
Journal of Computing & Biomedical Informatics                                                                                            Volume 08  Issue 01 
                   ISSN: 2710 - 1606                                                                                                                                                 2024 

ID : 805-0801/2024  

Research Article 
https://doi.org/10.56979/801/2024 
 

Spatial Correlation Module for Classification of Ocular Diseases in Diabetic 
Retinopathy Using Color Fundus Images 

 
Nosha Naeem1*, Ali Hadier2, Muhammad Irfan3, Waqar Azeem2 

 

1Department of Data Science, Lahore Garrison University, Lahore, Pakistan. 
2Faculty of Computer Sciences, Lahore Garrison University, Lahore, Pakistan. 

3Department of Information Technology Operations, Senior Programme Manager, Punjab Information Technology Board, Lahore, 
Pakistan. 

*Corresponding Author: Nosha Naeem. Emails: noshanaeem9@gmail.com 
 

Received: August 11, 2024 Accepted: December 01, 2024 

 
Abstract: Early identification and therapy of ocular diseases (ODs) are crucial in avoiding irreversible 
vision loss. Color imaging of the fundus (CFI) is an economical and trustworthy screening tool. 
However, automatic and thorough diagnostic tools are required since early OD symptoms are usually 
modest. The traditional wisdom suggests treating the eyes independently and relying only on image-
level diagnostics, without considering intraocular correlation data. Additionally, these techniques 
typically only target a single or a limited number of ODs simultaneously. This research presents a novel 
classification model called PLML_ODs. It includes patient-level multi-label OD data. Our technique 
integrates patient-level diagnosis, notably in diabetic retinopathy, by combining bilateral ocular and 
multi-label ODs classification. A feature correlation SCNet, a classification score generator, and a feature 
extracting backbone based on convolutional neural networks (CNN) named DenseNet-169 comprise the 
PLML_ODs system. The DenseNet-169 model obtains two sets of features using on both sides CFI. The 
SCNet then captures a correlation connecting the two collections of features pixel-wise. In order to get 
an embodiment at the patient level, the attributes are integrated after analysis. Using this representation, 
the ODs classification process is carried out. We evaluate PLML_ODs's classification performance to 
that of other baseline techniques using a publicly available dataset and an enveloping margin loss. 
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1. Introduction  

The prevalence ophthalmic illnesses (ODs) that may progress to irreversible vision loss has been 
skyrocketing over the past several decades. As trachoma, AMD, DR, cataracts and untreated refractive errors 
in this category. According to a recent World Health Organization (WHO) study, over 2.2 million people had 
vision impairment worldwide. Half or more of those cases could have been prevented if it works had been 
performed correctly [1]. Refractive disorders which are not corrected and cataracts are the most common 
causes of blindness and its forms (nearsightedness, farsightedness, presbyopia, trachoma) [2]. According to 
the World Health Organization, more than 153 million people worldwide don't get their refractive problems 
repaired over 18 million are blind on both sides because of cataracts and nearly one million suffer from 
trachoma. It is estimated that AMD causes 8.7% of all blindness worldwide, or 3 million people, and is most 
common in industrialized countries [3]. It is now emerging that 4.8% of the global total of 37.3 million blind 
individuals are blind due to DR (1.8 million) [4-6].  Some 46 percent of diabetics are unaware that they have 
the disease. Only about 2% of people with diabetes ultimately lose the vision, and another 10% have severe 
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vision loss after 15 years [8]. Moreover, over 75% of people are known to develop diabetes-related 
complications after twenty years [9]. You must detect and treat ODs as soon as possible to avoid any 
irreversible visual loss [10]. Persistently floating blood cells may harm the retina and cause permanent vision 
loss, or actually lead to blindness [11–13]. For the purpose of improved OD identification, numerous imaging 
techniques have been developed. The two most used methods are optical coherence tomography (OCT) and 
color fundus imaging (CFI) [14]. Cross-sectional imaging of the retina can help diagnose by determining retinal 
thickness [15]. The inner eye surfaces are tracked while CFI checks for potential problems. Either method can 
pick up OD in its early stage. Considering CFI is more efficient and economical more regular fundus evaluation 
with CFI should be done in patients without symptoms especially the elderly [16, 17]. Progression of common 
ODs (e.g., DR, cataracts, AMD etc) is often unanticipated by patients because there are no early symptoms of 
loss of vision [18]. Getting an accurate diagnosis is just too hard to begin with. A large amount of energy and 
time needs to be devoted by humans in processing large volumes of CFI data [19]. The shortage of competent 
radiologists in less developed areas is so severe that manual analysis is economically impossible.  
Convolutional Neural Networks (CNNs) have achieved amazing progress for medical imaging [21, 22].   

In OD diagnosis, CNNs have excellent performance from illness categorization to object identification. 
Liefers et al. [9] located the fovea centers in OCT images using a pixel-wise classification. Meng et al. [14] 
introduced a two stage CNN approach to detect optical discs in CFI. Zekavat et al. [15] differentiated 
intraregional from extra retinal fluid using convolutional neural networks (CNNs) on optical coherence 
tomography shots.  

Gu et al. [5] made a network called ReLayNet that can tell the difference between the different layers of 
retina and fluid buildup on optical coherence tomography (OCT) pictures. Segmentation of CFI retinal vessels 
was achieved using convolutional neural networks (CNNs) and linked random fields [6]. Despite promise [23], 
little research to date has been addressed the difficulty of multilevel OD classification using CFI. The main 
problem comes if more than one form of OD is found in a single patient. More importantly, since patients tend 
to have more than one OD, we need to optimize models for multi label OD categorization. According to a 
research [11], coexisting myopia increases the risk of false negative glaucoma patient categorization. Earlier 
studies have proven promising, though those results may not hold up in the real world, where complex 
situations are always going to pop up. The problems outlined above are compounded by a dearth of studies 
about how to diagnose OD at the patient level. Almost all studies in recent years have been about images, 
comparing and contrasting the CFI of each eye separately. The primary contributions of this research are 
outlined below: 
• In order to successfully combine features collected from left and right Coloring Fundus Images (CFI), this 

research presents a new PLML_OD model that is built on SCNet, a custom module. Seven different ocular 
diseases (OD) are categorized using the suggested model, which uses a backbone CNN (DenseNet-169). 
In order to improve the quality from the recovered characteristics, SCNet takes their relationships into 
account. 

• We outperform many baseline techniques that depend on direct highlight concatenation on a publicly 
available CFI dataset using our proposed model, which incorporates a carefully designed method of 
feature correlation and fusion. 

• The ablation experiments show that our suggested model outperforms the current best practices. 
The remainder of this article is organized as follows: 
A review of the most current literature is given in Section 2. An extensive description of the suggested 

PLML_OD template for OD detection using CFI is provided in Section 3. In Section 4, we will go over the 
experimental setup, the outcomes, and how the suggested strategy stacks up against the competition. In 
Section 5, we draw a conclusion and provide some suggestions for further study. 

 
2. Related work  

In this section we will discuss the limitations of current approaches to the diagnosis of OD.  
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Also highlighted are the primary ways in which our suggested strategy tackles present-day problems. The 
characteristics retrieved by CFI were trained using transfer learning by Wang et al. [24]. After that, they added 
them using ML-C, which is problem transformation based. The authors perform histogram equalization to 
both color and black & white photos using a dataset that comprises eight distinct labels. After that, they 
experimented with two different methods to see which one worked best for classifying the two groups of 
images. Finally, after calculating the likelihood from two models, I average the sigmoid. Their strategy was 
hindered since their network performance was negatively affected by the large number of 'other diseases' ODs 
in their dataset. Inadequate understanding of some health issues and fuzzy feature ideas was also caused by 
their data's imbalance. Mayya et al. [25] used graph convolution netting (GCN) to identify eight lesions known 
as DR in CFI, as far as the authors are aware. In addition to ResNet 101's feature extraction, two convolutional 
layers were employed: a 3x3 kernel, stride 2, and adaptive max pooling. In the end, XGBoost, a completely 
supervised instruction approach, was used. They came up with their own to make it easier to see laser scars, 
onions, and bleeding sores. The model significantly improved the receivers' operational characteristics and 
accuracy, according to their findings. Several abnormalities, including micro aneurysms, soft or hard fluids, 
along and others, were undetected by their method [12]. Because the micro aneurysm was so hard to see out 
on the CFI backdrop—a little red dot placed against a backdrop of bigger red dots that make up the retinal 
capillaries—this restriction was established. The ODIR2019 dataset was used by Dipu et al. [26] to transfer-
learning-based identification of eight ODs. We found that Resnet-34, EfficientNet that, MobileNetV2, and 
VGG-16 are the best deep learning networks. After publishing their results, the authors trained a cutting-edge 
algorithm on their dataset. Then, they computed the accuracy of all their models. These models were ranked 
according on their accuracy: In this work, we evaluate Resnet-34, MobileNetV2, VGG-16 and EfficientNet. 
However, they did not provide any other methods to find ODs. For example, Choi et al. [27] suggested that 
we should use VGG-19 with random forest transfer learning for a CAD system because it was not able to 
evaluate the performance of the model only based on a computational accuracy score. A small dataset was 
used to identify eight distinct types of OD. They were able to maintain such accuracy as long as they kept the 
number of categories at three. For ten categories, categorization accuracy drops 30%. Then, when attempting 
to apply the transfer learning ensemble classifier, I was actually able to increase the accuracy only by 5.5%. 
While it did improve, the writers' disappointing performance was largely due to incorrect data and inverted 
data that didn’t help save them. While it is developed by Shaik et al. [33], we may thank them for developing 
this HA-Net, or Hinge Attention Network. First of all, a pre trained model, namely VGG16 is utilized to extract 
spatial features from the original image which helps us to generate input. Then, using a spatial attention 
Autoencoders, it learns lesion characteristics by producing lesion features. Then a deep neural network and 
channel attention are used to classify retinopathy level. Additionally, it combines the Channel attention 
algorithm with LSTM convolution layers in order to help it focus on the relevant spatial data inside the data 
with a hierarchical structure. However, evaluation of performance on the APTOS database (85.54%) and the 
IDRiD database (66.41%) shows that HA Net might be useful for retinopathy classification. If the models aren’t 
working, even for the most recent reports, we can assume it is because they can’t see many ODs. Here are a 
few limitations: The model performance is hit hard by the multi label classes when there aren’t enough data 
points for training. Some systems are too wary, as a result of insufficient or inconsistent data sets, to be used 
in the real world. A new framework, Patient-Level Multi-Label Ophthalmic Disorder (PLML_OD), is 
introduced to address these shortcomings of previous work.  

 Multiple Convolutional Neural Network (CNN) model are used to train the end to end system, learning 
to detect various ophthalmic disorders (ODs), from Color Fundus Imaging (CFI). Since BL-SMOTE can prevent 
data imbalance and overfitting, the additional Borderline Synthetic Minority Oversampling Technique (BL-
SMOTE) is used to supplement the training dataset. SMOTE also improves model performance. Finally, we 
use BL-SMOTE as we are not applying a linear transformation and therefore preserving labels. Just as 
important, we offer an innovative PLML_OD architecture that uses a SCNet, a spatial correlation network, to 
extract features quickly. Since there are seven ODs in total, the proposed method can calculate the likelihood 
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for each image. Six different indicators of the system's performance were assessed utilizing the system and the 
results then compared to those obtained from other models and systems.  

 
3. Materials and Methods  

In this section, the dataset is detailed reviewed, the technique will be used is described, and the metrics 
that will be used to determine performance is outlined.  
3.1. Dataset Overview and Augmentation  

For the training of our PLML_OD model [23], we employed the open source CFI dataset from the ODIR 
2019 competition. The first group is represented by healthy people (N), the other seven groups are DB, GL, 
CA, AMD, HT, MP and AB. We fuse CFI with other patient data like age to build patient level labels. The 
crowd sourced 4,020 of the 5,000 events contained in the original CFI dataset. Distribution of 4,020 patient cases 
into 8 categories can be seen in Figure 1. On this CFI dataset, we evaluate our model’s performance. Due to 
dataset size is small, we train on the first two folds while test on the third. The minor classes, e.g. GL, CA, 
AMD, MP, AB and HT are incorporated in the dataset by using the BL-SMOTE approach. Table 1 contains an 
overview of both BL-SMOTE and non-BL-SMOTE datasets. It trains six thousand, sixteen instances; validates 
eight hundred and eighty; and tests one thousand seven hundred and seventy-five instances. We also report 
the average test fold results across the 3 cross-validation splits.  

 
Figure 1. A selection of OD fundus pictures 

Table 1. A brief look at the OD dataset  
Dataset N DB GL CA AMD HT MP AB Total 
Original 1100 1100 200 200 180 150 190 900 4.020 

BL-SMOTE 1100 1100 1100 1100 1100 1100 1100 1100 8.800 
Training 

(70%) 
770 770 770 770 770 770 770 770 6.160 

Validation 
(10%) 

110 110 110 110 110 110 110 110 880 

Testing 
(20%) 

220 220 220 220 220 220 220 220 1760 

 
3.2. Proposed PLML_OD Model  

The overall design of our proposed PLML_OD model (including CNN core, SCNet subsystem, and final 
classification layer) is shown in Figure 2.  
3.2.1. CNN Backbone  

Colour fundus images (CFIs) may have two sets of features extracted using a Convolutional Neural 
Network (CNN). Given a pair of left and right CFIs, Ll and Rr items of the OH x W x RGB space that specify 
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the dimensions of the input CFIs and RGB used to represent the three color channels, the CNN backbone 
outputs two feature maps, Dl and Dr, where Dl and Dr are elements of the 32x32 x 256 space. These feature 
maps have a representation Dl, Dr  OH x W x F where F represents the number of extracted features. 
Importantly, our feature extraction procedure is performed without combining or sharing any data from the 
associated CFIs in any way. In other words, the matched CFIs do not need to be registered. Building our CNNs 
on the top of DenseNet topologies, our CNNs have none fully linked layers that are known to be helpful in 
handling our problem of fast time intervals from the class histogram.  

 
Figure 2. Architecture of proposed PLML_OD model  

3.2.2.  SCNet Module  
The SCNet module creates two sets of features from the CNN backbone that we use as inputs for building 

two matching feature sets with correlation analysis.   
The SCNet scheme of this study is shown in Figure 3. This module allows us to find pixel wise relationships 

between Ll and Rr, the individual input feature sets; at first every set of features is divided into query (Q), key 
(K) and value (V) features with 1×1 convolutions. To get features out of the CFI input pairs, we use Equations 
(1)– (3):  
DIQ = L (Dl; PlQ), DrQ = L (Dr; PrQ)                                                                                                (1)  
DlK = L (Dl; PlK), DrK = L (Dr; PrK)                                                                                                (2)  
DlV = L (Dl; PlV), DrV = L (Dr; PRv)                                                                                             (3)  

where L is a linear 1×1 convolution and P are the specified parameters, and they are represented by L and 
P, respectively. The converted Q/K and V features are of dimensions F and F′, respectively, and take empirical 
values of 1024.  

 The correlation weights for each pixel are determined by taking the inner product of the converted 
features and the sigmoid function (SF). The right and left CFIs' worth of data is combined by these weights:  
Cl←r ∈ O(H×W) (H×W) = Sigmoid (DLQ DTrK)          (4)             

Similarly, correlation weights (Cr←l ∈ O(H×W)(H×W)) are calculated to combine information from the left 
CFI with that from the right CFI:  
Cr←l ∈ O(H×W) (H×W) = Sigmoid (DLQ DTrK).                                                                                    (5)  

We may see the interplay between every pair of CFI sites by using correlation weights. The next step is to 
identify two sets of features from the backbone CNN and refine the gathered weights. To create the refined 
feature sets, which are Dl_update ∇ OHxWx F and Dr_update ∆ OHxWx F′, the weight maps linked to each 
set are multiplied.  
Dl_update = Cl←r × DrV                                                                                                                       (6)  
Dr_update = Cr←l × DlV                                                                                                                       (7)  
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Finally, the characteristics from bilateral CFI are fused to complete the SCNet procedure. As shown in 
Figure 3, the consequence of merging over four feature sets is fusion. Joining the updated CFI feature set on 
the right with the left input set, Dl_update, yields:  
M = {Al, Ar}.                                                                                                                                  (8)        
Al = L ([Dl, Dl_update] T; PAl)                                                                                                             (9)  
Ar = L ([Dr, Dr_update] T; PAr)                                                                                                             (10)                         

By substituting Eqs. (9) and (10) into Eq. (8), we obtain:  
M = {L ([Dl, Dl_update] T; PAl), L ([Dr, Dr_update] T; PAr)}.                                                                  (11)   

Where M represents the SCNet, and Al and Ar are its outputs.  
3.2.3. Classifier  

Using global average pooling (GAP), the two feature sets generated by SCNet are converted into two 
feature vectors. A final classification module receives these vectors as a single string once they have been 
concatenated. There are two fully connected layers (FCLs) in the classifier, but ReLU only activates one of 
them. The dimensionality of the resulting features is reduced by using the first FCL. For example, in case of 
using DenseNet-169 backbone, the dimension of combined feature is 2048. After the first FCL, it reduces it to 
1024 and, then it is equal to 1024 for all subsequent computations. A large number of classification categories 
are satisfied by the second FCL, which reduces features to an eighth dimension. Computing the network loss 
then entails comparing the eight-dimensional characteristics to the ground truth sickness categorisation labels.  
3.2.4. Classifier Architecture  

Two feature vectors are produced from the SCNet-generated feature sets using the global average pooling 
(GAP) process. Before feeding them into the last categorization module, these vectors are joined into a single 
string. The ReLU function activates just one of the two fully connected layers (FCLs) that make up the classifier. 
By using the first FCL, the dimensionality of the combined features is decreased. One example is the DenseNet-
169 backbone, which uses 2048 as its starting feature dimension. It stays at 1024 after the initial FCL reduces it, 
and it stays there for all future computations. The characteristics are compressed to an eighth dimension in the 
second FCL, which corresponds to the many categorization categories. In order to find the network loss, we 
must next check the eight-dimensional features with the ground-truth labels for sickness classification.  
3.2.5. Loss Function  

To solve the problem of multi-label OD classification, a multi-label soft margin loss function is used. The 
mathematical expression of this function is given by Eq. (12):  
L = - (1/G) ∑ (G to G-1) r[G] log σ(O[G]) + (1 – r[G]) log (1 – σ(O[G])).                             (12)  

Where G denotes the categories, σ represents the sigmoid activation, r  {0, 1} is the reference label, and O 
is the network output.   
3.3. Performance Evaluation Metrics  

For the official ODIR-2019 challenge website, some proposed metrics for measuring model classification 
performance include kappa score (KS), F1 score, the area beneath the receiver operation curve (AUC), accuracy 
(ACU), and mean (AVG). This data is derived from the equations (13) to (21). Here is how the KS is calculated:  
KS = (Mo – Me) / (1 – Me)                                                                                                        (13)   
Mo = ∑ [TP_h / (TP_h + FN_h)]                                                                                              (14)   
Me = ∑[TP_h * (TP_h + FN_h) / N^2]                                                                                     (15)   

The F1 score is computed as:   
F1 score = 2 * TP / (2 * TP + FN + FP)                                                                                      (16)   

To get the AUC, or area under the receiver operating curve, one uses the following formula:   
AUC = ∫[TPR(FPR−1)] dx                                                                                                         (17) 

To calculate the TPR and FPR, we use the following formulas:  
TPR = TP / (TP + FN)                                                                                                                (18)   
FPR = FP / (FP + TN)                                                                                                                (19)   



Journal of Computing & Biomedical Informatics                                                                                               Volume 08  Issue 01 

ID : 805-0801/2024  

Accuracy (ACU) is calculated as:   
ACU = (TP + TN) / (TP + TN + FP + FN)                                                                                (20)   

The average (AVG) is computed as:  
AVG = (KS + F1 score + AUC) / 3                                                                                            (21)  
 
4. Results and Discussion  

In this section, experimental findings of comparing the suggested PLML_OD model to some baseline 
models are presented with the publicly accessible OD datasets. In addition, an ablation investigation of the 
suggested model is performed.  
4.1. Experimental Setup  

We build our system on convolutional neural networks (CNNs) to explore the effects of various depth 
DenseNet models on feature extraction. We initialize the backbone CNNs with DenseNet models, pre-trained 
on ImageNet. The CFI data comes from different locations or hospitals which results in every picture scaled to 
299 x 299 pixels. During training, random crops of 224×224 are taken, during test, center cropping is performed. 
For non convolutional network related techniques, Python is used; Keras is used for development of baseline 
models and proposed PLML_OD model. All tests are run on a Windows PC with 32GB of RAM and 11GB 
NVIDIA graphics processing unit.  
4.2. Model Configuration  

For maximum efficiency, the hyperparameters of the proposed PLML_OD model have been finetuned. 
When using the stochastic gradient descent (SGD) optimizer, Equation (11) provides the loss function for 
multi-label classification. The beginning rate of learning (LR) is changed from 0.001 using the poly learning 
rate reduction technique. The momentum is now 0.90. We conduct each experiment for 100 iterations and 
record the findings at the end.  
4.3. Classification Results Using Various Backbone CNNs  

Apart from bilateral CFI, CNNs extract strong foundation Features. We derive features with different 
levels of abstraction by adjusting the depth of convolutional neural networks (CNNs) in the backbone. 
Backbone CNN performs feature fusion via adding, pixel-wise multiplying, or concatenating when explicit 
fusion techniques are not available. Table 2 provides a detailed explanation of the results. The best way to fuse 
features is via the feature concatenation technique. Optimal performance is achieved by pixel-wise 
multiplication with a deep backbone CNN. Further, better CNN’s with a more robust backbone perform better. 
DenseNet-169 models trained on feature concatenation outperform DenseNet-201 models for KS, AUC, F1-
score, ACU, and final AVG by 8.8%, 2.4%, 2.4%, 4.5%, respectively. It speaks to more abstract component 
distinction capacity. Ultimately there seemed to be a performance ceiling, and DenseNet-169 did not make 
much of a difference. Research also shows that there is no linear relationship between the number of links 
between nodes and the performance of the network. [21]. Here are three potential reasons for this 
phenomenon:  
• Vanishing gradient problem: With more parameters, we keep optimizing a network increasingly difficult 
[14].  
• Inefficient feature reuse: The limitations of current training sample size lead to deep network developing too 
many features, which are not fully utilized [15].  
• Insufficient training: Due to little number of training samples, the network is not fully trained.  

The collected attributes were used to train four convolutional neural network (CNN) classifiers that 
optimize their Hyperparameters via grid search. The models were trained using the 5-fold cross-validation 
method. To test how well the models could identify various ODs, we employed a battery of performance 
measurements. Figure 5 shows the SCNet-based DenseNet confusion matrices. The models' ability to correctly 
categorize OD cases is shown by the findings. As an example, out of 220 OD occurrences, 215 were accurately 
detected by the DenseNet-169 model. Out of the remaining cases, 1 was misclassified as normal, 1 as DB, and 
1 as HP. Every typical occurrence had its class label correctly predicted by the model. On the other hand, out 
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of 220 total cases, DenseNet-121 accurately recognized 199 instances of AB illness using extracted attributes 
for model training, while incorrectly labeling 21 cases as normal or other OD disorders. Out of 220 instances 
of AMD illness, 202 were properly predicted by the DenseNet-264 model, whereas 199 cases of DB disease 
were successfully predicted by the DenseNet-201 model.  

 
Table 2. Use DenseNet network architecture for OD classification without SCNet.  

DenseNet 
Architecture 

Features 
Fusion 

ACU KS F1-Score AUC AVG 

 
 
 

DenseNet-
121 

Pixel-wise 
addition 

 

0.821 ± 0.019 
 
 

0.401 ± 0.002 
 

0.819 ± 0.002 
 

0.826 ± 0.006 
 

0.682 ± 0.005 
 

Pixel-wise 
multiplication 

 

0.801±0.025 0.391 ± 0.016 
 

0.829 ± 0.010 
 

0.806 ± 0.058 
 

0.668 ± 0.079 
 

Pixel-wise 
concatenation 

0.821 ± 0.019 
 

0.412 ± 0.015 
 

0.829 ± 0.010 
 

0.838 ± 0.016 
 

0.693 ± 0.071 
 

 
 
 

DenseNet-
169 

Pixel-wise 
addition 

 

0.940 ± 0.011 
 
 

0.441 ± 0.019 
 
 

0.926 ± 0.055 
 
 

0.927 ± 0.082 
 
 

0.764 ± 0.023 
 
 

Pixel-wise 
multiplication 

 

0.936 ± 0.027 0.498 ± 0.039 0.919 ± 0.073 0.932  ± 0.096 0.783 ± 0.043 

Pixel-wise 
concatenation 

0.948 ± 0.002 
 

0.501 ± 0.042 
 

0.945 ± 0.062 
 

0.947 ± 0.016 
 

0.797 ± 0.025 
 

 
 
 

DenseNet-
201 

Pixel-wise 
addition 

 

0.821 ± 0.019 
 
 

0.821 ± 0.019 
 
 

0.829 ± 0.001 
 
 

0.821 ± 0.019 
 
 

0.692 ± 0.012 
 
 

Pixel-wise 
multiplication 

 

0.801±0.025 0.801±0.025 0.819 ± 0.013 0.816 ±0.025 0.678 ± 0.016 

Pixel-wise 
concatenation 

0.821 ± 0.019 
 

0.821 ± 0.019 
 

0.839 ± 0.011 
 

0.848 ± 0.017 
 

0.709 ± 0.019 
 

 
 
 

DenseNet-
264 

Pixel-wise 
addition 

 

0.841 ± 0.021 0.421 ± 0.004 0.839 ± 0.004 
 

0.846 ± 0.008 
 

0.711 ± 0.013 
 

Pixel-wise 
multiplication 

 

0.821 ± 0.027 
 

0.422 ± 0.018 
 

0.829 ± 0.014 
 

0.826 ± 0.060 
 

0.699 ± 0.042 
 

Pixel-wise 
concatenation 

0.850 ± 0.025 
 

0.432 ± 0.017 
 

0.849 ± 0.012 
 

0.858 ± 0.018 
 

0.728 ± 0.015 
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Table 3. Classifying objects of interest using SCNet and the DenseNet architecture 

DenseNet 
Architecture 

ACU KS F1-Score AUC AVG 

DenseNet-121 0.841 ± 0.024 0.422 ± 0.015 0.830 ± 0.010 0.849 ± 0.016 0.703 ± 0.071 

DenseNet-169 0.968 ± 0.001 0.551 ± 0.003 0.967 ± 0.005 0.969 ± 0.007 0.850 ± 0.04 

DenseNet-201 0.861 ± 0.032 0.433 ± 0.046 0.840 ± 0.089 0.859 ± 0.062 0.710 ± 0.071 

DenseNet-264 0.871 ± 0.037 0.443 ± 0.059 0.850 ± 0.072 0.869 ± 0.087 0.720 ± 0.067 

 

 
Figure 3. The SCNet’s impact on Backbone CNN classification Accuracy. (a) The performance  of 

Backbone CNN with and without SCNet is evaluated in terms of ACU(b) The performance  of Backbone 
CNN with and without SCNet is evaluated in terms of Kappa Score 

 
Figure 4. DenseNet-121, DenseNet-201, the proposed model, and DenseNet-264 are all shown in this 

confusion matrix. 

  

  

  

.   
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4.4. Computational Complexities of DenseNet Architectures   
The network complexity is described in detail in Table 4, and the classification metrics are shown in 

connection to FLOPs and network parameters in Fig. 6. The results of the categorization may then be compared 
in an impartial and objective manner.  

Table 4. Differences in computational complexities between a network with () and without (×) a SCNet  
DenseNet Architecture SCNet FLOPS Parameters (Millions) 

DenseNet-121 ü 17.12 16.9 
û 17.09 14.10 

DenseNet-169 ü 32.11 30.10 
û 32.07 24.09 

DenseNet-201 ü 41.11 58.05 
û 36.03 28.83 

DenseNet-264 ü 71.10 77.23 
û 65.12 47.83 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The results of the proposed PLML_OD model (a) FLOP classification performance 
(b) Model configurations for total trainable parameters 

 Regardless of whether standard (FLOPs) or network characteristics are considered, the proposed 
PLML_OD method exceeds the baseline. We also point out that, with SCNet, the DenseNet-169 backbone 
performs better than DenseNet-201 and DenseNet-264 baselines, using less FLOP. The results of the suggested 
technique reveal such a good classification result that it is likely to lead to the conclusion that network 
complexity alone is not decisive.   

Categorization of the OD in an improved manner on a patient by patient basis requires the careful 
evaluation of the relationship between left and right CFI. It is of utmost relevance that patient level diagnosis 
that relies heavily upon clinical features (CFI) classification performance is improved with information from 
both the CFI [25]. SCNet does increase a small amount of FLOPs, and the number of network parameters 
increases significantly (particularly for baselines built on DenseNet-201 and DenseNet-264 backbones).  

 In Table 5, you can see which time it took to train the suggested model and the other backbone models. 
The results show training on the whole dataset takes 500 seconds for DenseNet-121, 433 seconds for DenseNet-
169 and 693 seconds for DenseNet-201. Since the number of parameters to train is less in DenseNet-169 model, 
training time is lower than other models (see Fig. 6b).  
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Table 5. Training time of the models 
  

 

 
 

4.5. Ablation Study  
We wanted to make a new model by putting together SCNet, better versions of DenseNet-169, and the 

multi-label soft threshold loss function in this study. We were able to use the control variable method to look 
at the trial data across eight ODs by comparing the PLML_OD-recommended model to its control condition. 
A number was changed to make sure the model was correct. The research analyzed the models' accuracy and 
kappa score values using metrics to determine which of the modified modules improved the model's 
performance. The DenseNet-169 model is implemented in Experiment 2, and a comparison of it with SCNet 
and a multi label soft margin loss function is shown in Experiment 3. In the first two trials, we present the 
SCNet model.  Table 6 contains all of the experimental data. Various model components, such as SCNet and 
DenseNet-169, are integrated in Table 6.  

Table 6. Shows how the model's many parts, such as SCNet and DenseNet-169, are put together. 
 

 
 

The model's average OD classification accuracy is improved by 1.15 percentage points when using 
DenseNet-169, according to a comparison of Experiment 1 and Experiment 2. Results from Experiment 3 show 
that the suggested PLML_OD model, which is a combination of SCNet, DenseNet, and a multi-label soft 
margin loss function, outperforms Experiment 2 in OD classification by 6.67%.   
4.6. Comparison with State-of-the-Art Methods  

To verify the outstanding performance of the suggested PLML_OD, we compare it with state of the art 
techniques here. Wei et al. [28] classify ocular disorders with an accuracy of 0.84 using their novel inception-
v3 model. Convolutional neural network (CNN) models were used by an independent research [29–31] to find 
glaucoma on fundus pictures, scoring an F1 of 0.90, an accuracy of 0.91, and a Kappa score of 0.42. Wang et al. 
[32] suggested a new model MBSaNet, with accuracy 0.89. The comparison of using the suggested model with 
previous research are shown in Table 7, which includes a number of assessment indicators.  

  Table 7. Evaluation of the suggested PLML_OD model's performance in light of prior research  
References Methods Accuracy Kappa F1-Score 

Park et al. [30] 
2022 

CNN 0.7425 0.52 0.89 

Wei et al. [28] 

2019 

Inception-v3 0.8411 0.44 0.85 

Gour et al. [31] 
2021 

Two I/P VGG 16 0.8515 --- 0..86 

Models Training time in seconds Testing time in seconds 
DenseNet-121 500 s 95 s 
DenseNet-169 433 s 26 s 
DenseNet-201 693 s 62 s 
DenseNet-264 725 s 87 s 

Experiments SCNet DenseNet-
169 

Multi-Label 
Soft Margin 

Image 
Resolution 

Accuracy Kappa 
Score 

1 ü û û 299 × 299 × 3 83.98 % 0.40 
2 û ü û 299 × 299 × 3 85.13% 0.43 
3 ü ü ü 299 × 299 × 3 96.80% 0.55 



Journal of Computing & Biomedical Informatics                                                                                               Volume 08  Issue 01 

ID : 805-0801/2024  

Wang et al. [24] 
2020 

EfficientNetB3 0.7356 0.50 0.88 

Wang et al. [32] 

2023 

MBSaNet 0.8916 0.44 0.88 

Ours PLML_OD 0.9188 0.55 0.94 

 

5. Conclusion  
 A SCNet for geographical correlation, a CNN core, and a classifier to provide classification scores were 

all part of the package. By combining the data sets acquired by the backbone CNN from the left and right Color 
Fundus Images (CFI), pixel-wise feature correlation is made possible by SCNet, the most innovative 
architectural component of our network. Next, a representation at the patient level is generated by combining 
the processed attributes. This is done in preparation for the final OD categorization at the patient level. The 
categorization capacity of the proposed model was tested using a publically available dataset that included 
seven distinct ODs. Our system achieved an outstanding 91.80% accuracy rate when it came to OD 
classification especially in diabetic retinopathy. We are hoping that our approach will assist ophthalmologists 
in identifying ODs. In order to circumvent the study restrictions of an imbalanced dataset and a small sample 
size, we used Borderline-SMOTE (BL-SMOTE). A federated learning-based collaboration architecture that can 
securely integrate data from several institutions without compromising patient privacy is an important area 
for future research.  
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