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Abstract: Aptamers are short strands of nucleic acid with a single strand that may unite to target a 

certain molecule in a selective and specific manner. SELEX experiments are the typical method used 

for identifying aptamers in vitro (systematic evolution of ligands by exponential enrichment). 

Several different computational methods have been developed to locate aptamers. The purpose of 

this research is to identify and make predictions on the possible RNA aptamers that may be used to 

target the protein. To do this, we propose the use of a multi-layer perceptron neural network with 

sixteen layers that are trained to locate possible aptamers of a protein target. This network is trained 

by extracting the main properties of RNA sequences. The outcome of our proposed model is 

compared to the output of two well-known machine learning classifiers, namely random forest (RF) 

and support vector machine (SVM). Additionally, we undertake the independent testing of our 

model on the benchmark dataset, which allows us to reach the highest accuracy possible. As a 

consequence of this, our model obtains an accuracy of 98.44% and an MCC of 0.9123 during the 15-

fold cross-validation, and it achieves an accuracy of 98.10% and an MCC of 0.9354 when the leave-

one-out cross-validation is performed. We are certain that our approach will contribute to a 

reduction in the amount of money and time spent on in vitro testing. Therefore, restricting the length 

of the initial pool of potential nucleic acid pattern combinations.  
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1. Introduction 

Andy Ellington was the one who first coined the word "Aptamers" [1]. They are single-stranded nu-

cleic acids that are relatively short and include DNA or RNA sequences that combine to target the molecule 

in question [2]. Examples of such molecules include carbohydrates, toxins, peptides, and proteins. SELEX 

is an in vitro approach that is used to identify aptamers for the protein target from a large oligonucleotide 

library [3]. Beginning in the early 1990s, a wide range of aptamers were used in many applications to target 

the illness, such as in medical trials for the identification of various disorders [4]. Aptamers, in particular, 

have yielded large outputs in comparison to protein antibodies as a result of their easy chemical amalgam-

ation, low immunogenicity, and thermal stability [5]. For instance, He et al. [6] established an innovative 

method by selecting the DNA aptamers, which identified drug-resistant ovarian cancer using the SELEX 

technique. Mateja et al. [7] produced a method based on SELEX cells for identifying the DNA aptamers 

that are used to find the existence of non-small lung carcinoma (NSLC) on the cell surface. Su et al. [8] 

designed a sensor containing the feature of detecting bisphenol A in a real-time environment by using the 

sequences of DNA aptamer. The process of the SELEX method consists of a variant type of initial steps 
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Mateja et al. [7] developed a technique that is based on SELEX cells for detecting the DNA aptamers that 

are utilized to determine whether or not non-small lung cancer (NSLC) is present on the cell surface. Using 

the sequences of DNA aptamer, the researchers Su et al. [8] developed a sensor that is capable of detecting 

bisphenol A in a real-time setting. A variety of preliminary procedures, including amplification, washing, 

binding, and incubation, are involved in the SELEX method's process [9]. The first step in the SELEX pro-

cedure is to create a library of single-stranded nucleic acid (S-SNA) sequences. These libraries typically 

have 1015 random S-SNA sequences in them, but only a select few sequences with a high affinity are re-

versed [10]. The whole SELEX procedure is comprised of around 15 rounds, and completing the assign-

ment may take anything from a few days to several months [11]. An efficient and significant computational 

strategy that shortens the duration of the experimental phases while also lowering their associated costs 

[9] [12] is needed. 

In addition to in vivo techniques, a great number of computational methodologies have been devel-

oped to determine the sequences of aptamers [10-12]. However, to the best of our knowledge, these meth-

odologies are not yet being used to find novel aptamers for a target [13-14]. In addition, a small number of 

mathematical models are used in the process of selecting aptamers for the only purpose of an individual 

target [15-18]. In this study work, we created a computational system that is capable of producing possible 

RNA aptamers that target the protein. We also extract the dominant and important patterns employed for 

interacting with RNA and protein molecules from the protein-RNA (P-RNA) sequences. The multi-layer 

perceptron (MLP) classifier that has been presented has been developed with the help of the patterns that 

have been identified as coming from P-RNA complexes. The results of our newly developed MLP provide 

accurate predictions about the candidates for substantial prospective aptamers among the collection of 

strong aptamers. In addition, the contribution of this research may be summarised as follows::  

1. To identify the prospective candidates for aptamers, we suggested using an MLP model. We also 

compare the results of our model MLP with those of two well-known machine learning classifiers such as 

RF and SVM in terms of sensitivity (SN), specificity (SP), accuracy (ACC), Matthews' correlation coefficient 

(MCC), positive predictive value (PPV), and negative predictive value (NPV) (NPV). The performance of 

the proposed model, RF, and SVM was validated by applying 15-fold cross-validation and leave-one-out 

validation. 

2. We also applied our proposed classifiers to the publically available benchmark dataset designed by 

[13] and compared our results with it.  

3. The result reveals that our proposed MLP classifier is more effective than the traditional SELEX 

process in finding the aptamers to target a protein.  

The remaining portion of this study is structured as follows: Section 2 discusses the Literature review. 

Section 3 provides the Materials and method. In section 4, results and discussion are presented, and in the 

last section 5, this study is concluded. 

2. Literature Review 

 The reviews of the relevant previous researchers are presented in this chapter. Several of the studies 

that have been reviewed in this chapter are examples of how the literature review can be used to find 

research gaps and identify appropriate methodologies. Some of the studies also expressed, that the collec-

tion of up-to-date knowledge about the linked research is used for, the research purpose that was supposed 

for the studies. The evaluation of the research literature extracting the key points for purposed research. 

Ribonucleic acid-binding proteins (RBPs) for short, are proteins that bind to double- or single-

stranded RNA in cells and take part in the creation of RNA Protein complexes. RBPs play a key function 

in controlling many things. However, it is still unclear how RBPs choose which subsequence target RNAs 

to search for and why they do so. Discovering the appropriate RNA transcription factor binding sites is a 

very crucial stage in the process of gaining a deeper understanding of the operation of many biological 

processes. 

The RBPCNN model is a simple and effective deep-learning convolution neural network that inte-

grates information about evolution with raw RNA sequences. The model is introduced in the publication 

[19], which also contains the RBPCNN model. Additionally, the automated extraction of the binding se-

quence motifs might assist them in gaining a better understanding of how RBPs bind to their respective 

targets. The findings of the trials indicate that RBPCNN performs much better than the approaches that 



Journal of Computing & Biomedical Informatics                                           Volume 04  Issue 01                                                                                         

ID : 95-0401/2022  

are considered to be the best at the moment. To be more exact, the average area under the receiver operator 

curve improved by 2.67 percent, while the average mean accuracy improved by 8.03 percent. In comparison 

to the most cutting-edge approaches, this integration enabled us to achieve very successful outcomes. They 

then created drawings of the motifs that the RBPCNN model instructed them to draw and compared those 

pictures to motifs that had already been discovered and published in the CISBP-RNA database. In addition 

to this, they created a graphic showing the standard deviation of the conservation scores that the deep 

learning kernels had acquired. 

In a wide number of diagnostic and therapeutic applications, aptamers are strong contenders to mon-

oclonal antibodies as the antibody of choice. To hasten the process of exponentially enriching ligands by 

SELEX (systematic evolution of ligands by exponential enrichment), in silico methods have been devel-

oped. SELEX is notorious for being a time-consuming and costly endeavor. During this study [20], in silico 

generation of aptamer sequences targeting CD13 was carried out using a genetic algorithm (GA) imple-

mentation that included a prediction model as part of its fitness function in two phases. This was accom-

plished by utilizing a genetic programming language. In the beginning, the purpose of the model was to 

make predictions about the RNA sequences of CD13. This was accomplished by using the sequence and 

structure of macromolecules derived from ribonucleic acid–protein complexes found on PDB. The model 

achieved an F1-score of 0.9273 and an overall accuracy of 92.72 percent on an independent data set by 

making use of the 196 characteristics that performed the best. 

In the second step of the process, GA was used to generate new sequences by using the anticipated 

outcomes as the starting generation for the algorithm. [20], using GA, generated aptamers that had a higher 

GA score than their parent oligonucleotide sequences. This was accomplished by using GA. The findings 

of the docking and molecular dynamics simulations provide evidence that this strategy is successful. With 

the aid of this research, aptamers may be chosen according to a broad range of biochemical characteristics. 

According to the findings of a study carried out by [21], the Singapore grouper iridovirus (SGIV) is 

responsible for causing significant economic losses in mariculture. There is a critical and immediate need 

for efficient therapies for SGIV infection. There is a rich variety of medicinal plant sources in China. Me-

dicinal herbs have been used to treat a wide variety of illnesses for a long time and have significant thera-

peutic capabilities. The majority of the time, reverse-transcription quantitative real-time PCR is used to 

precisely diagnose a viral infection and evaluate the efficacy of a potential antiviral medication. However, 

their usefulness is restricted since the necessary processes and reagents are time-consuming and labor-

intensive. Aptamers, which work by amplifying signals, have been included in specific biosensors to locate 

infections and illnesses with a high degree of precision. The purpose of this research was to develop an 

aptamer-based high-throughput screening (AHTS) approach that would facilitate the efficient selection 

and assessment of medicinal plant components about their effectiveness against SGIV infection. "aptamer-

based high-throughput screening" is what "AHTS" stands for in the scientific community. The Q2-AHTS 

method, which has been classified as being sensitive, swift, and exact, is a speedy and effective strategy for 

selecting medicinal plant medications for the treatment of SGIV. The AHTS method not only cut down on 

the amount of time and money spent on experiments, but it also sped up the whole screening process for 

more effective compounds. 

AHTS should be suitable for the speedy identification of components that are efficient against other 

viruses, according to [21]. [21] Non-coding RNAs (ncRNAs), which account for the majority of the genome, 

perform a variety of complex and specific activities, and it is essential to understand these roles to get an 

understanding of almost every aspect of cancer. This extensive group of chemicals is responsible for im-

portant activities in the control mechanisms of a variety of cellular processes. Regulatory mechanisms that 

are mediated by interactions between long noncoding RNAs (lncRNAs) and RNA-binding proteins have 

been associated with several different types of cancer. 

Their effects are made possible by networks that regulate lncRNA and RBP stability, ncRNA Metabo-

lism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and a wide 

variety of other cancer-related pathway processes. This review [22] investigated the reciprocal interaction 

that exists between long noncoding RNAs (lncRNAs) and RBPs, as well as their participation in epigenetic 

regulation through histone modifications and their essential role in cancer treatment resistance. Other 

properties of RBPs, such as the structural domains they include, give further insight into how lncRNAs 

and RBPs interact with one another and how they carry out their separate biological functions. This is 

because structural domains are responsible for the organization of RBPs. In addition, the present state-of-
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the-art information, which is made possible by machine learning and deep learning approaches, disentan-

gles such linkages in more detail to further increase our comprehension of the subject matter. In addition, 

operations based on RNA are described in this article as a possible alternative therapy option that people 

afflicted with cancer would want to take into consideration. Because of the advancements that have been 

achieved in next-generation sequencing, several innovative approaches have been created. Among these 

techniques are the cross-linking and immunoprecipitation-seq (CLIP-seq) method, the RIP-Chip method, 

the RIP-Seq method, the MS2 trapping technique, and many more. These methods may be divided into 

two distinct categories: those that concentrate on RNA, and those that focus on proteins. A method that 

focuses on RNA makes an effort to identify every protein that can bind to an RNA of interest. When using 

a protein-centric technique, on the other hand, the objective is to find any RNAs that can bind to a certain 

protein of interest. This may be a challenge since there are so many different proteins. Molecular docking 

(MD) and machine learning (ML)-based methodologies are the two primary categories of LPI computa-

tional methods that are used. The majority of laboratories use MD-based techniques as their primary 

method for LPI prediction. The majority of MD-based programs, with a few notable exceptions such as 

HexServer, are both costly and time-consuming to operate. 

In his study, [23] revealed an innovative deep learning methodology for predicting API that he 

dubbed AptaNet. AptaNet is one of a kind since it is capable of predicting API by using the sequence-

based attributes of aptamers in addition to the physicochemical and conformational properties of targets. 

In addition to that, we use a deep neural network as well as a system for balancing things out. To determine 

how effectively AptaNet functions, [23] has conducted a great deal of research and testing. Experiments 

show that AptaNet has higher accuracy than other methods that were investigated for this study on their 

32 benchmark datasets, where Aptamers were encoded utilizing two distinct strategies (k-mer frequency 

and reverse complement k-mer frequency). This was determined by comparing the results of AptaNet to 

those of the other methods. By using 24 physicochemical and structural features of the proteins, amino acid 

composition (AAC) and pseudo amino acid composition (PseAAC) were employed to represent target in-

formation. [23] used a neighborhood cleaning technique to solve the imbalance problem that was present 

in the data. The cornerstone for the building of the predictor was a deep neural network, and the random 

forest approach was utilized to determine which characteristics were the most important. As a direct result 

of this, an accuracy of 99.79 percent was gained for the dataset that was used for training, and an accuracy 

of 91.38 percent was acquired for the dataset that was used for testing. AptaNet reportedly achieved a 

satisfactory degree of performance on the benchmark dataset that we constructed by combining aptamers 

with proteins, as stated in [23]. According to the findings, AptaNet has the potential to help in the discovery 

of new aptamer–protein interaction pairs and the development of more effective insights into the link that 

exists between aptamers and proteins. Moreover, AptaNet has the potential to assist in the development 

of more effective insights into the link that exists between aptamers and proteins. 

According to [24], utilizing computational approaches to produce accurate predictions of important 

proteins may help reduce the expense of doing research in wet labs. To construct protein-protein interac-

tion (PPI) networks, the majority of the time, the currently available computational algorithms make use 

of several types of biological data. However, PPI networks and other types of biological data are not always 

of high quality for all proteins. Therefore, it is highly vital and valuable to develop methods that reliably 

predict essential proteins based just on their protein sequences. To increase the accuracy of determining 

which proteins are essential, [24] suggests using a machine learning ensemble model called EPGBDT. This 

model only considers protein sequences. 

EPGBDT is different from other sequence-based predictors in two ways: By combining 49 GBDT base 

classifiers into a single ensemble model, I EP-GBDT can generate highly accurate and trustworthy predic-

tions. (ii) EP-GBDT makes use of sampling to mitigate the impact of unbalanced data sets. EP-GBDT was 

evaluated by [24] using an independent test set, and it was compared to a sequence-based predictor known 

as Pheg, which is considered to be state-of-the-art. EPGBDT does well in all evaluation metrics and does 

better than Pheg. EP-GBDT is more accurate than the other 8 network-based centrality measures when 

compared further. All of the results show that EP-GBDT can be a useful tool for figuring out which human 

proteins are essential.  

According to [25], the most challenging aspect of identifying and treating a neurological condition is 

locating the gene that is responsible for causing the disorder. In the field of biomedical research, it is very 

challenging to identify the specific genes that are responsible for the onset or progression of many disorders 
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that impact the nervous system, such as Parkinson's disease. Neurological illnesses are a significant com-

ponent of genetics, and identifying them needs the use of techniques of machine learning that are still in 

the development stage. Since it is impractical to compare several sequences by hand, computational anal-

ysis is an essential technique for the study of protein sequences (genes). It makes it simple to find a gene in 

the sequence and organize the protein sequences that are connected into classes. There are a variety of 

tried-and-true diagnostic approaches that may be used to identify Parkinson's disease. However, there 

hasn't been nearly as much research conducted to compare different Machine Learning methods that make 

use of protein sequences to assess Parkinson's disease. In the article [25], a comparison is made between 

the many methods that may be used to categorize Parkinson's disease. These methods include examining 

the hydrophobicity of proteins as well as the amino acid composition of their proteins to extract character-

istics. The rate of incorrect predictions is used to create a 2-level ensemble approach, which is then used to 

classify methods that have been combined. The efficacy of these approaches may be evaluated using met-

rics like precision, recall, F-score, and ROC curves. Under 5-fold cross-validation, experimental findings 

have demonstrated that the classifiers Random Forest, SVM, Neural Network (PCANNET), and Naive 

Bayes each performed the best based on their respective performance criteria. The suggested technique, on 

the other hand, beats Random Forest and SVM by 1.96 percentage points, NB by 1.1 percentage points, and 

PCANNET by 1.68 percentage points, respectively. 

To predict potential RNA-aptamer candidates based on the known sequence of a target protein, the 

authors of this work [26] developed a model that they refer to as the Apta-MCTS. Recent research on nu-

cleotide sequence classification has mostly concentrated on binary classification, but very little effort has 

been made to find acceptable aptamers. [26] devised a method for using machine learning to create candi-

date ribonucleic acid aptamers. This method is based on a classifier that can differentiate between API and 

MCTS. [26] ensured that our model extracted the appropriate characteristics from the input data by using 

the TPC and PseKNC encoders. With the aid of the API classifiers, which were based on the random forest 

model, the needed scores on the MCTS were established. [26] simulated how effectively their candidate 

aptamers and target proteins would bind to one other based on the molecular structures of both of them 

using ZDOCK. They were able to determine how effectively Apta-MCTS functioned as a result of this. The 

docking scores that were produced by Apta-MCTS were, on average, greater than those that were pro-

duced by known aptamers, and when compared to the results that were produced by other methods of 

creation, they were also higher than the results that were produced by known aptamers. 

The models that were constructed by [26] have the potential of generating aptamer sequences for users 

to create that is of any length that may be requested by the user. [26] did some studies to find out how the 

length of aptamers influenced the various target proteins they were looking for. Those aptamers with 70–

90 base pairs exhibited improved docking scores when compared to those aptamers that had been found 

before. All of these data demonstrate that their Apta-MCTS may generate aptamer sequences that are more 

suited for the studies at hand in contrast to other approaches that are presently being used in the field. 

These methods include: 

In the paper [27], the authors provide the first computational method that can predict protein struc-

tures routinely and with atomic accuracy. This is possible even in the absence of a structure that is compa-

rable to the protein in question. In the challenging 14th Critical Assessment of protein Structure Prediction 

(CASP14)15, the authors of their model, AlphaFold, which is based on neural networks, were able to 

demonstrate the validity of a whole new version of their model. This model displayed accuracy that was 

comparable with experimental structures in the majority of situations and greatly outperformed other tech-

niques. Moreover, it significantly outperformed other methods. The most current version of AlphaFold 

makes use of an innovative method of machine learning as its foundation. This approach makes use of 

various sequence alignments to construct the deep learning algorithm with the help of physical and bio-

logical information on the construction of proteins. 

The paper [28] talks about aptamers and reveals how their model is superior to others. Traditional 

drug development, as stated by [28], has centered on the antibody, the production of which requires a 

significant amount of time and effort. Several novel types of biomaterial, such as aptamers, which are short 

oligonucleotides with a single strand and a three-dimensional structure, have been produced as part of an 

effort to hasten the drug development process. Aptamers have a binding affinity that is comparable to that 

of antibodies, but they are less expensive and can be produced more quickly. An in vitro experimental 

technique known as systematic evolution of ligands by exponential enrichment, or SELEX, can be used to 

find aptamers that bind a certain target protein. The SELEX experiment must be carried out for its entirety 
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over several months. To cut down on the amount of time and money required for SELEX, various studies 

have been conducted to locate aptamers in silico; nonetheless, the majority of these studies concentrate on 

the interpretation of the findings of SELEX experiments. Some studies use machine learning to predict the 

interaction between aptamers and a target protein; however, these studies only feed the primary structure 

of the aptamers and proteins into their machine model, even though both aptamers and proteins exist in a 

three-dimensional space. Because of this, information is lost. [28] provide a new machine learning model 

that is based on a Transformer and that accepts as inputs aptamers and proteins in secondary structure. 

[28] validate their model by using benchmark datasets and comparing it to four different methodologies 

that are already in use. Their model performs better than others in this evaluation. In this publication, the 

authors state that they believe their model can increase the effectiveness of SELEX trials.  

According to [20], the process of developing new pharmaceuticals is infamously difficult and expen-

sive, with a low success rate. One of the most important activities that have to be done in the early stages 

of both the process of discovering new drugs and the process of repurposing existing drugs is the identifi-

cation of drug-target interactions. A high binding affinity indicates that there is a significant interaction 

between the pharmaceutical and the target that it is intended to treat. In this regard, several different com-

putational methods have been developed to predict the drug-target binding affinity, and it has been 

demonstrated that the input representation of these models is particularly effective in enhancing accuracy. 

In addition, several different computational methods have been developed to predict the drug-target bind-

ing affinity. Even while more recent models predict binding affinity with a better degree of precision than 

older models did, these models still need the three-dimensional structure of target proteins to be accurate. 

Even though there is a lot of interest in protein structure, there is a significant gap between the sequences 

of proteins that are already known and the structures of proteins that have been discovered via research. 

It is vital to locate an appropriate presentation for both the drug and the protein sequences to make an 

accurate prediction about the potential of the treatment to attach to its intended target. The fundamental 

purpose of this specific piece of study [20] is to assess the drug and protein sequence representation to 

improve the drug-target binding affinity prediction. 

According to [29], aptamers are ligands that are formed of single-stranded nucleic acid, and they can 

attach to their targets with a very high degree of specificity and affinity. The great majority of the time, 

you'll be able to locate them by looking through several libraries for sequences that have excellent binding 

properties. On the other hand, these libraries can only access a tiny fraction of the whole sequence space 

that is conceptually conceivable. The use of machine learning makes it possible to intelligently navigate 

this area to discover aptamers that function exceptionally well. This opens up the opportunity. The authors 

of this research [29] present a strategy in which (PD) particle display is used to sort an aptamer library 

according to affinity, and then this information is used to train machine learning models to predict affinity 

in silico. Their method successfully predicted high-affinity DNA aptamers from experimental candidates 

at a rate that was 11 times greater than that of random perturbation. Additionally, it developed new high-

affinity aptamers at a rate that was higher than what was observed when PD was employed by itself. The 

approach that they followed also made it simpler to construct truncated aptamers that were 70 percent 

shorter and had a higher binding affinity (1.5 nM) than the best experimental candidate. By combining 

machine learning with physical methods, as shown in this study, it is feasible to accelerate the creation of 

improved diagnostic and therapeutic medications. 

For a complete comprehension of a variety of physiological processes, such as signal cascades, DNA 

transcription, metabolic cycles, and cellular repair, it is vital to have an understanding of protein-protein 

interactions, which are also referred to by their acronym, PPIs. Over the last decade, a great deal of research 

has gone into the development of high-throughput methods for locating PPIs. Despite this, these tech-

niques call for a significant investment of time and labor, and they virtually always provide a significant 

percentage of incorrect negative results. As a consequence of this, there is a substantial need for the devel-

opment of cutting-edge computational algorithms that are capable of acting as additional tools for PPI 

prediction. [30] presents an innovative sequence-based approach to the problem of predicting PPIs. The 

Discrete Hilbert transform (DHT) and the Rotation Forest are also included in this model. The whole of 

this procedure may be broken down into three separate stages, and they are as follows: In the beginning, 

the Position-Specific Scoring Matrices (PSSM) approach was used to transform the amino acid sequence 

into a PSSM matrix. PSSM stands for position-specific scoring matrices. The history of proteins may be 

stored in this matrix, which can hold a tremendous quantity of data. After that stage was finished being 

worked on, the next thing that was done was to generate a DHT description in 400 dimensions for every 
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possible pair of proteins. In the conclusion, the RoF classifier was used to establish the most likely PPI class 

by making use of the feature descriptors that were supplied. During the study, we were able to use the 

model that had been suggested to obtain remarkable accuracies of 91.93, 96.35, and 94.24 percent, respec-

tively, for the PPIs datasets for yeast, humans, and Oryza sativa, respectively. These outcomes could only 

be accomplished by using the data sets that were gathered. In addition, [30] has conducted a large number 

of tests using PPI datasets that span many species. They concluded that the predictive power of our ap-

proach is likewise of an exceptionally high standard. [30] compare the results of RoF with those of four 

other sophisticated classifiers, namely the Support Vector Machine (SVM), Random Forest (RF), K-Nearest 

Neighbor (KNN), and AdaBoost. In addition to that [30], Existing works are already of a higher quality 

when compared to those of other authors. These exhaustive experimental findings provide additional val-

idation for the excellence of the approach that has been suggested, as well as its practicability. [Citation 

needed] They anticipate that it will be useful to them as a supplemental instrument for proteomics analysis 

in their ongoing and upcoming studies. 

The treatment of some forms of cancer has undergone a sea shift in recent years as a result of the 

introduction of immune checkpoint-targeted immunotherapy. It could be easier to conclude if the condi-

tion of immune checkpoint expression in certain cancers has been established. In this article [31], the design 

and development of a molecular probe that detects human PD-L1 with high specificity are discussed. The 

probe is based on a single-stranded aptamer, and it was designed to target the protein. Following the se-

lection of target-engaging aptamers from a pool of random DNA through an iterative enrichment proce-

dure, the binding is characterized by biochemical methods. Specificity and dosage dependency were 

proven in vitro in a cell culture setting using human kidney tumor cells (786-0), human melanoma cells 

(WM115 and WM266.4), and human glioblastoma LN18 cancer cells. [31] reveals that the probe divulges 

good potential in imaging, which proves that the probe is beneficial in vivo by using two mouse tumor 

models. [31] reveals that the probe reveals excellent potential in imaging. [31] theorizes that possible im-

provements to the probe soon might make it possible to do universal imaging of many kinds of tumors 

based on the PD-L1 status of the tumors, which could be useful in the process of detecting cancer. The most 

current research on predicting aptamers is summarised in Table 1, which may be found here.  

 
Table 1. Comparative study of literature for the prediction of new aptamers using ML techniques. 

Authors Year Objective Dataset Description Models Target Results 

[19] 2020 Predicting of the se-

quence RNA-binding 

proteins 

31 RBP datasets 

 

RBPCNN RNA The average area un-

der the receiver oper-

ator curve was im-

proved by 2.67 per-

cent and the mean av-

erage precision was 

improved by 8.03 per-

cent. 

 [20] 2021 Predict 

RNA sequences  

And Produce new se-

quences 

Protein Data Bank 

(PDB) 

 

CD13 To Predict 

RNA Se-

quences 

 

 

 

Accuracy = 92.72% 

[21] 2022 Target and Produced 

the new Aptamers 

against SGIV Infrctionn 

The data that sup-

port the findings of 

this study are availa-

ble from the 

AHTS Feature  

selection  

 

- 
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3. Materials and Methods 

This section contains the experimental process which was conducted to generate the strong aptamers 

candidates from the RNA-protein complexes.  

 

3.1 Datasets Description 

We collected the P-RNA [32-34 complexes dataset from [19] having a resolution of 5.0 Å which has 

been solved by using X-ray crystallography (XRC). XRC is used in experimental science to determine the 

atomic and molecular composition of the crystal. The dataset containing the size of RNA sequences having 

less than 10 or greater than 120 nucleotides was removed and not considered for this study. Therefore, the 

dataset only contains a total of 696 P-RNA complexes, which were applied to observe the computational 

analysis of amino acids with nucleotides. In addition, the P-RNA sequences consist of 22 categories based 

on the protein data bank (PDB) [35-38]. The proposed model was also applied to the publically available 

benchmark dataset [13], which was obtained from the aptamer database [20]. This dataset consists of a total 

of 580 DNA or P-RNA pairs including (145 positive and 435 negative sequences). We select 100 RNA ap-

tamers protein instances of positive and negative sequences for evaluating our proposed model, RF, and 

SVM [39-41].  

 

3.2 Proposed MLP  

Our methodology for finding the RNA aptamers consists of two sections: training of a neural network 

(MLP) was performed by extracting the RNA key features such as mC, dC, PseTNC & PseAAC, and feed-

ing it to the MLP, and then predicting the aptamers candidates to target the protein as illustrated in Figure 

1. 
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Figure 1. Framework for predicting potential RNA Aptamers 

The purpose of training the MLP [42] was to calculate the probability measure of RNA sequences 

using their key features. For predicting the aptamer candidates (see Figure 1), we produced the random 

RNA sequences of length 25-mer to find their secondary structure. The reason behind selecting the 25-mer 

RNA sequence is that; the SELEX process selects the aptamers of size 30-mer to 60-mer from the oligonu-

cleotide libraries [43-46]. Though, aptamers are normally smaller than the size of 30-mer [21-22]. Therefore, 

the main focus of this study was to produce 25-mer RNA aptamers to target the protein. In the end, we 

sorted the aptamer candidates [47-49] in descending order, and then top-ranked candidates have been 

docked to target the protein. The comprehensive description of our work is summarized in Algorithm 1.  

 

Algorithm 1:  

Predicting potential RNA aptamers candidates to target protein using neural network  

1 Input: protein target pt, protein-RNA complexes (P-RNA), interaction propensity (IP).  

2 Output: Predicting the aptamers candidates to the target protein. 

3 S ← ∅ {S: consist of P-RNA complexes from PDB} 

4 IP ← extracting RNA feature mC, dC & PseTNC of an amino acid from P-RNA complexes.  

5 Train the proposed MLP using IP 

6 Apply RRC ← Random RNA complexes (not greater than 25-mer) 

7 foreach candidate c ∈ S do  

     f ← feature vector of c with positive and negative pt instances  

    c. Probability ( positive votes of MLP)  

    According to their probability, sort c in descending order.  

8 . End 

 

Most of the research observes that the interaction of nucleotide triplets with amino acids is the most 

important aspect to consider when attempting to anticipate the P-RNA interaction [23-25]. [50-51] In addi-

tion, we measured the mC, dC, and PseTNC [26] for every RNA sequence by using a database that included 

696 P-RNA complexes. The value of PseTNC was determined by the use of three physiochemical parame-

ters, namely hydrophobicity (H), hydrophilicity (HP), and side-chain mass (SCM), respectively [27], [28], 

and [29]. The initial five computed value of PseTNC has been discussed in Table 2. Then, we clustered the 

20 amino acids {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V} into 7 respective groups based on 

dipole of the chain. These groups were {M,P,S,T}, {N,D,C,Q}, {A,L,R,K}, {F,W,Y}, {E,I}, {G,V} and {H}. The 

purpose behind clustering the amino acid into seven groups was to decrease the length of a feature vector 

to denote the protein sequence. In addition, the clustering of amino acids into seven sets was also applied 

successfully in multiple research studies [30-32]. 
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Table 2. PseTNC values 

No TNC H HP SCM 

1 AAT -0.78 0.2 58 

2 ATA 1.38 -1.8 57 

3 CAA -0.75 0.2 72 

4 CCA 0.12 0 42 

5 ACG -0.04 -0.5 40 

          

3.3 Positive (+) and negative (-) instances for training  

As we discussed earlier, the MLP model was trained on the feature vector obtained from the P-RNA 

complexes. The MLP model consists of 16 layers, and the feature for extracting RNA sequences was set to 

the square root of the feature elements [52-59]. We compared the performance of our model with two well-

renowned machine classifiers i.e. RF and SVM. However, grid search was applied to determine the param-

eters for both of the machine learning classifiers (RF and SVM). The objective of our model is to generate 

the potential 25-mer RNA aptamers, but the RNA sequences provided at the time of training was of differ-

ent length [60-67]. Figure 2 represents the sliding window of 25 nucleotides for positive and negative in-

stances separately. In addition, the positive (+) symbol shows the protein-binding nucleotide, while the 

negative (-) sign denotes the non-binding nucleotide. The window is considered positive if the middle of 

the window binds the protein nucleotide with (+) instance, and the window containing non-binding nucle-

otide is considered negative. 

 

  Figure 2. Positive and negative windows of 25 nucleotides in RNA sequences 

We also removed the feature vectors that were neither (+) nor (-) from the training phase because it 

may produce severely unbalanced instances for training, unless and until the initial and final windows 

were supposed as (+) if they consist of a protein-binding nucleotide in any location of the sliding window 

[68-72]. This is due to the limited number of (+) instances than (-) in the training database. Therefore, the 

ratio of (+) and (-) instances at the time of training are about 1:3 [73-75].  

 

3.4 Filtering RNA sequences by structural constraint 

Initially, we produced the random RNA sequences to find the 25-mer RNA aptamers and then applied 

RNAfold to predict their secondary structures [33]. The secondary structure of the RNA sequences must 

contain free energy lower than -5.7kcal/mol and their pool should not be greater than 150. The process of 

secondary structure was used to develop the pool of aptamer candidates. The limitation of the free energy 

was selected from the research study presented by [10]. All of these generated pools of aptamer candidates 

were applied to the MLP model, and then select the top 10 ranked potential aptamers based on their prob-

ability and free energy. In addition, HDOCK [34] was also used to evaluate the performance of docking 

the potential aptamers to target the protein [76].  
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3.5 Cross-validation and leave-one-out validation 

The performance of the model was evaluated by using 15-cross validation (CV) [77] and leave-one-

out (LOO) validation. Cross-validation (CV) [78] is very significant when the amount of data is scarce split-

ting the dataset into training and testing sections. Although the leave-one-out validation returns the iden-

tical output for an individual dataset [35-36]. The performance of the MLP, RF, and SVM was evaluated by 

6 metrics such as SN, SP, ACC, MCC, PPV, and NPV which were calculated by the following equations (1-

6). 

𝑆𝑁 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
            (1) 

 

 𝑆𝑃 =
𝑇𝑁

𝑇𝑁+ 𝐹𝑃
                (2) 

           

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (3) 

 

𝑀𝐶𝐶 =  
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁) 

(√𝑇𝑃+𝐹𝑃)∗ (𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁))
       (4) 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
            (5) 

           

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
            (6)   

4. Results 

This section contains a detailed description of the experiment performed to predict the potential ap-

tamers by using the P-RNA complexes database. The performance of the MLP, RF, and SVM models has 

been also evaluated in this section. Moreover, the result obtained by applying these approaches to the 

independent benchmark dataset created by Li et al. [13] was also part of this section.  

4.1 Experimental setup 

In this phase, we extract the RNA features before feeding the model was performed on Microsoft 

Visual Studio in C# programming language [35]. The MLP RF & SVM models were deployed with the help 

of the Keras framework and sci-kit learn repository respectively in Python [37]. The research experiment 

was executed on a Window based operating system with 11GB GPU NVIDIA GeForce GTX and 32GB 

RAM. 

4.2 Potential Aptamers with P-RNA complexes 

The RNA sequences that were obtained from the pool following the application of structural re-

strictions were gathered. To target the possible aptamer protein, this pair of sequences was stored in the 

feature vector for the MLP model. The MLP model had sixteen layers, and the input feature vector was the 

feature vector of the P-RNA complexes. After that, the probability of the positive vector was computed, 

and then we chose the RNA sequence that had a greater probability and had the free energy values that 

were the lowest. HDOCK was used to carry out the docking of the top 10 aptamers that were designed to 

target the protein. This allowed for the structure of the expected aptamers to be seen. As can be seen in 

Figure 3, the border structure of the anticipated aptamers was generated with the help of the 

RNAComposer [38]. It has been observed that the blueprints of the top 10 anticipated candidates for RNA 

aptamers target proteins with the same place on their structures as the blueprints of the RNA aptamers 

that are delivered.  
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Figure 3. Boundary structure of the aptamers to a target protein (PDB ID: 3DD2) 

We also compared the 25-mer RNA aptamers produced by our MLP method with the longer RNA 

aptamers having more than 25 nucleotides. Figure 4 represents the comparison of our generated aptamers 

with the large RNA aptamers. Even with the difference between the length of the predicted and actual 

aptamers, both of the RNA aptamers represent very similar binding tertiary 

 

 
Figure 4. Comparison of 25-mer RNA aptamers (red) with the large size of RNA aptamers (33-mer nucleotides). 

 

In addition, the results that were produced by the MLP, RF, and SVM after using two different vali-

dation methods are shown in Table 3, as seen above. The findings of the CV validation were much more 

favorable than those of the LOO approach, even though both validations (CV and LOO) demonstrate high 

performance in terms of six different metrics. In terms of all assessment measures, the MLP model demon-

strates remarkability in its performance. Additionally, in comparison to the MLP and RF models, the PPV 

value predicted by the SVM model is predicted to be lower. It seems that the SVM model has a greater 

number of false positive values than the MLP model and the RF model. 

 
Table 3.  The output of 15-fold CV and LOOCV of the MLP, RF, and SVM 

Validation PPV (%) NPV (%) SN (%) SP (%) ACC (%) MCC (%) 

15-fold (MLP) 97.58 97.47 96.56 97.52 98.44 91.23 

15-fold (RF) 96.10 95.62 94.22 98.35 96.33 89.10 

15-fold (SVM) 90.12 96.32 93.54 92.56 90.78 88.65 

LOO (MLP) 96.50 93.93 96.12 98.25 98.10 93.54 

LOO (RF) 95.01 93.26 94.42 96.56 97.79 92.22 

LOO (SVM) 90.02 92.99 94.98 95.19 96.12 89.06 
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We also used our MLP model to the benchmark dataset that was created by Li et al. [13] to conduct an 

independent performance evaluation of it. In their study, Zhang et al. [14] also made use of the same da-

taset [13]. Because of this, we additionally evaluate the findings of our model in light of the findings of 

these two previous pieces of research [13][14]. The benchmark dataset is made up of negative cases that 

were produced by using a random mix of aptamers to target the protein found in the dataset's positive 

instances [80]. So, we collected both positive and negative instances from it and applied them to our model. 

As can be seen in Table 4, our MLP model managed to attain an SN of 75.8%, SP of 68.23%, ACC of 

77.5%, PPV of 69.9%, NPV of 74.12%, and MCC of 39.9%. In terms of SN (48.3%), ACC (77.4%), and PPV 

(55.6%), the result that was provided by [13] demonstrates a lower level of performance. The research [14] 

showed better findings [13] and increased the values of SN and SP to 73.8% and 71.3% respectively from 

their previous levels. However, the PPV result that was published by [14] (46.1%), was lower than the one 

that was reported by Li et al [13]. In comparison to the other two trials, our model MLP was able to generate 

much better results in terms of SN, ACC, PPV, and MCC. Our MLP model had an SP that was 72.23%, 

which was a lower value than the one found by Li et al. [13], but a higher value than the one found by 

Zhang et al. [14]. Furthermore, the PPV of our model is ten times greater than that of Li's technique.  

 
Table 4. Independent testing of the MLP with benchmark dataset. 

Ref Method SN (%) SP (%) ACC (%) PPV (%) NPV (%) MCC (%) 

[13] RF 48.3 87.1 77.4 55.6 83.5 37.2 

[14] Ensemble 73.8 71.3 71.9 46.1 89.1 39.8 

Proposed Method MLP 75.2 72.23 77.5 69.9 74.12 39.9 

5. Discussion 

This part offers an in-depth study of the output that was created by the suggested MLP model based 

on six performance assessment parameters. These parameters are as follows: SN, SP, ACC, PPV, and NPV, 

as well as MCC. This research study is comprised of five different processes: the acquisition of data from 

the PDB, the extraction of RNA characteristics, the training model, the prediction of probable aptamers, 

and the analysis of the results. One dataset was retrieved from the PDB, while the other was a benchmark 

dataset taken from [13][70]. During the training process, many RNA characteristics were retrieved for the 

model. The accuracy of our suggested model in predicting possible aptamers was 98.44% based on 15-fold 

cross-validation, and it was 98.10% based on LOO, which suggests that MLP is more effective than those 

of the other two models, RF and SVM (see Table 3). As can be seen in Table 4, the performance of the MLP 

on the other benchmark dataset was equally outstanding. It achieved an accuracy of 77.5% and a sensitivity 

of 75.2%, both of which are higher than those of the other two experiments. According to the results of the 

performance study of RF, the MLP model is superior to various other models [65-72]. We performed a 15-

fold LOO to further test the outcomes of the proposed model, and the result validates the relevance of 

MLP, as can be shown in Table 3. The findings also indicate that our model is useful for making accurate 

predictions about the new aptamers that will be used to target the protein.  

6. Conclusion 

The search for aptamers has made extensive use of several different computational methods. The ma-

jority of the research cannot be used in the process of discovering new possible aptamers to target the 

protein since the primary purpose of these studies was to determine whether or not a certain pair of RNA 

sequences and protein interact with one another. As a consequence of this, we devised an innovative com-

putational technique, which we put to use to construct the prospective RNA aptamers that target the pro-

tein by extracting the various characteristics of the interacting RNA. We construct and train an MLP model 

by using several different characteristics of P-RNA sequences. Even though it is still in its early stages, the 

MLP model has shown promising results in the cross-validation approaches as well as the independent 

testing on the benchmark dataset. We believe that our approach will be beneficial in lowering the amount 

of time and money spent on in vitro testing, as well as useful in reducing the main size of the nucleic acid 

sequence pool. 
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