiation between natural elements like 'grass' and 'tree' proved difficult, potentially 
due to overlapping features in the greenery. 

The study demonstrates the effectiveness of combining semantic segmentation and feature fusion for 
scene recognition tasks. The proposed approach is able to extract and fuse multi-level features from both 
the original images and their corresponding semantic segmentation maps, which leads to more 
discriminative features and improved recognition accuracy. The study also shows that using a DBN for 
feature learning is a powerful tool for scene recognition, as it is able to automatically learn hierarchical 
representations of the input data. 

 The evaluation of our system across the PASCAL VOC 2012 and MSRC datasets has demonstrated 
the efficacy of the proposed model in recognizing a diverse array of scenes. With an achieved mean 
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accuracy of 93.30% on PASCAL VOC 2012 and 92.53% on MSRC, our system not only shows high 
performance but also indicates good generalizability across different types of datasets. 

 The PASCAL VOC 2012 dataset, characterized by its 20 distinct classes categorized into animals, 
person, indoor, and vehicle, poses a complex challenge due to the variability of object scale, pose, and 
occlusion. Despite these challenges, our model's fusion of CNN, blob, and geometrical features 
(CNN+BF+GF) yielded a high recognition accuracy, suggesting robust feature extraction and an effective 
strategy for handling diverse scene complexities. 

 On the other hand, the MSRC dataset includes dynamic environments like street buildings and 
landscapes with hills, amongst its 15 classes. The slightly lower accuracy on this dataset could be attributed 
to the smaller number of classes and possibly more challenging scene compositions, such as outdoor and 
landscape scenes that may present less-defined object boundaries and more varied textures. 

By combining both deep learning features (from CNNs) and traditional machine learning features, 
the model achieves a more robust and discriminative feature set. Employing DBN allows for the 
optimization of feature integration, leveraging the model’s ability to learn complex hierarchical 
representations, which significantly boosts the accuracy and robustness of scene classification. 

Individually, each of these techniques contributes to the enhanced capability of the system to 
recognize and interpret complex scenes more accurately than existing methods. Collectively, they integrate 
to form a system that is not only capable of high accuracy in variable conditions but also robust against the 
common challenges in scene recognition such as lighting variations, occlusions, and diverse object 
presentations. 

 Overall, the results obtained by the study suggest that the proposed approach is a promising method 
for scene recognition tasks and has the potential to be applied to other computer vision tasks as well. The 
study provides insights into the importance of semantic segmentation and feature fusion for scene 
recognition and highlights the effectiveness of DBNs for feature learning in such tasks. 

 Our findings suggest that while the proposed method is generally robust and adaptable, performance 
can vary depending on the scene complexity and the distinctiveness of object features within the datasets. 
The fusion of CNN with blob and geometrical features has proven beneficial in capturing a comprehensive 
feature set that aids in the generalizability of the model. These contributions collectively push the 
boundaries of what's possible with scene recognition systems, providing advancements that could be 
beneficial for applications in autonomous driving, surveillance, and augmented reality, where 
understanding the complex dynamics of real-world scenes is paramount. 

 
6. Conclusion and Future Work 

 This paper presents an approach for scene recognition over various complex images. The proposed 
system performs segmentation and extracts various features including deep and machine learning 
features. After feature fusion, scene recognition is performed by applying the DBN. The features fusion 
process is the key to improving the recognition rate of scenes over benchmark datasets. The proposed 
recognition system has a number of real-time applications like sports activity recognition, autonomous 
driving, robotics, and surveillance systems. When compared to other recognition systems, the 
methodology of our proposed system outperformed the other systems in terms of recognition accuracy. 
The feature fusion process is integral to this success, enabling the system to capture a rich set of 
discriminative features that enhance recognition accuracy. 

We are committed to extending our work with different CNN-based semantic segmentation 
techniques along with multiple feature extraction and fusion for scene recognition in general as well as 
aerial images. Moreover, future work will explore further refinement of CNN-based semantic 
segmentation techniques and the integration of additional features to improve recognition in even more 
generalized scenes, including aerial imagery. Our commitment to advancing the field will focus on 
enhancing the adaptability and robustness of scene recognition systems to a wider range of applications, 
such as autonomous driving and robotics.  

 This analysis reflects on the provided data, emphasizing the high generalizability of the proposed 
model while also noting areas where performance varies, possibly due to the inherent challenges of certain 
scene types or dataset specifics. Future work is outlined with a focus on continuing to improve the system's 
generalizability. 
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