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Abstract: Arrhythmias is an abnormality that is found in heart rhythm which poses risks to 

cardiovascular health this abnormality is very critical for ill patients those are in intensive care units 

(ICUs). Electrocardiogram signals can be used to serve as valuable alternatives or complements to 

ECG data for arrhythmia detection which ensures a continuous monitoring of ECG signals when 

they are unavailable. In this study, different deep learning-based approach to classify arrhythmias 

using a combination of electrocardiogram (ECG), arterial blood pressure (ABP), central venous 

pressure(CVP) signals, including long short-term memory (LSTM) networks and convolutional 

neural networks (CNN), with various residual CNNs like ResNet architectures for arrhythmia 

classification. Among all these models evaluated ResNet50 has achieved the highest training 

accuracy of 98.77% and validation accuracy of 98.88% from all five of the arrhythmia classes when 

utilizing all three signal types (ECG, ABP, and CVP). ResNet50 has also demonstrated strong 

performance results when being trained solely on ABP and CVP signals which have achieved 

accuracies of 98.79% and 96.67%. Furthermore, when it was applied to the MIT-BIH arrhythmia 

database on the ResNet50 model, it had an accuracy of 98.88%. These results have highlighted both 

the scalability and robustness of the different deep learning models it also has shown the potential 

of ABP and CVP signals that they are reliable inputs for arrhythmia detection. 

 

Keywords: Artificial Intelligence; Deep Learning; Arrhythmia Detection; ECG; ResNet; ABP; CVP; 
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1. Introduction 

Cardiovascular diseases (CVDs) have always remained the leading cause of mortality worldwide, 

accounting for approximately 30% of deaths annually as shown by the World Health Organization (WHO). 

Primary detection and diagnosis are also essential for doing timely medication to improve patient 

outcomes for these critical conditions [1]. Arrhythmias are the irregularities in the heart’s rhythm which 

are particularly significant they are among the various indicators of CVDs. Arrhythmias are also then 

classified into two groups those are non-life-threatening types and life-threatening types. The ECG is 

among the most commonly used diagnostic tool which is known as a non-invasive tool for detecting 

arrhythmias. It is used to capture electrical activity in the hearts by using electrodes that are placed on the 

skin which provide waveform patterns that are characteristic of specific arrhythmias. These waveform 

morphologies are used to offer essential diagnostic cues for clinicians in identifying, treating, and 

monitoring cardiac rhythm disorders. 

In the development of computer-aided diagnosis (CAD) systems, ECG signals have been playing a 

very important role by using machine learning and signal processing algorithms like Support Vector 
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Machines (SVMs) and deep learning architectures like Convolutional Neural Networks (CNNs). So, for the 

last four decades, the basic role of ECG monitoring in hospitals has evolved into complex arrhythmia 

classification from a simple heart rate tracking system. Even with the use of all these technological 

advancements, there are still issues with the interpretation of ECG data in intensive care units (ICUs) which 

still heavily rely on human oversight. This is particularly important in ICUs where patients are there with 

complex medical conditions can receive medications that can be a cause for inducing or exacerbating 

arrhythmias [2]. ICU patient mobility often the issue that the ECG leads are disconnected which 

compromises the performance of CAD systems and hinders reliable results of arrhythmia detection [3]. To 

deal with these limitations other physiologic signals are routinely monitored in ICUs like arterial blood 

pressure (ABP) and central venous pressure (CVP) theses can be leveraged as alternative source or 

complementary sources of information. 

Arterial line blood pressure (ABP) signals are typically obtained by using a catheter inserted into the 

radial artery with which the feature components such as the systolic upstroke, dicrotic notch, and diastolic 

downslope are present. CVP signals are recorded through a central venous catheter placed in the superior 

vena cava that comprises phases including a wave, c wave, v wave, and x descent. Even though there is no 

direct link between these signals to any cardiac electrical activity directly, their morphology reflects the 

patient’s hemodynamic and cardiac functional status [4]. For example, in ABP signals AF has been shown 

to produce irregular pulse waves [5] and it can eliminate or distort a wave in CVP recordings [6]. So, 

incorporating ABP and CVP data into arrhythmia detection systems can be used as a resilient alternative 

in cases where ECG data is compromised or unavailable. 

In this paper, the proposed method of a deep learning approach for classifying types of arrhythmias 

those are using single-lead ECG data alongside ABP and CVP waveforms. Furthermore, we have also 

demonstrated the feasibility and effectiveness of using signals of ABP and CVP independently to detect 

arrhythmias with high accuracy. By integrating ECG and hemodynamic data now our models contribute 

to the advancement of robust CAD systems that are tailored for ICU environments in which rapid changes 

in patient condition are continuous and need reliable monitoring. 

 

2. Contribution Clarification 

The key contributions of this research are as follows: 

1) We propose a novel AI-based framework that integrates deep learning models including ResNet50, 

ResNet34, ResNet152, and CNN-LSTM for the classification of arrhythmias using multimodal 

physiological signals (ECG, ABP, and CVP). 

2) We demonstrate the ABP and CVP signals, often overlocked in conventional studies, can 

independently achieve high classification performance, making them viable alternatives when ECG 

data is compromised.  

3) Our experiments using the MIT-BIH Arrhythmia Database show that the ResNet50 model provides 

superior accuracy and robustness across multiple signal types, highlighting its scalability and 

adaptability for ICU environments. 

4) This study contributes to the development of intelligent, continuous monitoring system capable of 

reliable arrhythmia detection in real-world clinical settings, especially in scenarios with missing data, 

signal noise, or lead disconnection. 

 

3. Related Work 

Recent progressions in the field of deep learning and machine learning have been very helpful for the 

accuracy of arrhythmia detection with the help of ECG signals. The traditional machine learning 

approaches typically needed a manual feature extraction and selection before its classification. 

Characteristics of the QRS complex, RR intervals, heart rate variability, and frequency-domain metrics 

features are also included in them. These generate features like Wavelet-based methods like Continuous 

Wavelet Transform (CWT) [7] and Discrete Wavelet Transform (DWT) [8] are also used. Seeing the 

effeteness of these methods there was a demand for expert knowledge, and these aspects have promoted a 

shift toward deep learning-based techniques that automate feature extraction. 
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Convolutional Neural Networks (CNNs) [9–11], Recurrent Neural Networks (RNNs) [12], Long Short-

Term Memory (LSTM) networks with autoencoders [13], and hybrid CNN-LSTM architectures [14–16] are 

the deep learning models those have been showing great progress in arrhythmia classification. CNNs have 

shown promising results in handling multidimensional signal data and have also been widely applied in 

ECG-based diagnostics. Early implementations in these involve transforming ECG signals into 2D images, 

spectrograms, or representations of time-frequency [17,18]. Today more recent models can directly process 

raw 1D ECG signals by reducing preprocessing steps and maintaining high classification performance. 

For example, the 1D CNN model of the 9-layer that is presented in [9] has been classified from the MIT-

BIH arrhythmia database with the use of five types of heartbeats with an accuracy of 94.47%. A hybrid 

CNN-LSTM approach that is in [15] has achieved 98.10% accuracy on the same dataset. In [11], a 4-layer 

CNN is combined with max pooling and dense layers which along with SMOTE for class balancing has 

reached 98.30% accuracy. Houssein et al. [19] also used a combination of SMOTE and random under-

sampling by extracting six types of features before doing classification with a 1D CNN also achieving 

strong results. 

In [20], there is a 34-layer deep CNN which was developed using ambulatory monitoring devices from 

single-lead ECG. Its performance for diagnosing has surpassed average cardiologists with the ability to 

detect subtle waveform patterns. Although these deep CNNs are dealing with the vanishing gradient 

problem in which the effectiveness of learning diminishes in deeper layers. This issue has also been 

addressed through Residual Neural Networks (ResNets) [21] that use skip connections to preserve key 

features and stabilize gradient propagation. 

In ECG-based classification of arrhythmia, ResNet architectures have always been proven highly 

effective. Zhang et al. [22] introduced a way of converting ECG signals into 2D time-frequency images in a 

101-layer ResNet (ResNet101) by using the Wigner-Ville Distribution and Hilbert Transform that have 

achieved 99.75% accuracy. Another study by Rahman et al. [23] used applied transfer learning as a pre-

trained ResNet50 model and reached 91% accuracy with ECG image inputs. More recent work eliminates 

the uses of 2D transformations by applying 1D ResNet models directly into ECG waveforms [24,25]. Khan 

et al. [24] also developed the uses of three max-pooling layers and six convolutional in a 1D ResNet that 

attains 98.63% accuracy, 99.06% specificity, and 92.41% sensitivity by using SMOTE for class balancing. 

Despite these advanced improvements, most research is also focused exclusively on ECG signals by 

overlooking multimodal physiological signals. ABP and photo platysma gram (PPG) signals are the first 

ones used for arrhythmia classification by Kalidas et al. [26] from the PhysioNet/Computing in Cardiology 

2015 Challenge which aimed to reduce false alarms in ICU settings. They used spectral and time-domain 

features from ECG, ABP, and PPG to achieve 94% sensitivity and 86% specificity by using an SVM classifier. 

Arvanaghi et al. [27] used a way to extract features like power, frequency, and entropy from ECG and 

ABP by using Least Squares SVM (LS-SVM) for achieving 95.75% accuracy, 96.77% sensitivity, and 96.32% 

specificity. In a follow-up study [28], the ABP was used alone with a CNN in the form of scalograms for 

reaching an F1-score of 90.16%, accuracy of 89.03%, and sensitivity of 81.46%. It has also shown the benefit 

of combining ABP with ECG which was further highlighted in [28] in which the two-class arrhythmia 

model improved from 89% (ECG only) to 96.6% (ECG + ABP). 

Even though existing methods have been achieving high performance using ECG signals alone this 

limited work has explored integrating other signals for physiological which are ABP, CVP, and PPG. These 

signals can also routinely be available in the ICUs and can provide redundancy or complementary 

information about those cases where ECG leads are disconnected due to patient movement or 

unconsciousness. Using such multimodal data holds promise in critical care settings for enhancing the 

robustness of arrhythmia detection. 

Table 1. Summary of Notable Studies on Arrhythmia Classification 

Authors Methodology Data Set Key Techniques Accuracy 

Kiranyaz, Ince, T., & 

Gabbouj, M. [9] 

9-layer 1D CNN 1-lead ECG 

(MIT-BIH) 

Synthetic data 

augmentation 

94.47% 

Yildirim, O. [15]  Hybrid CNN-LSTM 1-lead ECG 

(MIT-BIH) 

CNN + LSTM 98.10% 
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Acharya, Fujita, H., 

Lih, Hagiwara, Y., 

Tan, & Adam [11] 

4-layer CNN + 

SMOTE 

1-lead ECG 

(MIT-BIH) 

Max pooling, FC 

layers 

98.30% 

Hussein et al. [19] Feature extraction + 

1D CNN + SMOTE 

1-lead ECG Feature-based 

CNN 

High 

accuracy 

Hannun, Rajpurkar, 

Haghpanahi, M., et 

al. [20] 

Deep 34-layer CNN Ambulatory 

ECG 

Deep CNN Exceeded 

cardiologist 

accuracy 

Zhang et al. [22] 101-layer ResNet + 

2D transforms 

1-lead ECG 

(MIT-BIH) 

Hilbert & Wigner-

Ville transforms 

99.75% 

Rahman et al. [23] ResNet50 + transfer-

learning 

ECG images Transfer learning 91% 

Khan et al. [24] 1D ResNet + 

SMOTE 

1-lead ECG 6 conv + 3 max 

pool layers 

98.63% 

Kalidas et al. [26] SVM with features 

from ECG, ABP, 

PPG 

Multimodal 

ICU signals 

Spectral and time-

domain features 

Sensitivity 

94%, 

Specificity 

86% 

Arvanaghi et al. [27] LS-SVM with 

frequency, power, 

and entropy 

features 

ECG + ABP Feature-based 

SVM 

95.75% 

Arvanaghi et al. [28] CNN on ABP 

scalograms 

ABP signals CNN classifier 89% (ABP 

only) 

Arvanaghi et al. [28] Combined ECG + 

ABP features 

ECG + ABP CNN classifier 96.6% 

 

4. Methodology 

The first overview of the methodology is shown in Figure 1.  Pre-processing is doing the noise filtering 

and normalization process after that the signal segmentations are done which is first done for individual 

heartbeats. Classifications are made on the set of signals (ECG+ABP+CVP) at first with the help of different 

deep learning architectures like as CNN-LSTM, ResNet152, ResNet32, and ResNet50. The model provides 

the maximum accurate results which then are used to measure the potential of every signal. MIT-BIH 

arrhythmia database is being used. 

4.1. Dataset 

To evaluate the importance of our model against existing research we have also utilized lead II ECG 

recordings from the MIT-BIH Arrhythmia Database. This is a publicly available dataset that was developed 

by the Massachusetts Institute of Technology which contains long-term ECG recordings sampled at 360 Hz 

that are used specifically for arrhythmia analysis. The dataset labels each heartbeat into one of six categories 

which are F, M, N, Q, S, and V. 

4.2. Pre-processing 

Signals that are recorded by patients in the ICU most often contain noise caused because of medical 

equipment, patient movement, or poor electrode contact. For example, the CVP signal is affected by 

breathing which is rising during inhalation and falling during exhalation whereas ECG signals often 

include motion-related and electrode noise. To clean the signals the method of Discrete Wavelet Transform 
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(DWT) is used. Different types of wavelets were used for each signal: biorthogonal for ECG, Daubechies 

for ABP, and CVP. After removing noise, we normalized all signals to the range [-1, 1] and detected R-

peaks in the ECG using the Pan-Tompkins algorithm. 

 
Figure 1. Overall System Overview 

We have also used different methods to segment the heartbeats for ECG and blood pressure signals. 

Since we know there is a small delay between the electrical signal of the heart (seen in the ECG) and the 

blood pressure response (seen in ABP and CVP) so we have adjusted the segmentation windows. For ECG, 

we took an 800 ms window around each R peak. For ABP and CVP, we have used a window starting 200 

ms before and ending 600 ms after each R peak. In this way, all three signals are aligned correctly for each 

heartbeat. 

4.3. Classification 

We have used two types of models for arrhythmia classification: a hybrid CNN-LSTM model and a 

ResNet model architecture. CNN and LSTM networks are both well-known models that are used for 

performing well in arrhythmia detection. By combining them in a model it can learn both short-term 

patterns (using CNN) and long-term dependencies (using LSTM) for data. CNN-LSTM model has two 1D 

convolutional layers which are each followed by group normalization, a ReLU activation function, max 

pooling, and dropout layers. After the convolutional layers at the end, there are two LSTM layers which 

are followed by two fully connected layers. 

We also tested ResNet models based on the popular ResNet152, ResNet50, and ResNet34 architectures. 

However, instead of using the original 2D layers in the model we used 1D layers that can work directly 

with one or multiple signal channels. This helps us avoid the need to convert and merge the signals before 

input is done. As it has been mentioned earlier ResNet models are valid and increasingly popular 

approaches in deep learning to improve performance can often perform better than standard CNNs 

because they can only pass information through deep layers more effectively. That’s why we chose to 

explore their performance for classifying arrhythmias using signals from multiple sources. 

4.4. Evaluation Table 

Multi-class classification models’ performance is evaluated using a set of standard metrics like 

accuracy (Acc), sensitivity (Sen), precision (Pre), and F1-score. In which each metric offers unique insights 

into the model’s prediction capabilities. 
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Accuracy reflects on the overall effectiveness of the model to measure the proportion of correctness of 

predictions in both true positives (TP) and true negatives (TN) from that of the total number of predictions. 

It is the mathematical representation: 

Acc = (TP + TN) / (TP + TN + FP + FN)         (1) 

Sensitivity is the true positive rate that is used for evaluating the model's ability to correctly identify 

the model’s actual positive instances. It is calculated as: 

Sen = TP / (TP + FN)            (2) 

Precision is used to quantify true positive predictions proportion from those of all instances in a 

predicted as positive. This is used to indicate how reliable the model is when it is predicting a positive case: 

Pre = TP / (TP + FP)            (3) 

F1-score is known as a harmonized mean of precision and sensitivity, providing a balanced measure 

that is used to account for both false positives and false negatives: 

F1 = 2 × (Pre × Sen) / (Pre + Sen)          (4) 

These metrics are used collectively for providing a comprehensive evaluation of the classification 

model’s performance and for imbalanced datasets where relying solely on accuracy can be misleading. 

 

5. Results and Discussion 

ECG-based arrhythmia classification we have evaluated and compared the performance of three 

prominent deep learning models those are ResNet50, ResNet34, and ResNet152 alongside a hybrid 

architecture that is CNN-LSTM. Each of these models was assessed based on a core classification table like 

accuracy, sensitivity, precision, and F1-score to determine its effectiveness in detecting cardiac 

irregularities. 

Table 2. Models Performance with signals: ECG, ABP and CVP 

Model Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) 

CNN-LSTM 98.12 98.15 98.10 98.12 

ResNet50 98.88 98.86 98.89 98.57 

ResNet152 98.55 98.56 98.55 98.54 

ResNet34 98.38 98.41 98.38 98.41 

5.1. ResNet-50 Performance 

The ResNet-50 model is showing strong performance in the six target classes of F, M, N, Q, S, and V. 

Based on these key evaluation metrics of accuracy, sensitivity, F1-score, and support. We can say that the 

best-performing class is Class ‘N’ with an accuracy of 0.97, sensitivity of 0.99, and F1-score of 0.98, 

supported by 15,140 instances. Class ‘M’ has been also performing very well by achieving values of 0.97 

from all three metrics over 1,680 examples. The class ‘V’ is showing signs of a well-balanced performance 

that has accuracy, sensitivity, and F1-score of 0.93, 0.95, and 0.94, respectively. But in class 'Q' shows a 

sensitivity of 0.76 and an F1-score of 0.8 has inconsistencies even after having an accuracy of 0.94. Classes 

that have lower support are giving some modest metrics like class ‘S’ has an F1-score of 0.88 and class ‘F’ 

is struggling with its sensitivity of only 0.73 and F1-score of 0.81 with a little better precision of 0.91. These 

results are also shown in Table 3. 

Table 3. Class-wise Training Table for classification 

Class Precision Sensitivity F1-score 

N 0.97201 0.995403 0.98356 

M 0.973872 0.973872 0.97387 

Q 0.944615 0.756158 0.83994 

V 0.931034 0.950704 0.94076 

S 0.901786 0.855932 0.87826 

F 0.90909 0.73170 0.81081 

Validation performance is seen in the process of training in which class ‘N’ is again at the top with an 

accuracy of 0.9894, sensitivity of 0.9960, and an F1-score of 0.9927. Class 'M' follows similarly with high 

values showing the model’s capability to correctly detect these instances. Classes ‘Q’, ‘V’, and ‘S’ have some 

respectable validation scores even though class ‘F’ is showing some performance issues for a sensitivity of 

only 0.4291 and an F1-score of 0.5707, even with high precision. These results show some difficulties in 
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recalling the true positives in class 'F'. The training matrix of class 'N' is yields 14,980 true positives and 

only minor misclassifications. These results can also be seen in Table 4. 

Table 4. Class-wise Evaluation table for classification 

Class Precision Sensitivity F1-score 

N 0.989442  0.996031 0.99272 

M 0.966061  0.971265 0.968665 

Q 0.949556  0.953806 0.951776 

V 0.964779  0.937709 0.950442 

S 0.842442  0.937443 0.887407 

F 0.851573  0.429124 0.570781 

As shown in Table 5 training and validation losses are decreasing over time and converge those have 

final values of 0.0314 and 0.0305. Accuracy metrics are high 0.9877 for training and 0.9888 for validation 

with proximity of precision and sensitivity with the values of 99%. The model is achieving some near-

perfect AUC scores of 0.9998 for training and 0.9997 for validation by showing some excellent class 

discrimination ability.  

Table 5. Performance Evaluation 

Metric Train Validation 

Train loss 0.0314 0.0305 

Train accuracy 0.9877 0.9888 

Train precision 0.9879 0.9888 

Train sensitivity 0.9877 0.9887 

Train AUC 0.9998 0.9997 

 

6. Conclusion 

In this study there has been use of diverse deep learning models like CNN-LSTM and many types of 

ResNet architectures were developed to classify five types of arrhythmias with the help of ECG, ABP, and 

CVP signals which were collected by use of MIT-BIH Arrhythmia Database. To use these signals more 

effectively and correctly they are aligned for ECG heartbeat with the help of waves in the ABP and CVP 

signals we have used the process of segmentation that is used to account for the delay in ECG heartbeat or 

hemodynamic waveform responses. ResNet50 has demonstrated strong capabilities in feature extraction 

and heartbeat classification across all other channels additionally without requiring any prior feature 

extraction techniques. Furthermore, the results also highlight the individual ability of hemodynamic 

signals (ABP and CVP) to detect any changes associated with arrhythmias. This finding underscores the 

potential of using ABP and CVP signals for an accurate classification of arrhythmia in ICU settings where 

these are routinely monitored. Comparing our results with existing studies (see Table 2), we conclude that 

our approach has achieved significant performance improvements both on our dataset and on the widely 

used MIT-BIH arrhythmia database. 
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