
Journal of Computing & Biomedical Informatics                                                                                               Volume 09  Issue 01 

                     ISSN: 2710 - 1606                                                                                                                                                 2025 

ID : 998-0901/2025   

Research Article 

https://doi.org/10.56979/901/2025 

 

Modeling Sleep Health and Lifestyle Using Supervised Learning Algorithms 
 

M Usman Bhatti1*, Ali Saeed1, Muhammad Ashir2, Naveed Hussain3, Mehmood Anwar2, and Muhammad 

Farhat Ullah4 

 
1Department of Software Engineering, FOIT, University of Central Punjab, Lahore, Pakistan. 

2Department of Computer Science & IT, University of Lahore, Punjab, Pakistan. 
3Department of Applied Computing Technologies, FOIT, University of Central Punjab, Lahore, Pakistan. 

4School of Software, Dalian University of Technology, Dalian, Ganjingzi District, Liaoning Province, China . 

Corresponding Author: M Usman Bhatti. Email: muhammad.usman1@ucp.edu.pk 

 
Received: April 28, 2025 Accepted: May 31, 2025 

 

Abstract: With the realization of the importance of sleep quality as an indicator of general well-being, 

this work uses the strength of machine learning to discover significant trends in information about 

lifestyles and health to make predictions regarding sleep health. Based on the Sleep Health and Lifestyle 

Dataset that consists of 373 instances (rows) and 13 features (columns), including demographic, 

physiological, and lifestyle-related data, one can classify the target variable Quality of Sleep as a 

categorical attribute, defining the task in terms of classification. Different machine learning models were 

implemented and compared by means of precision, recall, accuracy, and F1 score: Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Logistic Regression, Decision Tree, 

Gradient Boosting, Naive Bayes, and AdaBoost. Of these, the models of the ensemble type were better 

performers, and the Random Forest model produced the best outcomes in all measures: 98.67% 

accuracy, 98.74% precision, 98.67% recall, and 98.66% F1 score. The other schemes, Decision Tree and 

Gradient Boosting, also performed well, and SVM received the lowest scores. The results emphasize the 

usefulness of ensemble methods in modeling complicated and non-linear relationships in multifactor 

health data. The results reinforce the possibilities of machine learning in relation to data-driven, 

individualistic health-related recommendations and early interventions during sleep health 

management. 

 

Keywords: Sleep Quality; Machine Learning; Sleep Health and Lifestyle Dataset; Ensemble Methods; 
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1. Introduction 

Sleep is a biological phenomenon, which takes one-third of a day and has an important influence on 

physical and mental health [1, 2]. Moreover, sleep plays an integral role in the health and overall well-being of 

individuals across all age groups, including children, adolescents, and adults. Sufficient and quality sleep plays 

a vital role in supporting cognitive performance, mood stability, psychological health, and maintaining 

cardiovascular, cerebral, and metabolic functions [3]. In the past few years, research efforts have been directed 

toward understanding what influences sleep quality, since poor sleep is connected to serious health problems 

like heart disease, obesity, diabetes, and depression. [4–6]. However, the clinical study methodology has 

mostly been based on studying one variable in isolation, whereas data-driven methodology is required, which 
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could simultaneously examine a multitude of variables of health and lifestyle factors to develop a more in-

depth insight into their overall impact on sleep health. 

The availability of comprehensive datasets has opened new avenues for researchers to analyze sleep 

patterns using machine learning techniques [7]. The dataset of Sleep Health and Lifestyle includes 400 records 

and 13 features capturing demographic details, physiological indicators, and lifestyle habits. These features 

range from age, occupation, and gender to physical activity levels, stress levels, BMI category, and more. Such 

a rich dataset allows researchers to explore the multifactorial nature of sleep health and generate predictive 

models that can support clinical decision-making or personal health monitoring. 

In the modern era of big data, machine learning has become a powerful classification algorithm, industries 

and decision-making. Large volumes of data are used to train machine learning algorithms, which yield highly 

valuable predictions. A fundamental task in machine learning is classification, which involves assigning labels 

or classes to inputs and is determined by their features [8]. All fields apply machine learning, including 

medicine, since this field can identify trends in the information that is not quickly noticed. This study explores 

some machine learning models that were involved to predict sleep quality, as a categorical feature, using the 

features provided in the dataset. Naive Bayes, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 

Random Forest, Decision Tree, Logistic Regression, Gradient Boosting, and AdaBoost are the models in 

question. Accuracy, precision, recall, and F1 score were used to measure all the algorithms to get the 

effectiveness of each algorithm in capturing the relationships in the data. 

Because it was explicitly stated in the experimental part, ensemble-based models like Random Forest or 

Gradient Boosting showed a much better result compared to the linear models or SVM. Random Forest, 

specifically, has gained the best accuracy (98.67%) and has been stable throughout all the assessment metrics. 

Conversely, SVM performed poorly, and this means that it might not suit this kind of data unless further 

adjusted or trans- formed. Such findings indicate that there may be complex, non-linear interactions amongst 

the features, which tree-based ensemble models judge better. 

This research paper forms the basis that machine learning has a potential to enhance our understanding 

on sleep health due to predictive modelling. Predictive systems can be developed based on the information 

regarding different health and lifestyle aspects to assist medical professionals or citizens to identify sleep-

related issues at their early onset. The study is also a contribution to the growing body of literature explaining 

why artificial intelligence should be implemented in preventative health to open the door to personalized 

recommendations and quality of life improvement. 

 

2. Related Work 

There exists a large amount of literature that follows the approach and use of machine learning practices 

within the scope of the healthcare sector as well as especially in regard to sleep-related data. The common 

purposes of these studies are to predict sleep disorders, assess the quality of sleep and identify the factors 

which determine the quality of sleep. As an illustration, Uezu et al. [9] examined the sleeping habits of elderly 

people in Okinawa Prefecture, where there is a high longevity of the population. Their contribution 

highlighted the importance of some lifestyle rituals in healthy sleeping, thus showing the importance of daily 

routines in the general health of sleep. 

In the same line of thought, Dzierzewski et al. [10, 36] examined the role of lifestyle in affecting sleep at 

various life stages. They discovered that although routines, such as regular sleep patterns, healthy eating, and 

exercising are widely helpful, they may have different effects across and within demographic groups. It shows 

the significance of conducting population-specific sleep health approaches. 

More so, strengthening the association between lifestyle and sleep, Taira et al. [11] examined the older 

adults and revealed that the poor sleep quality frequently co-exists with the deterioration of physical and 

mental health. Notably, however, they also mentioned that physiological variables, including age, blood 

pressure, and BMI, are important as well, as they create the impression that both behavioral and biological 

elements interact and should be taken into account when assessing the state of sleep health. 
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In conjunction with these lifestyle-centered investigations, a separate body of literature has used machine 

learning to promote the objectivity and productivity of sleep assessment. Machine learning algorithms were 

used in one such study [12, 37] to automatically classify sleep stages based on EEG spectrograms, providing 

an alternative that is several times faster and more accurate than manual classification. Such a direction 

indicates the increased promise of ML-based tools in the automation of sophisticated clinical tasks. 

Extending beyond individual-level data, research has also begun to examine environmental influences on 

sleep. For instance, [13, 38, 39] explored the relationship between sleep health and factors exacerbated by 

climate change, such as temperature variation, pollution, and trauma. This study also identified vulnerable 

populations disproportionately affected by these conditions and highlighted the need for both adaptive 

strategies and further investigation into under-researched areas. 

Parallel to these developments, the use of physiological biofeedback in sleep prediction has gained 

momentum. A recent study [14] introduced machine learning models that utilize heart rate variability and skin 

temperature to estimate sleep quality, based on the Pittsburgh Sleep Quality Index (PSQI). The results 

emphasized the effectiveness of wearable and contactless technologies in real-time, non-invasive sleep 

monitoring. 

Taking the technological innovation further, another study [15] proposed an advanced framework that 

integrates Transformer-based multivariate time series modeling with ensemble learning methods. This model 

not only predicted sleep quality but also assessed emotional states and stress levels, outperforming traditional 

approaches and showcasing the power of deep learning in capturing complex temporal patterns. A review by 

[16] explored the current and future roles of AI in various aspects of sleep care, including screening, 

monitoring, prevention, prediction, diagnosis, and treatment of sleep disorders. 

 According to the authors, AI is a powerful and versatile tool with the potential to revolutionize clinical 

workflows by enhancing the efficiency of healthcare providers and improving the quality of care delivered to 

patients with sleep disorders. A comprehensive study conducted in China explored the multifactorial 

influences on insomnia, focusing on lifestyle, health conditions, and environmental factors [17, 40]. Using 

interviews and questionnaires, the researchers analyzed data from patients experiencing poor sleep, revealing 

the complex and interconnected nature of insomnia. This study underscores the importance of considering 

multiple influences—beyond just physiological or environmental factors—when assessing and predicting 

sleep disorders, particularly insomnia.  

An article [18] reviews the architecture of sleep and provides evidence for its critical role in sleep health, 

including its impacts on mental and emotional well-being, as well as cognitive function and performance. The 

study also discusses strategies for improving sleep health through public health initiatives, highlighting the 

need to tackle sleep disparities within populations in order to improve overall health outcomes. 

Despite these advancements, much of the existing literature remains limited by a narrow focus on isolated 

variables or single-source data, such as physiological signals alone. In contrast, the Sleep Health and Lifestyle 

Dataset enables a more comprehensive analysis by incorporating a diverse set of features, including 

demographic, behavioral, and physiological indicators. This multifaceted approach supports the growing shift 

toward personalized and preventive healthcare driven by artificial intelligence, enabling a deeper 

understanding of the factors influencing sleep quality.  

 

3. Dataset 

The Dataset of Sleep Health and Lifestyle is a structured and tabular dataset formulated to study how 

different demographic, physiological, and lifestyle factors affect sleep quality, which is obtained from Kaggle1. 

It has 373 records and 13 features (both numerical and categorical variables) presented in Table 1.  

The important characteristics are gender, age, physical activity level, occupation, daily steps, stress level, 

heart rate, and BMI category. The target variable, quality of Sleep is numerical though in this study it has been 

considered as a categorical variable due to classification purpose. Also, the dataset contains a sleep disorder 

label and blood pressure along with a heart rate, which makes it possible to study health-related indicators in 
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an in-depth manner. A variety of features qualifies this dataset to train machine learning models that would 

be used to find patterns and predict sleep health outcomes. 

Table 1. Sleep Dataset Features 

Feature Type / Description 

Person ID Identifier 

Gender Categorical 

Age Numerical 

Occupation Categorical 

Sleep Duration Numerical 

Physical Activity Level Numerical 

Stress Level Numerical 

BMI Category Categorical 

Blood Pressure Textual format (e.g., "126/83") 

Heart Rate Numerical 

Daily Steps Categorical 

Quality of Sleep Target variable (numerical but treated as categorical) 

3.1. Data Preprocessing 

Data preprocessing is a foundational step in making the dataset appropriate for machine learning model 

development. The following techniques were applied: 

o Stop Words Removal: Extraction of redundant words with low or no semantic meaning, known as stop 

words, was performed to reduce noise and enhance the relevance of textual features [19]. 

o Replace Missing Values: Incomplete data entries were addressed by replacing missing values using 

appropriate imputation techniques [20] mean is used for numerical values, and the mode is used for 

categorical values, ensuring the dataset’s integrity and minimizing bias. 

o Standardization (Z-Score Normalization): In order to make the data more appropriate for algorithms that 

are sensitive to feature distributions, this technique was used to modify features so that they had a mean 

of zero and a standard deviation of one [21, 22]. 

 

4. Feature Engineering 

To transform unstructured attributes into formats appropriate for machine learning models, feature 

engineering was done. One-hot encoding was used to convert categorical variables, including gender, 

occupation, BMI category, and daily steps, which made it possible for the algorithms to efficiently process 

non-numeric data. Furthermore, the Blood Pressure information was processed by feature extraction by 

separating it into two separate numerical components: Systolic and Diastolic pressure. Originally, the feature 

was recorded as a textual value (for example, "126/83"). This change improved the model's ability to extract 

insights from health-related indicators and allowed for more accurate analysis. While maintaining the 

interpretability of the input data, these engineering features helped to improve the model's predicted 

accuracy. 

 

5. Research Methodology 

This study thoroughly investigates how well several machine-learning algorithms predict brain cancers 

using clinical medical data. ZeroR, K-Nearest Neighbours (KNN), KStar, J48 decision tree, Multilayer 

Perceptron (MLP), Support Vector Machine (SVM), AdaBoost, and Naïve Bayes are the eight models that are 

put to the test. 

5.1. Naïve Bayes 

Naïve Bayes is a classification model grounded in probability theory, utilizing Bayes’ Theorem to estimate 

the likelihood of an outcome based on prior information. The algorithm is termed "naïve" because it assumes 

that all input features are conditionally independent given the class label, which simplifies computation [24–

26, 41–43]. While this assumption may not always reflect real-world scenarios, Naïve Bayes often delivers 
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strong performance, particularly in text classification tasks like spam filtering. It evaluates the posterior 

probability for each class and selects the one with the highest value for prediction. Equation 1 provides the 

mathematical formulation for the posterior probability of a given class c. P (cx1, x2, ..., xn) is the posterior 

probability of class c. 

 
5.2. Support Vector Machine (SVM) 

SVM is a supervised learning technique that is applied to regression and classification [27, 44–46]. The 

primary goal is to uncover the ideal hyperplane that divides the data points of various classes with the largest 

possible margin between them. These data points are known as support vectors because they define the limits. 

When the data is not linearly separable, SVM maps it to a high-dimensional space where linear separability is 

feasible using kernel functions. The linear, polynomial, and RBF kernels represent standard choices for kernel 

functions in machine learning. Equation 2 provides the decision boundary. 

WT x + b = 0                                                                                 (2) 

Where w represents weight, x represents the input, and b is the bias. 

5.3. K-Nearest Neighbors 

KNN is a very simple as well as instance-based algorithm that stores the entire training dataset and 

classifies new data points by comparing them with their nearest neighbors. When a new instance is introduced, 

the algorithm identifies the k closest training examples based on distance metrics like Euclidean, Manhattan, 

or cosine distance [28]. Among these neighbors, the majority class determines the anticipated label. When used 

on large datasets, KNN can become computationally costly because it doesn’t require a training step, which 

makes it simple to build. 

In the eq 3. d (xi, xj) is the Euclidean distance between instances xi and xj. 

 
5.4. Decision Tree (C4.5 / J48) 

An enhancement on the previous ID3 method, the C4.5 decision tree technique is implemented by J48. 

The dataset is recursively divided according to the characteristic that provides the most information gain, with 

the goal of making the target labels more uniform within the resulting subsets [29] [47–49]. The procedure 

keeps going until a stopping condition—like a homogenous class distribution or a minimum number of 

instances—is satisfied. Internal nodes (feature splits) and leaf nodes (class predictions) make up the final 

decision tree, which creates a collection of comprehensible decision rules. Where eqs. 4 and 5 are used to 

determine information gain and entropy, respectively. 

 
5.5. Random Forest 

A powerful ensemble learning technique called Random Forest constructs many decision trees during the 

training phase and uses the individual trees to provide the mean prediction for regression tasks or the mode 

of the classes for classification tasks [30]. Using bootstrap aggregating or bagging, each tree is trained on a 

randomly selected subset of features and a randomly selected part of the dataset. The model’s ability to 

generalize is enhanced and overfitting is reduced by introducing randomness. The Random Forest model’s 

prediction in the regression scenario is represented mathematically by Equation 6. 
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Where yˆ is the final prediction, T stands for the total number of trees, and ht (x) is the prediction of the tth 

decision tree for the input x. 

By aggregating the outputs of multiple trees, Random Forest improves accuracy and robustness [31]. It is 

especially effective for high-dimensional datasets and demonstrates resilience to noise and overfitting. 

Furthermore, Random Forest models can provide estimates of feature importance, making them valuable for 

both predictive performance and interpretability in various machine learning tasks. 

5.6. Logistic Regression 

A statistical model for binary and multi-class classification issues is called logistic regression [32, 33]. In 

contrast to linear regression, it uses the logistic (sigmoid) function to forecast the likelihood that an input with 

a particular input will belong to a particular class. The estimated parameters of a model map input features to 

a probability score between 0 and 1. 

The probability output defines the decision boundary in the case of a binary classification problem. An 

input is assigned the class 1 when the estimated probability exceeds a preset threshold (typically 0.5), 

otherwise, it is assigned the class 0. Linear combination of the input features is given mathematically by: 

z = wT x + b                                                                                                       ( 7) 

Here, w stands for the weight vector, x corresponds to the input vector, and b indicates the bias 

component. The linear combination of these components yields z, which is then passed through the sigmoid 

(logistic) function to generate the predicted probability. 

 

σ(z) = 
1 + e–z                                                                     (8) 

Thus, the predicted probability that the output y is 1 given input x is: 

 

P (y = 1 | x) = σ (wT x + b)                                                   (9) 

The final classification decision based on a threshold τ (typically 0.5) is: 

 

In Equation (10), the probability P (y = 1 | x) is given by the sigmoid function applied to the linear 

combination of weights and input features. Logistic Regression is valued for its simplicity, interpretability, and 

efficiency when applied to linearly separable datasets. 

5.7. Gradient Boosting 

By gradually adding weak learners, typically decision trees, gradient boosting is an ensemble strategy 

that builds a powerful predictive model [34]. The residual errors produced by the ensemble of previously 

trained models are corrected by each new model. The algorithm optimizes a chosen loss function by applying 

gradient descent techniques to minimize the prediction error, which is where the term "gradient boosting" 

originates. 

A new learner hm(x) is trained to approximate the negative gradient of the loss function with regard to 

the predictions of the existing model at each iteration m. The ensemble prediction after M iterations is given 

by: 

Where yˆ(x) is the final prediction, M is the total number of boosting rounds, hm(x) is the mth weak learner, 

and η ∈ (0, 1] is the rate of learning that is used to control the contribution of each learner. 

1 
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Equation (11) represents the cumulative output of all weak learners, each scaled by the learning rate and 

aligned in the direction that minimizes the loss function. Gradient Boosting is highly flexible, supporting 

different types of loss functions, data types, and regularization methods. However, it requires careful tuning 

of hyperparameters to prevent overfitting and to ensure generalization.

5.8. Adaboost 

The AdaBoost word stands for Adaptive Boosting. By integrating several weak models, this kind of 

ensemble learning technique improves classification accuracy [35]. It operates iteratively, training a new model 

at each step that directs more attention to the instances misclassified by previous models. These difficult cases 

are given more weight in subsequent rounds, while the outputs of individual models are aggregated based on 

their accuracy. AdaBoost enhances predictive performance and is often used with simple base classifiers like 

decision stumps. 

 
 

In eq 12. ht (x) is the weak classifier at iteration t, and alpha is a weight. T is used to show the total number 

of classifiers. 

 
P (cx1, x2, ..., xn) is the posterior probability of class c. 

 

6. Model Implementation 

The structured machine learning methodology used by the suggested model is described in Section 5 and 

is depicted in Figure 1. It starts with the input layer, which contains personal characteristics such as numerical 

and categorical attributes. Few of them, like person ID, are used as an identification, and blood pressure is 

given in text format. The data preprocessing includes Z-score standardization to match feature scales, stop 

word removal (if any text is included), and missing value imputation. To enhance prediction performance, 

feature engineering is then performed utilizing feature extraction and one-hot encoding. Different ML models, 

which are described in the methodology section, are trained using the prepared data. After assessing all the 

models, the optimal model is identified based on its performance metrics. In order to offer actionable insights 

into sleep quality, the model now predicts Quality of Sleep, which was initially a numerical value but is now 

regarded as categorical for classification. 

 

Figure 1. Architecture diagram of the Proposed Model 
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7. Evaluation Measures 

In order to determine the effectiveness of the classification model, the confusion matrix is utilized, offering 

an in-depth breakdown of predicted versus actual outcomes. A confusion matrix includes four essential 

elements: True Positives (TP), indicating correctly identified positive cases; True Negatives (TN), representing 

correctly classified negative cases; False Positives (FP), where negative instances are mistakenly labeled as 

positive; and False Negatives (FN), where the model fails to detect actual positive cases. These elements are 

fundamental in deriving various performance evaluation metrics. 

 

By calculating the percentage of positive and negative predictions that are accurate out of all the forecasts 

produced, accuracy provides insight into the model’s overall performance (Equation 1). Precision measures 

the fraction of instances predicted as positive that are correctly identified as positive, highlighting the metric’s 

importance when false positives must be minimized (Equation 2). Recall—commonly referred to as 

sensitivity—reflects the proportion of actual positives accurately identified by the model. It is crucial when the 

cost of missing positive instances (false negatives) is significant (Equation 3). Finally, by calculating their 

harmonic mean, the F1 score offers a compromise between memory and precision.  

Equation 4 represents a metric that is effective in scenarios requiring a trade-off between false positives 

and false negatives. When combined, these metrics offer a comprehensive assessment of the model’s 

classification performance. By calculating the percentage of positive and negative predictions that are accurate 

out of all the forecasts produced, accuracy provides insight into the model’s overall performance.  

 

8. Model Performance Evaluation 

Table 2 shows the performance metrics of different ML algorithms used for the prediction task. The 

evaluation is based on four key indicators: F1 score, precision, accuracy, and recall. Among all models, the 

performance metrics revealed that the Random Forest is superior because it achieves a 0.9867 score in terms of 

accuracy, a precision of 0.9874, a recall of 0.9867, and an F1 score of 0.9866, indicating its effectiveness across 

all metrics. The effectiveness of the ensemble and tree-based approach on this dataset can be proven by the 

good results of Naive Bayes, Decision Tree, and Gradient Boosting, which have the accuracy of 0.9733 with 

stable and high precision, recall, and F1 scores. 

With the accuracy of 0.3733 and an F1 score of 0.3134, as illustrated in Figure 2, the results of the Support 

Vector Machine (SVM) are the lowest. This is an indication that the SVM would not suit this classification job 

well without further feature engineering or parameter tuning. Having a lower accuracy of 0.7200 and an F1 

score of 0.6788, AdaBoost is quite a bad result despite the fact that it is also an ensemble method along with 

Random Forest and Gradient Boosting. This could imply it performs poorly in the presence of noise, and one 

more thing, the dataset used for this study is imbalanced data, so it needs more optimization. 

K-Nearest Neighbors (KNN) and logistic regression perform moderately well. KNN achieves a solid 

accuracy of 0.9600 and an F1 score of 0.9495, making it a reliable and straightforward choice. Logistic 

Regression attains an accuracy of 0.9200 and a respectable F1 score of 0.9112, reflecting balanced precision and 

recall, though it lags behind tree-based models. Overall, these results highlight that ensemble methods, 

particularly Random Forest and Gradient Boosting, are the most effective for this task, while simpler linear 

models and SVM require further improvement for competitive performance.  As can be shown in Figure 3, 

Random Forest and gradient boosting outperform all other models in terms of relative performance 

comparison (baseline: SVM Accuracy, because the accuracy of SVM is low compared to other models). 
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Table 2. Performance Metrics of Machine Learning Algorithms 

Algorithm Accuracy Precision Recall F1 Measure 

Naïve Bayes 0.9733 0.9748 0.9733 0.9714 

Support Vector Machine 0.3733 0.7528 0.3733 0.3134 

K-Nearest Neighbors 0.9600 0.9696 0.9600 0.9495 

Decision Tree 0.9733 0.9760 0.9733 0.9731 

Random Forest 0.9867 0.9874 0.9867 0.9866 

Logistic Regression 0.9200 0.9440 0.9200 0.9112 

Gradient Boosting 0.9733 0.9760 0.9733 0.9731 

AdaBoost 0.7200 0.6974 0.7200 0.6788 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Algorithm accuracy comparison across the preprocessing techniques 
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Figure 3. Relative Performance comparison (Baseline: SVM Accuracy)  

9. Conclusion 

The research illustrates how predictive modeling through machine learning can be applied to predict 

sleep health using a variety of lifestyle and demographic variables. As far as the considered models are 

concerned, ensemble techniques, specifically Random Forest in particular, are demonstrated to be the best as 

compared to the rest, since it was proven to yield the best results in all of the metrics. The strong results of 

Decision Tree and Gradient Boosting further reinforce the value of ensemble learning approaches. These 

findings suggest that integrating machine learning into health analytics can enable more accurate and 

personalized insights, paving the way for data-driven interventions in sleep health management and the 

prevention of sleep-related disorders. Additionally, the use of wearable technology to obtain real-time data 

may expand the influence of this in the future and produce better outcomes. 
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