An Automatic Breast Cancer Diagnostic System Based on Mammographic Images Using Convolutional Neural Network Classifier

Authors

  • Maria Jubeen Department of Computer Science, Institute of Southern Punjab, Multan, 66000, Pakistan
  • Hameedur Rahman Department of Computer Games Development, Faculty of Computing & AI, Air University, Islamabad, 44000, Pakistan
  • Ata Ur Rahman Department of Creative Technologies, Faculty of Computing & AI, Air University, Islamabad, 44000, Pakistan
  • Samiya Abdul Wahid Department of Computer Games Development, Faculty of Computing & AI, Air University, Islamabad, 44000, Pakistan
  • Azhar Imran Department of Creative Technologies, Faculty of Computing & AI, Air University, Islamabad, 44000, Pakistan
  • Amanullah Yasin Department of Creative Technologies, Faculty of Computing & AI, Air University, Islamabad, 44000, Pakistan
  • Imran Ihsan Department of Creative Technologies, Faculty of Computing & AI, Air University, Islamabad, 44000, Pakistan

DOI:

https://doi.org/10.56979/401/2022/93

Keywords:

Cancer, Benign, Malignant, Mammography, Neural Networks

Abstract

World’s second most occurring cancer is breast cancer. Prediction of disease is one of the most challenging tasks and there are many factors that effect this type of diagnosis like the ability of visual perception. This paper proposed a Convolutional Neural Network (CNN) based proper method for analyzing the earliest signs of breast cancer with the help of mammogram images. The main goal of proposed system is to identify the disease of breast cancer at early stages. Due to this reason, Mammographic image analysis society (MIAS) dataset is used. There are three hundred & twenty two (322) mammograms in the dataset, with 209 images of normal breasts and 133 images of abnormal breasts. While abnormal breasts are further classified as benign (62 images) and malignant (51 images). To implement this system, python library Keras and Tensor Flow libraries are used along with deep learning model CNN. Convolutional Neural Network (CNN) has been shown to be effective in detecting breast cancer in mammography images with 70% accuracy rate, according to promising testing data. The proposed system will enable the radiologist in detecting breast cancer in early stages.

Downloads

Published

2022-12-29

How to Cite

Maria Jubeen, Rahman, H., Rahman, A. U. ., Wahid, S. A. ., Imran, A., Yasin, A., & Ihsan, I. (2022). An Automatic Breast Cancer Diagnostic System Based on Mammographic Images Using Convolutional Neural Network Classifier. Journal of Computing & Biomedical Informatics, 4(01), 77–86. https://doi.org/10.56979/401/2022/93