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Abstract: Several prediction techniques for liver disorders have been developed. However, they are 

more costly and sophisticated. This endeavor aims to develop an effective approach for detecting 

liver disorders in their early stages. This research describes convolutional neural network (CNN) 

infrastructure for harmless he-patic failure forecast. The Pelican Optimisation Algorithm (POA) 

balances bounding box regression and branching training losses for the CNN model. The liver 

disease characteristics were taken from three da-tasets: Indian liver patient records(ILPR), Hepatitis 

C, and Cirrhosis Prediction dataset. The POA-modified CNN model mostly identifies relationships 

between various laboratory values and diag-noses. The proposed model outperforms SOTA 

methods, including Opposition-based Laplacian Equi-librium Optimiser, Adaptive Hybridised 

Deep CNN, SVM, and Tree-based classifiers, in terms of accuracy, precision, recall, F-measure, and 

Mathews Correlation Coefficient. The proposed model has an MCC value of 94.8945, accuracy of 

98.6743%, precision of 96.2436%, F1-measure of 97.5524%, and recall of 95.7887%, respectively. The 

findings show that the suggested strategy effectively predicts liver illness early on through 

automated screening, reducing strain on caregivers. 
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1. Introduction 

The liver is an important organ responsible for removing poisons from body [1]. When the circulatory 

system ceases serving its purpose adequately, it can cause harm to the body and prevent it from performing 

certain activities [2]. The virus infects the liver and assaults the immune system. Hepato-tropic viruses 

HBV cause liver disorders. Its illness impacts 237 mil. Individuals globally, with 1 million chronically 

afflicted and dying from liver disorders[3]. Hepatitis refers to many liver illnesses. Five types of hepatitis 

cause liver disease[4]. Viral strains causing chronic illness include hepatitis C, and B. Hepatitis C or B affects 

an estimated 325 million individuals globally. Cirrhosis is the deformation or fibrosis of the liver[5]. 

Hepatitis causes inflammation in the liver due to the development of viruses such B, C, and A [6]. Bodily 

substances transfer hepatitis B and can cause illness. Hepatitis C is transmitted by contaminated blood. The 

liver illness causes no symptoms at first and might persist in the liver for several years. Increased fat 

deposition can lead to fatty liver disease[7].  

Research suggests that smoking and alcohol intake might worsen disease severity [8]. Machine 

learning (ML) is useful in predicting liver illness at an early stage[9]. Liver function and imaging tests are 

used to assess liver damage and aid in disease diagnosis [10]. While liver transplantation is the most 

effective option, it is also the most expensive [11]. 

The likelihood of liver failure will be reduced if liver disease is detected early [12]. Due to their 

ongoing function, even when partially impacted, liver problems are typically dis-covered later on [13]. In 

general, liver illness only affects the liver’s functions when it affects 75%. of its tissues. The signs of liver 
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illness can vary from case to case [14]. They may not always exhibit any overt signs. Early diagnosis has 

the potential to save more lives. Due to the liver’s vital role in manufacturing triglycerides, proteins, and 

blood clotting factors, among other things, an early diagnosis is essential [15]. Another difficulty is that, 

despite seeing the early signs, even medical professionals could fail to diagnose the illness. Therefore, 

creating an effective model to diagnose the illness automatically will considerably aid medical pro-

fessionals in their decision-making [16]. 

CNN focuses on picture segmentation and ignores the form of an object while de-termining the actual 

boundaries of the item, in contrast to other approaches that provide single bounding boxes surrounding 

the object of interest [17]. It avoids further image processing work by directly measuring the object’s area, 

length, and axis. This data facilitates the creation of algorithms to determine the object's precise properties 

[18]. The high-level features that doctor needs from the raw images. Researchers from various disciplines 

have noticed CNN’s precision and compu-ting efficiency [19]. This encourages us to choose pelican 

optimization and CNN to predict complications of liver disease. Additional benefits of CNN are decreased 

computational complexity and storage space [20]. 

The necessity to guarantee a varied representation of liver illnesses, including cirrhosis, hepatitis C, 

and general liver abnormalities, motivated the dataset selection in this work. The Cirrhosis Prediction 

Dataset, Hepatitis C Prediction Dataset, and ILPR Dataset were se-lected because of their comprehensive 

features, which include biochemical indicators, liver function tests, and demographic information. 

Additionally, all datasets were openly acces-sible, guaranteeing reproducibility and comparison with 

current techniques. Datasets were merged to increase generalizability and model robustness across various 

liver disease situ-ations. Traditional models trained on a single dataset are frequently biased and less 

effective when applied to new, unseen data. By integrating multiple datasets, we aimed to create a 

comprehensive model that performs well across different patient populations and diag-nostic markers. 

We have optimized the CNN architecture’s training process using the Pelican Opti-mization 

Algorithm (POA) to provide the best possible solution. The POA method considers pelicans' social 

behavior to optimize the CNN’s hyperparameters, such as an epoch, learning’srate, and speed or 

momentum. The ability of pelicans to hunt intelligently inspires CNN to identify the afflicted cases. As a 

result, it reduces function loss and improves liver disease prediction accuracy. In this work, a unique liver 

disease prediction model is developed. The main features of our suggested framework are outlined below. 

1. It is suggested that a Convolutional Neural Network (CNN) model be used to identify precisely if 

a patient has a liver illness.  

2. Use a POA technique to optimize the CNN model’s hyperparameters to improve disease prediction 

accuracy. The hyperparameter optimization procedure reduces the loss of training that happens during 

branching and bounding box regression. 

3. Three distinct liver illness datasets—the Hepatitis C, Indian liver patient records, and the Cirrhosis 

Prediction dataset—are used to assess the suggested model's effec-tiveness using various performance 

criteria (accuracy, precision, recall, efficiency, ar-bitration time, etc.).    

 

2. Literature Review  

Chen et al. [20] introduced (AHDCNN) to investigate the potential of different deep-learning 

techniques for the effective and efficient early diagnosis of kidney illness. A Machine Learning (ML) 

method was presented by Khan et al. [21] to classify dataset as either having or not having CKD. The ex-

perimental results showed that the MAE for LR was 0.035, for J48 it was 0.0229, for NBTree it was 0.0158, 

for Naïve Bayes (NB) it was 0.0419, for Multiple layer it was 0.265, and SVM at 0.015 [21].  

Vasquez-Morales et al.[22] suggested a classifier based on a neural network to deter-mine if an 

individual is at risk of developing CKD[23]. It is used and verified to explain the predictions of CKD. 

Malathi et al. [24] introduced a hybrid reasoning-based model for disease prediction. Fuzzy set theory, 

case-based reasoning, and K-nearest neighbor combine to improve prediction results. 

An effective HCS approach for CKD detection was introduced by Aswini et al. [25]. The plan 

increased productivity by 6%. The Opposition-based-Laplacian-Equilibrium-Optimizer(O-LEO) based 

Cloud-Sim method decreased the task’s execution time. Senan et al. [26] developed a Recursive Feature 

Elimination (RFE) method for diagnosing CKD. This study uses the Random Forest (RF), Decision Tree, K-

Nearest Neighbors (KNN), and Support Vector Machine (SVM) algorithms. 
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Recent liver-specific CNN-based models have shown promising results. For instance, Aswini et al. 

[25] used a CNN with POA for liver disease prediction with high accuracy. Outcome showed design 

achieved a 98.08% accuracy rate. Hashem et al. [29] presented a machine learning-based prediction model 

for the detection of hepatocellular carcinoma (HCC) associated with chronic hepatitis C (CHC). According 

to the experimental results, the accuracy of the scheme ranged from 93.2% to 95.6%. 

To forecast liver disorders, Assegie et al. [30] created a hybrid model that combines SVM and RF. The 

SVM trained the feature sets, while the RF approach performed the recursive feature elimination. It 

attained the highest accuracy of 78.3% and increased suggested accuracy by 12.2% compared to the 

contrary that governs forecasting algorithms [31]. A sophisticated Gaussian SVM learning system was 

introduced by Ghazal [32] to forecast the chronic infectious disease Hepatitis C. The disease stages were 

divided into four stages by the Hep-Pred model. In contrast to the current biopsy procedure, which was 

painful and time-consuming, the method proved to be effective. The accuracy rate of the approach was 

97.9%. 

We studied CNN architecture from the ground up and evaluated its performance against pretrained 

data augmentation algorithms[33]. They suggest a safe and noninvasive automatic classification method 

based on blood tests and CT images for detecting liver disease. The classifier’s performance metrics are 

then assessed using a confusion matrix for optimal sensitivity, specificity, and accuracy scores. Even partial 

detection can be quite helpful in the case of conditions like cirrhosis[34]. Thus, a reliable diagnostic 

approach is provided by the ability to detect and categorize liver illnesses early on before they progress 

and necessitate more stringent surveillance[35]. The study aims to learn a convolution neural network 

(CNN) and compare its detection performance to get strong generalization capabilities of fatty liver 

features compared to alternative pre-trained deep CNN designs. CNNs are very useful tools in medical 

image analysis, particularly for detecting conditions such as fatty liver disease [36]. 

CNNs are helpful for the automated diagnosis of fatty liver because of their excep-tional ability to 

recognize intricate patterns and characteristics in medical images[37]. Be-cause these networks have been 

trained on massive liver image datasets, they can detect subtle variations in tissue density and texture 

associated with fatty infiltration [38]. CNNs can effectively use input images to extract relevant information 

and spatial correlations. This paper aims to identify impaired liver function and cirrhosis. The liver’s 

capacity to carry out vital processes, including detoxification, protein synthesis, and nutrition and 

medication metabolism, is severely compromised by cirrhosis[39]. 

Many existing studies use machine learning models to predict liver disease but often rely on just one 

dataset. This can introduce biases specific to that dataset, limiting the model’s effectiveness in real-world 

scenarios. Additionally, traditional models like SVM and decision trees (DT) struggle to grasp the complex 

relationships between medical parameters fully. Our study combines three datasets to address these 

challenges and employs a mod-ified CNN, enhanced with the POA. This approach improves feature 

extraction and en-hances prediction accuracy, significantly outperforming conventional machine learning 

techniques. 

 

3. Proposed Method  

This prediction model efficiently manages patients' liver illness data and will track their health to 

determine their condition's severity. The CNN framework is used to examine and forecast whether or not 

a patient has liver illnesses, including cirrhosis of the liver and hepatitis C, using sample data from liver 

patients gathered suffering from three liver con-ditions databases. The POA and the CNN model are 

combined to create the CNN model. Even while CNN model can localize data accurately, it has several 

drawbacks, namely loss functions. The model's prediction performance will suffer greatly if these loss 

functions are not weighed while training. To balance the loss functions, POA is used to optimize the CNN 

model’s configured hyperparameters, including learning rate, momentum, batch size, and epochs. 

Consequently, the suggested CNN model can accurately and efficiently identify liver disorders from the 

datasets, and anticipated findings are saved on servers. The proposed model used a dataset to train 

modified CNN architecture, and probes are categorized once the body area sensor network has acquired 

feature vectors following the data preparation stage. The resource manager is given the task, and using 

data collected from a gateway’s devices, the model is created and forecasts outcomes. 
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Several preprocessing steps were applied to ensure consistency in the merged dataset, including 

feature alignment, normalization, handling missing values, and feature selection [40]. First, feature 

alignment helped unify the datasets by resolving differences in attributes and data types. Next, 

normalization was used to standardize numerical values, ensuring a balanced dataset that wouldn’t 

introduce biases during model training. Missing values were carefully handled by using mean imputation 

for continuous variables and mode imputation for categorical ones, maintaining the integrity of the data. 

Lastly, feature selection was made to keep only the most relevant attributes for liver disease prediction, 

reducing complexity and improving computational efficiency. These steps are crucial in medical data 

analysis, as they enhance the accuracy and reliability of predictive models [41]. 

 

Figure 1. Proposed liver disease detection model’s architecture. 

Our model meticulously aligned the features across several datasets to guarantee consistency in the 

training process. We eliminated features in only one dataset, retained only the features shared by all 

datasets, and used statistical imputation to fill in any missing values. A uniform and well-organized dataset 

for model training was produced using these procedures. Balance is crucial in this approach to avoid bias 

toward a larger sample size dataset. Resampling methods like undersampling the majority class or 

oversampling the minority class (e.g., SMOTE) can be used to accomplish this. Furthermore, domain 

adaptation techniques like normalization and adversarial training align feature distributions, and 

weighted loss functions ensure equitable learning across datasets. By dynamically altering learning rates 

and weights to reduce bias, the Pelican Algorithm can further optimize hyperparameters. 

By strengthening the model’s generalizability and robustness, these techniques improve the 

prediction of liver disease across various datasets. The proposed model uses the CNN model to determine 

whether or not patients have liver problems after receiving identification data from many designs. The IOT 

model, utilized in the medical field, is another term for the liver disease prediction model. The liver disease 

prediction model integrates the hardware tools through the software tool, allowing for a smooth and well-

thought-out end-to-end integration that yields precise and quick results. Figure 1 shows the general design 

of the suggested paradigm. 

3.1. Convolutional Neural Network(CNN) 

In illness prediction tasks, CNN, an enhanced variant of the faster CNN framework, performs better. 

[42]. The framework comprise CNN model to achieve the intended out-come [43]. The following is a 

discussion of how these components operate. 
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To properly utilize the multi-dimensional information, the framework exemplifies the traditional 

CNN model (usually ResNet) for extracting characteristics. Model extracts features from subsequent layers, 

whereas low features are extracted before. When the input data is introduced, CNN model, which acts as 

the centerpiece. The feature maps produced are used as input by the network layers that follow. The FPN 

supports ResNet and facilitates an efficient feature extraction procedure. FPN can provide a more 

comprehensive description of the identified sick cases on multiple dimensions. At every level, FPN 

effectively supports both high-degree and low-degree features.  

Region proposal network: RPNs suggest potential areas for creating boxes bound based on data 

attributes from the backbone. To eliminate the sluggish computing process associated with region 

proposals utilizing a selective search method, the RPN is proposed in place of selective search. RPN screens 

all of the regions known as anchors and uses feature maps to determine the position of targeted instances 

in the dataset. The anchors chosen for the supplemental phase are more likely to receive RPN proposals. 

The non-maximum-suppression technique is applied based on grades if the anchors overlap to reduce data 

redundancy between RPN proposals. The RPN loss function can be found in Equation (1). 

Γ𝑅𝑃 =
1

𝑁cl

∑ℓcl

𝑥

(𝑃𝑥 , 𝑃𝑥
∗) + 𝜇

1

𝑁rel

∑𝑃𝑥
∗

𝑥

ℓre(𝛽𝑥 , 𝛽𝑥
∗) (1) 

In this case, regression loss is represented by the last word, whereas classification loss is represented 

by the first. β_x  indicates the reality, μ stands for the weight balancing factor, and P_x Indicates the. P_x^* 

represents the labeling, either 0 or 1, corresponding to negative & positive anchors. 

ROI alignment: The CNN model requires intriguing areas based on data features to accurately retain 

the spatial correlation for each pixel to identify the pixels. The alignment layer uses Bi-linear approximation. 

Approach to compute an accurate localization of the input features[27]. The previously acquired data 

features are also subjected to average or max pooling techniques for improved refinement. 

A completely linked layer that accurately anticipates instances and handles categorization process. 

The features retrieved from the ROI alignment levels are supplied into the network head. The network 

head simultaneously performs the tasks of feature extraction. The fully linked layer forecasts the n × n-

dimensional against each region of interest. The intended data dimension must be maintained for effective 

classification results. Additionally, multi-task loss function and sigmoidal function’s mathematical 

representations are explained in Equations (2) and (3). 

𝑓(𝜎) =
1

1 + 𝑒−𝑋
 (2) 

ℓ = ℓcl + ℓre + ℓmask (3) 

3.2. CNN: Using the Pelican Optimization Algorithm 

This section contains an empirical framework for creating swarm-based POA[44]. Figure 2 displays 

the POA algorithm’s flow chart. 

Population members are randomly selected using Equation (4). 

𝑦𝑝,𝑞 = 𝑘𝑞 + ℜ ∙ (𝑣𝑞 − 𝑘𝑞), 𝑝 = 1,2,3,4,… ,𝑀, 𝑞 = 1,2,3,4,… , 𝑛 (4) 

Where y_(p,q) is the value of the qth variable as determined by the pth candidate solution; M: stands 

for the population size; n for the number of variables in the problem; R is a random number between 0 and 

1; k_q is the qth lower bound of the problem variables, and v_q is the qth upper bound, respectively. The 

presented POA determined in Equation (5) using the matrix, sometimes referred to as the population 

matrix. 
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Y stands for the pelican population matrix, and Y_p for the pth pelican. The values attained for the 

function’s objective constitute the objective function vector in Equation (6). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) =
1

|ℎ𝑥 − ℎ𝑦|
 (6) 

 
Figure 2. Flowchart of POA.      

According to stage 1, y_(p,q) indicates the pth pelican’s new state in the qth dimension. P is a random 

number between one and two, i_q is the prey’s location in the qth dimension, and E_i is the value of the 

objective function. P is an integer parameter that can be either one or two. This parameter is selected at 

random for every individual iteration. A member experiences greater displacement when the value of this 

parameter equals 2, which encourages them to explore more recent areas of the search region. 

Consequently, the parameter P affects how accurately the POA can explore the search space. When the 

value of the objective function improves, the new location of a pelican is accepted in the evolved POA. This 

type of updating, called effective updating, prevents the algorithm from moving to non-optimal regions. 

This process is modeled by the Equation (7). 

           𝒀𝒑 = {
𝒀𝒑

𝑰𝟏 , 𝑬𝒑
𝑰𝟏  < 𝑬𝒑;

𝒀𝒑,           𝐞𝐥𝐬𝐞           
                                 (07) 

Therefore, the POA is used to fine-tune the CNN’s hyperparameters, including the learning rate, 

number of epochs, momentum, and batch size. The best values for these hyperparameters are set: learning 

rate = 0.005, epochs = 2000, momentum = 0.0005, and batch size = 12. 

  

4. Results and Discussion  

     The CNN performance is assessed in this part, and the findings are explained below. The model was 

trained using the Adam optimizer with ReLU activation in hidden layers and Softmax in the output. All 

training was done on a system with an NVIDIA RTX 3060 GPU (CUDA 11.7), TensorFlow and Keras 

frameworks. The public cloud is utilized in this. Separate implementations are used to calculate the POA 

optimization algorithm’s efficiency. A thousand iterations are involved in solving the goal function for 

each independent implementation. The learning rate, epoch count, and batch size are the ideal CNN 
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parameters. The POA algorithm yielded the following results: 8, 40, and 0.001 for batch size, epoch count, 

and learning rate. Table 1 displays the parameter settings. 

 

Table 1. Configuring parameters. 

Parameter Value 

Learning-Rate 0.0001 

Learning- momentum 0.10 

  

Weight-decay 0.00018 

pool-size 15 

  

Totalnoofepoch 100 

Validation-Steps 55 

Class-No’s 3 

4.1. Dataset Description 

Table 2. summarizes the key attributes of each dataset used in this study: 

 

 

 

 

 

ILPD Dataset [45], the Cirrhosis Prediction Dataset [46], and the Hepatitis C predic-tion dataset[47] 

are three datasets used in this study. This subsection contains a description of these datasets. Learning 

paradigm solely focuses on train data once testing & training datasets have been separated, and the testing 

data is used to calculate performance. Training data makes up 70% of the dataset, while testing and 

validation data make up 15% each. All of the data are combined in the beginning. 

4.1.1. Dataset for predicting Cirrhosis 

Information regarding liver cirrhosis was gathered from PBC’s Mayo Clinic Trial (Primary-Binary-

Cirrhosis) and is included in the data [48]. Data is gathered from 424 PBC patients at 10-year intervals via 

the Mayo Clinic. 

4.1.2. Record of Indian Liver Patients 

The dataset consists of 416 liver patient records, and 167 non-liver patient records are included in the 

dataset [49], which was gathered from the northeast region of Andra Pradesh, India. Gender, age, Alkaline 

phosphatase, aspartate aminotransferase, and total protein levels and bilirubin are among the statistics 

included in each of the dataset’s columns. 

4.1.3. Hepatitis C Prediction Dataset 

There are 14 attributes in this dataset, which will be divided into two categories. The patient’s data 

is used to get the first four qualities, while laboratory data is used to gather the remaining attributes. From 

patient data, characteristics such as x (patient-id), age (in decades), sex (M, F), and diagnosis categories are 

gathered. The characteristics are GGT (glutamyl-transferase), PROT, CHOLINES (cho-linesterase), 

CHOLES (cholesterol), CREATI (creatinine), ALBU (Albumin), ALKAL (al-kaline phosphatase), ALAMTF 

(alanine aminotransferase), ASMTF (aspartate ami-notransferase), and BILIRU (bilirubin)[50]. 

4.2. Model Training 

Assuming that the basic characteristics of additional data are the same, different liver disease datasets 

used for pretraining in this study. Trained weight files were then moved to datasets to fine-tune network 

parameters and training. This helps CNN over-come the problem of limited data by achieving decent 

results with small datasets. The following lists the benefits of transfer learning. (1) The model’s 

performance improves significantly during training. (2) At first, it performs well. (3) High performance is 

achieved via trained models. 

4.3. Performance Evaluation: 

Matthew’s correlation coefficient (MCC’s) evaluation using different approaches is shown in Figure 

3. The MCC values of different models are compared with MCC value of the suggested CNN. The outcome 

Dataset Sample Attribute Source 

ILPD 583 10 Kaggle[45] 

Cirrhosis 424 13 Kaggle[46] 

Heapatitis C 615 14 Kaggle[47] 
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demonstrates that the CNN outperforms current techniques regarding MCC value, with an MCC value of 

roughly 94.89%. 

 
Figure 3. MCC Analysis on various models. 

Figure 4 illustrates CNN’s performance rate evaluation using several performance indicators, 

including accuracy, precision, recall, and F-measure. According to the figure, the CNN attains 98% 

accuracy, 96.2% precision, 97.3% F-measure, and 95% recall. Table 3 discusses the performance evaluation 

of suggested CNN using various crossfolds. The suggested CNN outperforms the other two lower folds in 

metrics by a factor of 10. 

 
Figure 4. Evaluation of the suggested CNN method’s performance. 

Table 3. Assessment of CNN’s performance with several cross folds. 

Cross-Folds 

No’s 
Accur(%) Prec(%) Recall(%) 

F1- 

Score(%) 
MCC(%) 

3Folds 93.24 94.13 94.53 95.72 94.82 

5Folds 94.85 95.34 95.23 96.82 96.61 

10Folds 96.16 97.47 97.38 97.89 97.99 

The examination of the execution times of different approaches is shown in Figure 5. The CNN 

execution time is contrasted with the execution times of the O-LEOO, AHCNN, SVM, and TBC strategies. 

Analysis demonstrates CNN’s duration of execution is shorter rather than current techniques, with a final 

execution time of 530 ms. 

Table 4 shows how the CNN model, optimized with the POA, predicts liver disease using different datasets. 

It compares the model’s effectiveness across three separate da-tasets—ILPR Cirrhosis Prediction Dataset, and 

Hepatitis C Prediction Dataset—and a merged dataset that combines all three. The ILPR dataset achieves 92.45% 

accuracy, while the Cirrhosis Prediction Dataset and Hepatitis C Prediction Dataset perform slightly better at 
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94.78% and 96.12% accuracy, respectively. However, when these datasets are merged, the accuracy jumps to 

98.67%. These findings highlight how multi-dataset integration and advanced optimization techniques like POA 

enhance the accuracy and reliability of liver disease prediction, making it a powerful approach for real-world 

medical diagnosis. 

 
Figure 5. Evaluation of execution duration. 

Table 4. Comparative Dataset Analysis. 

Dataset Accur(%) Prec(%) Recall(%) F1-score(%) MCC(%) 

Indian Liver Patient 92.45 91.30 93.20 92.24 90.89 

Cirrhosis Prediction 

Dataset 
94.78 93.90 95.50 94.69 93.32 

Hepatitis C 

Prediction Dataset 
96.12 95.80 96.70 96.25 95.45 

Merged Dataset 98.67 96.25 95.90 97.33 94.89 

4.4. Ablation Study 

Table 5 shows that the CNN model predicts liver disease when integrated with mul-tiple datasets, 

comparing results with and without the POA. The findings show a clear advantage of using POA, as it 

boosts accuracy from 94.52% to 98.67%, precision from 93.70% to 96.25%, recall from 94.00% to 95.90%, and 

F1-score from 93.85% to 97.33%.. 

Table 5. Performance evaluation of CNN with and without POA. 

Model Variant Accur(%) Prec(%) Recall(%) F1- Score(%) 

CNN without POA 94.52 93.70 94.00 93.85 

CNN with POA 98.67 96.25 95.90 97.33 

With the increasing prevalence of liver disorders, it has become crucial to develop novel methods for 

predicting liver illness. We introduced an CNN with combinataioan of CNN and POA architecture to 

enable earlier detection. The preprocessed images are ex-tracted for feature, followed by the CNN 

technique to generate bounding boxes. Hy-perparameters such as learning-rate, epoches, and momentum 

were fine-tuned using the POA.  

Table 6 highlights the higher performance of the proposed methodology in predicting illness of liver  

by comparing several machine learning methods for predictive accuracy, preci-sion, and sensitivity. While 

conventional models such as SVM, LR, DT, RF, and NB demonstrate moderate accuracy (between 69.26% 

and 83%), the suggested CNN with POA outperforms all current techniques with 98.67% accuracy, 96.25% 

precision, and 95.90% sensitivity. The POA, which improves feature extraction and classification, and mul-

ti-dataset integration, which permits a more generic model, are credited with this devel-opment. According 

to the findings, CNN with POA is an advantageous model for de-tecting liver illness early and accurately, 

reducing false negatives, and enhancing diagnostic dependability. 

Table 6. Comparisons with other existing methods. 
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Ref Method Accuracy (%) Precision (%) Sensitivity (%) 

[51] SVM 71 64.1 71.5 

 Back Propagation 73.2 65.7 73.3 

[52] Logistic 73.39 57.69 22.73 

 Linear LR 72.10 52.17 18.18 

 SVM 71.24 47.83 16.67 

[53] LR 74.36 72.33 77.11 

 RF 71.87 73.44 77.25 

[54] DT 81 84.25 85.32 

 RF 77 78 75 

 SVM 77 74.25 77.98 

[55] LR 73.97 75.25 80.22 

 SVM 71.97 75.25 74.68 

 K-NN 73.97 77.39 77.33 

[56] AdaBoost 70.25 76.3 77.69 

 RF 69.26 79.66 78.22 

[57] Naive Bayes 61.28 55.8 74.5 

 SVM 79.66 76.6 75.7 

Propo

sed 
CNN with POA 98.67 96.25 95.90 

Several factors influence the evolutionary significance of liver disease in this analysis. The CNN 

Classifier computations are mastered in multiple instances. Once the evaluation workflow is completed, 

clinician-given selectivity is employed appropriately, thanks to the increasing number of predefined 

classes. With the help of our technique, the initial phase of antifungal medicine therapeutic assurances is 

carefully planned with the patients at risk in mind. This allows physicians and patients in the final stage 

to manage themselves appro-priately. Compared to other machine learning techniques, the classification 

method solves the issue more successfully and produces better outcomes when considering the regression 

strategy. As mentioned earlier, the CNN is crucial to achieving a favorable outcome while striving for the 

classification algorithm. By contemplating a suitable and straightforward model that allows clinical 

position patients to have certain qualities, the CNN model complexity is avoided. A successful pattern 

investigation requires additional data from the time series, but this data is not available in the clinical 

setting. It is challenging to locate the patient’s data in the hospital database since patient’s text from medical 

history is not organized in table form. For this investigation, text mining techniques based on key-word 

searches are employed. 

 

5. Conclusion  

The modified CNN model architecture for liver disease prediction is presented in this research. Liver 

disease is successfully localized within datasets by use of the CNN model. Nevertheless, CNN model’s loss 

functions introduce significant flaws that eventually affect prediction accuracy. Consequently, a POA 

approach is used to balance and reduce loss functions that arise throughout the training process for data 

to improve prediction accuracy. An CNN is an enhanced version of the CNN model created by a POA. 

Three different dataset types—the liver disease patient Prediction Dataset, ILPD Dataset, and (HCIFPD) 

Dataset with multiple features are used in this study to forecast liver illness. The effec-tiveness of the 

suggested CNN approach in identifying liver illness in patients, such as cirrhosis or hepatitis, is evaluated 

using several performance criteria. Better accuracy of 98.78%, precision of 96.26%, Fmeasure of 97.32%, and 

recall of 95.33% are all attained by the CNN. The suggested CNN approach also achieves reduced execution, 

arbitration, and latency times. Limitations of this study include lack of clinical validation and potential 

generalization issues to other organs or imaging modalities. To detect different diseases in different settings, 

we hope to further study different CNN parameters in the future, such as ROI, anchor scale, and backbone 

stride. It may be possible to improve diagnosis by gathering additional inputs, such as nephritis end-stage 
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illness, gastrointestinal bleeding, osteoporosis, recent bone fractures, and so forth. This work must be 

expanded to include further clinical trials with photographs and applied to various potential uses. 
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