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Abstract: Neural networks and artificial intelligence have revolutionized how machines learn 

by mimicking aspects of human cognition. One key area in this field is the ability of agents to 

understand and imitate actions involving various objects, allowing them to pick up new skills 

by observing others. Understanding and imitating how others interact with different objects 

has become a big topic since it allows learning new skills by simply watching others. By 

constantly updating their own knowledge, lifelong learners can build on what they know over 

time. But the environments that artificial agents deal with are very different. Existing models 

designed for “lifelong learning” typically work with simplified experiments and datasets made 

up of static images, which limits their effectiveness for real-world applications. In this study, 

we propose a developmental model focused on how agents can learn about objects and actions 

through sensorimotor feedback, enabling humanoid robots to mimic actions more naturally. 

Our approach, "SOBAIN," works in three stages: neuron activation, neuron matching, and 

neuron learning. First, neurons activate based on specific traits that determine if they should 

"fire" or not. Then, we match the best neuron by comparing activation levels. At each learning 

point, new neurons connect to the network to match learned data. The final stage uses this 

network to refine and apply learned information, helping address memory loss issues in 

lifelong learning. By using these techniques, SOBAIN helps robots adapt their upper body 

movements in line with the sensor's feedback, creating a chain of neurons that builds over time 

as the robot learns new actions. 
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1. Introduction 

Imitation learning is a method of acquiring novel skills by observing and learning from the actions of 

other agents. Within the realm of robotics, the significance of imitation learning is notable. Numerous 

studies indicate that the ability to imitate develops at an early stage in life [1]. Nonetheless, machine 

learning models typically function in scenarios where the entire dataset is presented during the training 

phase, assuming that the identified patterns in the data will remain static. On the contrary, Incremental 

learning adjusts to sequential data or addresses the challenge of concept drift, which emerges as data 

evolves over time. Therefore, continual learning [2] is well-suited for scenarios where data incrementally 

accumulates over time. Incremental learning or lifelong learning proves valuable in situations where 

data cannot be provided all at once, increasing gradually through feedback, and direct access to 

previously acquired knowledge is restricted. 
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Continuous learning [3] or incremental learning involves acquiring new information while retaining 

previously gained knowledge, ensuring a seamless integration of fresh insights without erasing existing 

learning or knowledge. Both humans and animals possess the capacity for lifelong learning, allowing 

them to continuously acquire, refine, and transfer knowledge and skills throughout their lives. This 

ability is facilitated by a complex set of neurocognitive mechanisms that contribute to the development 

and specialization of sensorimotor skills, as well as to long-term memory consolidation and retrieval [4]. 

In the real world, computational systems encounter constant streams of information, necessitating their 

ability to learn and retain multiple tasks amidst dynamic data distributions [5]. For example, an 

autonomous agent engaging with its environment must glean insights from its experiences, 

demonstrating the capacity to gradually acquire, refine, and transfer knowledge over extended periods.  

The primary challenge in computational models concerning lifelong learning is their susceptibility to 

either catastrophic forgetting or catastrophic interference [6]. In other words, the process of training a 

model with new information can disrupt previously acquired knowledge. This occurrence often results 

in a sudden decline in performance or, in the worst-case scenario, the complete replacement of old 

knowledge with new information. Methods in Computational Intelligence also serve as potent 

instruments for deciphering structural details from digital datasets. Traditional Deep Neural Networks 

and convolutional Neural Networks (DNNs, CNNs) encounter difficulties in consistently learning from 

a data stream while preserving acquired knowledge. Overall, achieving a continuously trainable AI 

system faces several key hurdles, including the issue of catastrophic forgetting during the assimilation 

of new data, the absence of model scalability concerning the inability to expand the model's size with a 

continuously increasing volume of training data, and the incapacity to transfer knowledge between 

different tasks. Several recent methodologies [7] aim to alleviate the issue of forgetting in neural networks 

by directly simulating continual learning within the network responsible for task-solving. Especially, [8] 

proposed initially training a distinct model exclusively for the new classes, followed by the integration 

of the two individual models, each trained on data from separate sets of classes (old and new). This 

integration is achieved through an innovative double distillation training objective. The consolidation of 

the two existing models is facilitated by leveraging publicly available unlabeled auxiliary data, 

addressing potential challenges arising from the unavailability of original training data. The suggested 

model attains accuracy rates of 58.06 and 55.89 for CIFAR-100 and CUB-200, respectively. 

In [7] authors introduced a hierarchical CNN network designed to prevent catastrophic forgetting and 

capitalize on previously acquired features when confronted with new tasks. The network dynamically 

expands as new classes are introduced, incorporating these classes as additional leaves within its 

hierarchical structure. The branching is determined by the similarity of features between the new and 

existing classes. The Tree-CNN's initial nodes categorize inputs into broader super-classes, and as we 

progress towards the network's leaves, more refined classification takes place. This innovative model 

facilitates the utilization of convolution layers previously learned, enabling their application in the 

expanded network for enhanced adaptability. Testing was conducted on models designed for CIFAR100 

datasets. The accuracy scores for Tree-CNN-5, Tree-CNN-10, and CNN-20 were 69.85, 69.53, and 68.49, 

respectively. 

Despite the advancements in lifelong learning methodologies within the field of artificial intelligence, 

there remains a notable research gap in addressing the scalability and adaptability of models to evolving 

data distributions, as well as the mitigation of catastrophic forgetting. Existing approaches often struggle 

to efficiently integrate new information while preserving previously acquired knowledge, hindering the 

seamless accumulation of skills over time. 

1. What does the system store in episodic memory for all actions taken and how can we update data 

that has previously been stored there? 

2. How the robot can employ a self-organizing strategy to incrementally develop new knowledge 

without distorting previously learnt material, and maintain for quick and accurate retrieval? 
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3. How the system can get to maximum results and how maximum accuracy can be achieved using 

episodic memory and SOBAIN model? 

This paper introduces a self-organizing Bayesian adaptive incremental network named SOBAIN for 

incremental learning, it is an efficient and successful approach consisting of three stages videlicet Neuron 

Activation, Neuron Matching, and Neuron Learning. When necessary, a number of "adaptive recurrent 

growing when required" construct SOBAIN (ar-GWR) [9]. The network comprises an adaptive threshold 

responsible for establishing the sensory information threshold. SOBAIN can create and arrange neurons 

through its three stages. The suggested approach continuously assimilates new information in neuron 

matching while retaining awareness of previous information in neuron learning. Our contributions aim 

to address the challenges of catastrophic forgetting and model scalability by providing a comprehensive 

framework for continual learning in artificial intelligence systems. 

The remaining of this paper is organized as follows. Section II presents the related work of the proposed 

method. The proposed Methodology is shown in Section III while results are discussed in Section IV. 

Conclusions are finally presented in Section V. 

 

2. Related Work 

The aspiration for continuous learning has been a persistent objective in machine learning. This 

learning paradigm is alternatively known as incremental learning and more specifically as lifelong 

learning [10], mirroring the way humans and other animals continually acquire and refine their 

knowledge [11]. 

Memory-based systems, dating back to early approaches, have historically been employed to avert 

catastrophic forgetting by storing and rehearsing old data continuously.  

However, in the era of big data, the explicit storage of old data or data streams becomes impractical 

[12], necessitating alternative strategies. In conceptual terms, these strategies can be classified into three 

categories including regularization methods, complementary learning systems, and dynamic 

architectures [4]. 

Various strategies combat catastrophic forgetting in neural networks. Elastic Weight Consolidation 

(EWC) is a regularization technique that maintains a balance between old and new task performance by 

penalizing weight updates [13]. Complementary learning systems, realized through dual-memory 

systems, model distinct brain functions for episodic memory retention and generalization [14]. Dynamic 

architectures, such as Progressive Networks, adapt to new tasks by sequentially incorporating 

subnetworks, demonstrating robust performance in reinforcement learning. However, an associated 

drawback is the escalating network complexity with an increasing number of tasks [15]. 

To retain previous information and deal with catastrophic forgetting data transmission to earlier steps 

has been made more effective with the Gradient Episodic Memory (GEM) model [16]. The key 

component of GEM is episodic memory, which is utilized to remember a group of examples observed 

during a certain job in order to prevent catastrophic forgetting. Compared to other regularization 

techniques like EWC (Elastic Weight Consolidation) at training, this strategy uses a lot more memory. 

[17] Involves the review and categorization of relevant works, examining various perspectives in 

addressing the issue of catastrophic forgetting in classification tasks. The adopted solution strategies 

encompass architectural approaches, regularization methods, and rehearsal and pseudo-rehearsal 

strategies. 

The study [18] compared Echo State Networks (ESN) and Long Short-Term Memory (LSTM) networks 

for continuous gesture recognition, particularly focusing on real-time applications in robotics and 

rehabilitation. Despite the identified challenges like sub-gestures and gesture variability, the ESN 

framework exhibited comparable performance to the LSTM network but with significantly lower 

training times. This suggests that ESNs are viable models for real-time continuous gesture recognition, 

offering a balance of efficiency and accuracy in applications requiring swift responses, such as those in 
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robotic or rehabilitation tasks. The study also proposes potential enhancements for both experimental 

methodology and network architecture based on the comparative analysis.  

Conventional Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) face 

challenges in maintaining acquired knowledge while continuously learning from a data stream. 

In [10] authors introduced a hierarchical CNN network designed to prevent catastrophic forgetting 

and capitalize on previously acquired features when confronted with new tasks. The network 

dynamically expands as new classes are introduced, incorporating these classes as additional leaves 

within its hierarchical structure. The branching is determined by the similarity of features between the 

new and existing classes. The Tree-CNN's initial nodes categorize inputs into broader super-classes, and 

as we progress towards the network's leaves, more refined classification takes place. This innovative 

model facilitates the utilization of convolution layers previously learned, enabling their application in 

the expanded network for enhanced adaptability. Testing was conducted on models designed for 

CIFAR100 datasets. The accuracy scores for Tree-CNN-5, Tree-CNN-10, and CNN-20 were 69.85, 69.53, 

and 68.49, respectively. 

The approach presented [19] aims to combat the problem by incrementally training deep neural 

networks using new data and a limited exemplar set representing samples from the old classes. This 

involves a loss function that incorporates a distillation measure for retaining knowledge from old classes 

and a cross-entropy loss for learning new classes. Notably, the incremental training is conducted in an 

end-to-end manner, jointly optimizing data representation and the classifier, providing assurances that 

recent methods may lack. The proposed model achieves mean accuracy scores of 63.8 for CIFAR-100 and 

69.4 for ImageNet (ILSVRC 2012). 

In [8] proposed initially training a distinct model exclusively for the new classes, followed by the 

integration of the two individual models, each trained on data from separate sets of classes (old and 

new). This integration is achieved through an innovative double distillation training objective. The 

consolidation of the two existing models is facilitated by leveraging publicly available unlabeled 

auxiliary data, addressing potential challenges arising from the unavailability of original training data. 

The suggested model attains accuracy rates of 58.06 and 55.89 for CIFAR-100 and CUB-200, respectively. 

Conventional Deep Neural Networks function with fixed-size training data or predefined batches, 

leading to challenges of continuous forgetting. The introduction of new data results in the loss of 

previously learned patterns, emphasizing the need for an incremental learning system with minimal cues 

to consistently adapt actions or responses over time. In contrast, Growing When Required (GWR) and 

gamma GWR have demonstrated greater success in achieving favorable results compared to traditional 

approaches. The suggested approach is self-organizing and adaptive to input. To achieve classification 

through unsupervised learning, labels are assigned to neurons based on their activation frequency for 

specific labels. GWR [20] yielded outcomes on the CAD-120 dataset, with accuracy, precision, and recall 

serving as evaluation metrics. It achieved 79% accuracy, 80.5% precision, and 78.5% recall. 

In another study gamma GWR [21]. A widely recognized approach to address the issue of neuron 

forgetting in computational models involves implementing a maximum age for connections. This 

strategy entails removing connections associated with neurons whose activation values do not meet a 

specified threshold or have not fired frequently over time. By setting a maximum age criterion, the 

computational model optimizes its equilibrium between stability and adaptability, preventing the undue 

forgetting of information and ensuring that neurons actively contribute to the learning process. 

 

3. Methodology 

Our proposed method SOBAIN incremental learning with Self-Organizing Bayesian Adaptive Neural 

Network is generated by various numbers of (ar-GWR). The SOBAIN model has an episodic memory 

that is working for lifelong learning. In lifelong learning networks process new incoming data as well as 

update already existing data. The ar-GWR rapidly learns the series of past experiments in episodic 
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memory the ar-GWR learns and replicates input information in the episodic memory layer by adding 

neurons to the layer. 

A. Dataset: We used the KTH dataset [22] for our experiments, which includes videos of six actions: 

walking, jogging, running, boxing, hand waving, and hand clapping. We wrote a Python script to convert 

these videos into images with a resolution of 160 × 120 pixels. The dataset features 25 people performing 

these actions in different environments with static cameras. To add variety, the settings included outdoor 

scenes, outdoor scenes with scale variations, people wearing different clothes in the same outdoor 

location, and indoor scenes. 75% of the images from each action, we used as training and 20% we used 

as test data. Then, finally we used 5% for validation purposes. 

B. Episodic Memory: An episode is created by a series of events and is stored in the episodic memory 

together with other episodes. We introduce temporal links that reveal the network's recurrent neurons' 

activity patterns. The sequence of neurons that have been stimulated during the learning process is 

encoded by the temporal connections (prior winner node and present winner node). 

For each learning iteration, two neurons are progressively stimulated, increasing the temporal link 

between them by one. Every learning process establishes a temporal connection between neurons when 

we get fresh information at time t that is linked to previously active neuron j-1 at time t-1 [23]. 

 

𝑄(𝑏,𝑗−1)
𝑛𝑒𝑤 = 𝑄(𝑏,𝑗−1)

𝑜𝑙𝑑 + 1 

𝑔 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝑚,𝑛) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture of SOBAIN 

Where 𝑔the next neuron is can be obtained from the encoded temporal series by selecting the largest 

value of Q for each recurrent neuron m, and n is the neighbor of m. Without requiring any input data, 

the activation sequence of recurrent neurons may be restored. The edges and neighbors of a node should 

be deleted if they are no longer present. The procedure of deletion is finished. 

C. Experimental Setup: To execute the proposed method as in Figure.1, we have to create two memories 

working memory and episodic memory, which are connected to each other. Firstly working memory is 

created which takes images and extracted features as input using SOBAIN, and then finally output 

becomes the input of the episodic memory. The episodic memory of the SOBAIN model is useful for 
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lifelong learning. Networks that process lifelong learning update and process new data that comes in. 

The adaptive recurrent, (ar-GWR) network that incrementally generates neurons and topological 

connections in the layer is present in episodic memory, where it is used to determine the spatiotemporal 

relationship of incoming input. The ar-GWR selects the winning neuron based on a real input and 

temporal relationship by assessing the activity value of neurons. The series of previously excited neurons 

that are connected with a time delay is known as a temporal connection. The episodic memory layer of 

the ar-GWR quickly learns the sequences of previous observations, which it then reproduces using 

instances of input data. 

As SOBAIN, a comprehensive model, integrates two key memory systems, namely working memory 

and episodic memory as shown in Figure.2, tailored for continuous learning. In the dynamic working 

memory layer, the ar-GWR adeptly learns and encodes succinct representations of incoming data 

samples by seamlessly integrating neurons into the layer. Concurrently, within the episodic memory 

layer, the ar-GWR swiftly assimilates the sequence of past experiences (events), skillfully encoding the 

temporal connections among these experiences derived from the working memory layer. This 

sophisticated architecture facilitates the model's ability to adapt and extract meaningful patterns for 

enhanced learning and memory consolidation. 

When new input is received, the system checks existing neurons to find the best matching neuron 

(BMN). This replay process stabilizes the network. If no BMN is found, the network creates new neurons, 

enhancing its plasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow Chart of the proposed model for incremental learning using SOBAIN approach. 

The ar-GWR has three principal stages: 

1) Activation of Neuron 

2)  Matching of Neuron 

3) Learning of Neuron 

We will use the Neuron Activation to find the best-matching neuron. The performance of a neural 

network is determined by the activation functions, which are mathematical equations. The activation 

function is connected to each neuron in the network, which controls whether or not that neuron should 
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be triggered (also known as "fired"). The performance of each neuron frequently depends on activation 

functions. Each data set's activation functions, which are measured using thousands or even millions of 

neurons, must be computationally efficient. The input layer is where the neuron receives its input. The 

following layer receives the weight assigned to each neuron. 

The next layer will be ar-GWR. An activation function allows backpropagation and to learn complex 

data set with high levels of accuracy. The ar-GWR have the activation function to determine the best 

neuron matching (BMN) w_b based on the input x (t). 

 

  𝑏 = 𝑎𝑟𝑔 𝑚𝑖𝑛(𝑇𝑗)                                 (1) 

Where               

  𝑇𝑗 =  𝛼 ∥ 𝑥(𝑡) −  𝑤𝑗  ∥2 +  ∑
𝑘=1

𝑘
 . 𝛼𝑘  ∥  𝐸𝑘(𝑡) − 𝑒𝑘,𝑗(t)∥2    (2) 

  𝐸𝑘 =  𝛽. 𝑤𝑗−1   + ( 1 − 𝛽). 𝑒𝑘−1,𝑗−1                    (3) 

 

Table 1. Parameters for ar-GWR algorithm 

Parameter Meaning 

𝒘𝒋 Weight of winning node 

𝜶 , 𝜷 Contributing factors that control the 

effect of current input 

x(t) Input 
𝒘𝒋−𝟏 Weight of previous winning node 

𝑬𝒌 

 
Global element 

𝒆𝒋
𝒌  Temporal element attributes 

When we have input x(t) then the activation value of BMN is calculated as   𝑎𝑏(𝑡) = 𝑒𝑥𝑝(𝑇𝑏) where 𝑇𝑏  

calculated by using the equations (1) to (3). We will further use these equation to achieve our goal. 

Episodic memory incorporates incremental learning, functioning much like human memory, which 

recalls past events as episodes. These episodes are interconnected, forming a network of related 

memories. To mimic the human hippocampus, we introduce temporal connections in the network, 

enabling it to learn and remember activation patterns of recurrent neurons. The purpose of these 

connections is to encode sequences of activated neurons during the learning phase. In each iteration, if 

two neurons activate consecutively, a temporal connection is formed by increasing the value of a counter 

C linked to that connection. For instance, if neuron k activates at time t and neuron k−1 activates at t−1, 

the connection between them is incremented by 1. 

This mechanism identifies the sequence of activated neurons. For any given neuron, its next neighbor 

is determined by the highest value in the encoded temporal sequences. This approach allows episodic 

memory to reconstruct the activation order of neurons, enabling the network to remember and recall the 

sequence of activations associated with specific human actions in images. 

When new input is received, the system checks existing neurons to find the best matching neuron 

(BMN). This replay process stabilizes the network. If no BMN is found, the network creates new neurons, 

enhancing its plasticity. 

 

4. Results and Discussion 

The modern world generates new data every second, leading to dynamically changing information 

known as sequential data. To handle this type of data, incremental learning is essential. Incremental 

learning processes data sequentially, in chunks, or by breaking down complex data into smaller 

sequences. This approach allows systems to adapt to new information while retaining previously learned 

knowledge. Incremental learning builds on prior experiences, enabling the development of autonomous 
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and interactive models. In our proposed model, we focus on implementing incremental learning while 

addressing the stability-plasticity dilemma to avoid the issue of catastrophic forgetting. 

 
Figure 3. Neurons Activation over Time 

The proposed model processes images by first extracting key features using SOBAIN in the Working 

Memory. These features, which represent all relevant aspects of the input image, are passed to the 

Episodic Memory. Here, the input images are grouped into clusters based on their similarities. The 

Working Memory’s output is used by the Episodic Memory to train on the input and learn the sequence 

of neuron activations for specific patterns in the data, forming connections. It clusters related data and 

creates new clusters for unfamiliar data without requiring the number of clusters to be predefined. 

Additionally, any node in the network with zero edges—indicating it represents no information—is 

deleted. This mechanism mimics human hippocampus memory by helping the model retain meaningful 

information. After training, test samples are sent to both Working Memory and Episodic Memory. 

Episodic Memory then recalls stored information from previous experiences to identify whether the 

object or action has been learned before. 

SOBAIN, our proposed model achieved 89 percent accuracy in identifying correct actions from input 

images that we used for validation. We compared our results with [20], [21], [23] and Gamma-GWR by 

comparing accuracy and number of neurons creation. GWR makes 7501 neurons for 35000 samples with 

84.6% accuracy, similarly Gamma-GWR created 7950 neurons of 35000 sample of data with 88% 

accuracy. However, SOBAIN made 7001 neurons for 50659 samples with more stability and plasticity 

balance and achieve accuracy of 89% keeping the stakes high. 

Table 2. Comparing the accuracy of the proposed model with other incremental learning approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Architecture Dataset Samples No. of 

Neurons 

Accuracy 

GWR 

[20], [21], 

[23] 

CAD-

120 

18000 3700 80.5% 

Gamma-

GWR 

[20], [21], 

[23] 

 

COEe50 164866 7950 79.43% 

SOBAIN KTH 50659 7001 89% 
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5. Conclusion and Future Work 

In this study, we proposed an algorithm capable of learning the spatio-temporal relationships in image 

patterns and clustering input images of human actions into their respective groups. The algorithm also 

develops an episodic memory that learns, stores experiences as episodes, and recalls what it has learned. 

In the future, we plan to test the algorithm on various datasets and integrate it into a robot that can utilize 

recall memory to mimic human behaviors based on images. We aim to optimize the algorithm for 

continuous learning of actions and gestures, enabling the robot to recognize and replicate action patterns 

in real-time by segmenting time-series data according to human behavior patterns. 
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